Appendix B

Presentation for Various Project Meetings

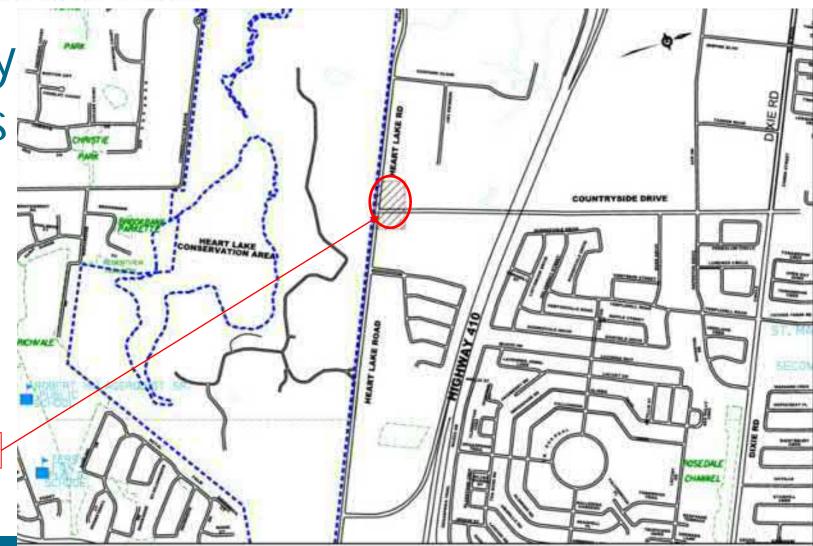
Heart Lake Rd. & Countryside Dr. Class EA

Technical Advisory Committee (TAC) Meeting November 21, 2021

- Introduction of TAC Members
- Agenda Background: Function/Design Review
 - Need & Justification Traffic Study (Paradigm)
 - Drainage and Natural Environment **Studies**
 - Update on other Studies
 - Alternative Solutions (Preferred)
 - Evaluation Matrix
 - Utilities
 - Next Steps

Introduction

The City of Brampton initiated a Schedule B Class Environmental Assessment (EA) for improvements to the intersection of Heart Lake Road and Countryside Drive


Desired Outcomes of this Class EA Study:

- ✓ Safety and Operations Including Traffic Calming;
- ✓ Minimize natural environment impacts and wildlife mortality;
- ✓ Conservation of Cultural Heritage Landscape;
- ✓ Consider proposed land uses and meet travel demands;
- ✓ Vison Zero Initiative, Active Transportation, Safety.

Study Limits

Study Area

2019 Function & Design Review Study

Study Limits - Background

Function & Design Review of Heart Lake Rd From Sandalwood Parkway to Mayfield Road.

Recommendations (Short Term):

- ✓ Transportation Improvements Narrower Lanes, M.U.T.;
- ✓ Traffic Calming Reclassify as Collector Rd., 50 kmh speed limit; speed cushions between Mayfield and Hwy 410 Ramp; traffic circle at Conservation Area entrance;
- ✓ Wildlife mortality Maintain solar powered flashers, maintain optical speed bars, install additional eco-passages, wildlife directional fencing, turtle nesting mounds.

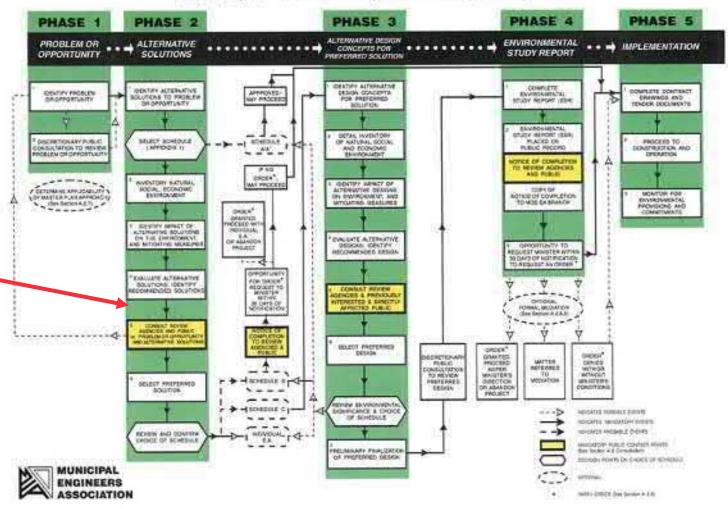
Function & Design Review (Continued)

Recommendations (Long Term):

Separated bike lanes on Heart Lake Rd. & Roundabout at Countryside

The EA Process

- ✓ The study is being undertaken in accordance with the Municipal Class EA planning and design process for Schedule "B" project.
- ✓ Study is for Heart Lake Rd. and Countryside Dr. intersection only
- ✓ The "Function & Design Review of Heart Lake Road Corridor (2019)" provides background information, provide support for problem/opportunity identification for this intersection improvement
- ✓ Additional studies have been undertaken building upon existing background information and studies.



NOTE: This flow chart is to be read in conjunction with Part A of the Municipal Class EA

The Class EA Process

We are Here...

NEED AND JUSTIFICATION

Improve the safety and operations of the Heart Lake Road and Countryside Drive intersection including meeting the traffic demand of increasing population and growth.

while incorporating traffic calming and wildlife mortality reduction recommendations for the Heart Lake Road Corridor.

Paradigm Transportation Solutions Ltd (Paradigm)

- **✓ TRAFFIC STUDY**
- ✓ The analysis included the feasibility of a roundabout;
- ✓ Westbound left-turn movement a critical movement under existing conditions, and operates over-capacity - will continue under future 2031 and 2041 traffic conditions.
- ✓ **SAFETY REVIEW** (Paradigm)
- ✓ Collision history (2015 2019) revealed no fatal collisions.
- ✓ Majority were 'single motor vehicle' collisions driver error/behaviour

SAFETY REVIEW (Continued)

- ✓ Investigation confirmed there is more than adequate approach and departure sight distance available;
- ✓ However, even with the adequate sight distances a high frequency of collisions were reported, and were determined to be attributed to aggressive driver behavior (i.e. speed).
- ✓ Correlates with the poor traffic operations stemming from a lack of gaps within the traffic stream along Heart Lake Road.
- ✓ Concluded that the current intersection traffic warrants improvement.
- ✓ Reported number of current 'correctible collisions' fall just short of warranting the consideration of traffic signal control.

INTERSECTION IMPROVEMENTS

- ✓ Under base year conditions the intersection falls just short of meeting the threshold criteria for traffic signal control.
- ✓ Under future 2031 and 2041 traffic conditions the intersection is found to meet signal justification criteria.
- ✓ Under the 2041 horizon year operating under traffic signal control, the intersection was found to operate at acceptable levels of service and within capacity.

III LINGLO I IOI I IMPROVEMENTS

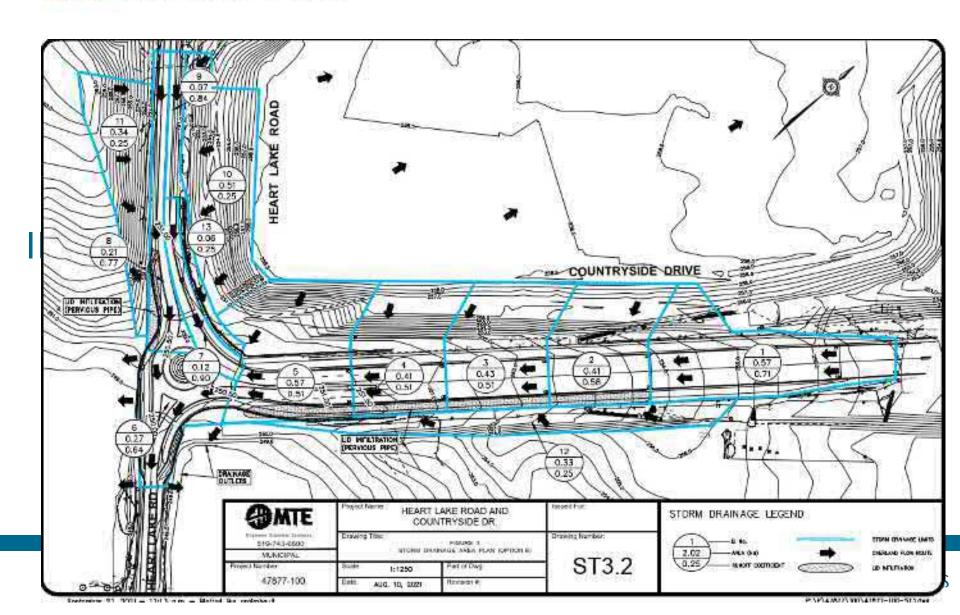
(Continued)

- ✓ It was determined that the Heart Lake Road/Countryside Drive intersection would be suitable for roundabout implementation to mitigate poor intersection operations
- ✓ Several roundabout configurations were investigated;
- ✓ A single-lane roundabout with single lane entry on the northbound and southbound Heart Lake Road approaches along with dual lane entry on the westbound Countryside Drive approach will operate at acceptable levels of service and well within capacity under 2041 traffic conditions.

Other Studies – Summary of findings

- ✓ Natural Environment Study (Beacon)
- ✓ Drainage Study (MTE)
- ✓ Phase I ESA (MTE)
- ✓ Stage 1 Archaeological Investigation (ARA)
- ✓ Cultural/Built Heritage Study (ARA)
- ✓ Geotechnical Investigation (MTE)

Natural Environment



Environmental)

- ✓ Significant wetlands and woodlands near intersection (Part of Heart Lake PSW);
- ✓ Significant wildlife habitat in wetland & woodland communities – Endangered and threatened species:
 - ✓ Bats, turtles (incl. Snapping), waterfowl, raptor nesting, reptiles;
- ✓ Turtle nesting berms;
- ✓ No fish habitat;
- ✓ Adjacent to Heart Lake ANSI's

- ✓ Draft study has been submitted to TRCA for review;
- ✓ Drainage basically the same as existing for signalized intersection;
- ✓ Roundabout results in an extra 14 l/s during 100 year storm compared to signalized intersection
- ✓ LID's recommended for quantity/quality control;
- ✓ Development drainage details to west (south side) on Countryside Drive to be included prior to construction *IF* their flows reach the Countryside Dr. road allowance.

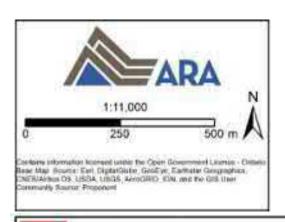


Existing	Proposed	
 300 mm storm sewer with sub drains 	 Replace existing and enhance with LID to promote infiltration 	
 Ditch drainage with	 Re-grade / enhance	
culvert crossing	ditches and replace /	
Countryside Drive	relocate culvert	
 Overland flow draining to	 Flows contained and	
ditch / wetlands	conveyed into ditches or	
(generally uncontrolled	infiltrated within project	
drainage)	limits	

Phase 1 ESA

- ✓ No records of spills;
- ✓ Fill has been added over the years;
- ✓ Additional testing should be undertaken prior to construction;
- ✓ Excess fill regulations.

Stage 1 Archaeological


Stage 1 Archaeological (ARA)

- ✓ Most areas have no archaeological potential previously disturbed, permanently wet, previously assessed;
- ✓ Intersection options to be designed to avoid potential areas;
- ✓ If area on south side of Countryside east of Heart Lake Rd is disturbed, it may require a Stage 1 investigation;
- ✓ May require a Stage 1 investigation into property purchase area if not previously assessed.

BHR Assessment Results Map

Project Location

Property Parcel

Built Heritage Resource (BHR 1)

Built/Cultural Heritage (ARA)

- ✓ Wetland is considered a BHR;
- ✓ Heart Lake Rd is considered a CHL;
- ✓ Depending on final impacts, undertake a Heritage Impact Assessment to evaluate final details;
- ✓ If bus stops or seating areas included, examine opportunities for interpretive signing

Geotechnical

Geotechnical

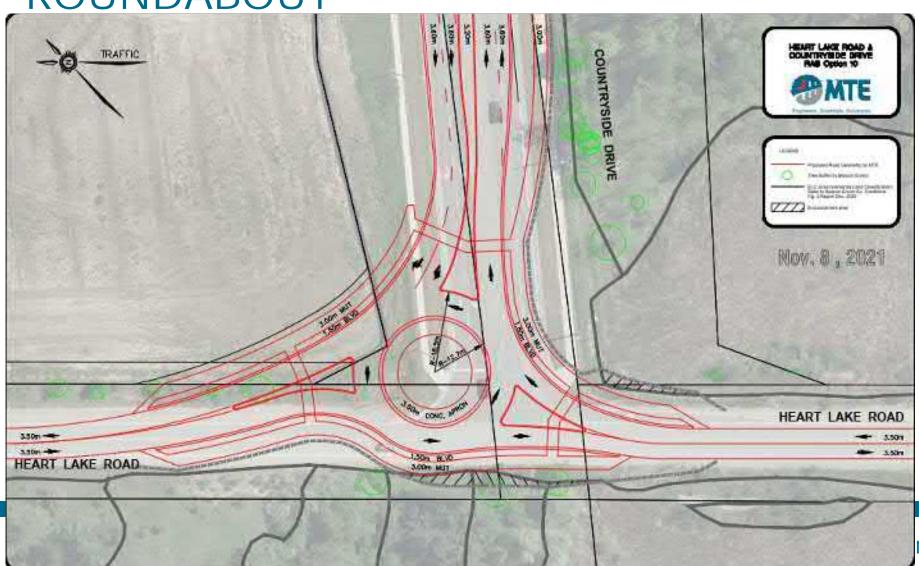
- ✓ Underlying soil is glacial till Gravelly silt;
- ✓ Pavement structure: 450 B, 150 A, 110 Binder, 50 Surface Asphalt;
- ✓ Peat deposit between 2-4 m, found on west side of Heart Lake south of Countryside Drive;
- ✓ Dewatering expected in excavations greater than 2 m deep;
- ✓ Excavated soil generally acceptable to be re-used on site – however some topsoil may need to be removed to a specialized site (waste transfer site)

ALTERNATIVES

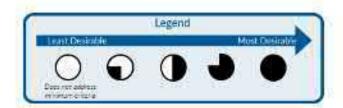
✓ DO NOTHING

✓ SIGNALIZED INTERSECTION WITH TURN LANES

✓ ROUNDABOUT


SIGNALIZED WITH TURN LANES

ROUNDABOUT



Heart Lake Road at Countryside Drive Environmental Assessment

Draft Evaluation Matrix

Evaluation Criteria

Do Nothing

Signalized Intersection with Turn Lanes

Roundabout

Natural Environment

- Minimize impacts in Designated Natural Areas, vegetation, widdle, aquatic features
- 2. Minimize Impacts in wetlands
- Minimize impacts to surface water and groundwater
- Minimize air quality-impacts and effects on climate change.
- No impacts to existing Natural Areas, vegetations widdle or aquatic features, but Heart Lake Road traffic well occurring at speed that increasing there or widtle strikes.
- 2. No impacts to designated wetlands
- 3. No change in runotty surface drainage
- Traffic volumes will continue to increase, resulting in increase delaws / congestion

- vi Traffic with green light will continue at special limit accessing chance of widdlife strikes in Whitelethousing and ension controls to be invalided.
- Some Intrusions into designated wetlands (375m²)
- 3. Least pavement than age/surface water ronoff
- Traffic delays/congestion resulting in vehicles iding at red lights
- of All traffic will show down to rewighte monitobout, which should recipie wildlife strikes to Wildlife fencing and enough controls to be installed.
- Minimal intrusion into designated wetlands (45mf)
- More pavement resulting in more drainage/ surface water natoff
- Less traffic delays due to vehicles not having to stop at not lights, less vehicle starting/etopping

Planning Objectives

- 1. Achiere to Transportation Master Plan
- Z. Achere to Official Plan
- Adhere to Active Transportation Moster Plan
- Achiero to Rogina Official Plan Policies.
- Does not implement required improvements per Transportation Master Plan
- Other transportation improvements will be required to adhere to the Official Pinn
- Does not adhere to Active Transportation. Master Plan
- Other transportation improvements will be required to adhere to Official Plan Ploicies.
- 1. Adheres to Transportation Master Plan
- Z. Adheres to Official Plan
- Adheres to Active Transportation Master Plan
- 4. Adheres to Region Official Plan Policies

- Adheres to Transportation Mester Plan
- 2. Adheres to Official Plan.
- 3. Adheres to Active Transportation Master Plan
- 4. Adheres to Report Official Plan Policies

AZ.	Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout			
	Social and Cultural Environment						
	Improve visual aesthetics Preserve archaeological and cultural heritage features Preserve the agricultural setting community character and public realm. Minimize traffic naise Minimize disruption due to construction. Minimize Impacts to existing accesses in the area.	1. Vocal aesthetics will restain the same, no opportunities to enhance landscape 2. No impacts to existing setting, character or public realm 4. Traffic coise will continue to increase as traffic volumes increase 5. No damaption due to construction, however, increasing congestion may cause disruption 6. No impacts to existing access, however, increasing congestion may impact access.	Landscaping opportunities behind curb/ addevalk/MUT Taj No direct impacts to archaeological/ horitage teatures to Some impact on existing rural road cross section Signals contribute to orban look and setting Traffic noise will not decrease Least time for construction and traffic can be maintained during construction No accesses impacted in the area	1. Opportunities for landscaping in center stand and behind steewalk/MUT 2. If No direct impacts to known archaeological features b) Disrupt existing linear views: c) Changes the existing trass section: ii) Additional Stage 1/2 Archaeological investigation required in property purchase area. 3. Opportunity to enhance the public realm, and all traffic most slow to raivigate roundabout. 4. Traffic noise will decrease due to less stop/starts of traffic. 5. Most time for construction and traffic can be maintained during construction. 6. No accesses impacted in the area.			
⊋Sĭ	Economic Davetonment	D 2	D 2	3 3			
	Economic Development						
AIII.	Beneficial to business/ community with respect to travel time	Travel time will not be reduced, and will increase as traffic volumes increase.	More delays than with a roundabout due to stopped traffic stopped for red lights	Roundabout provides more free flowing traffic, and results in less traffic delays/congestion.			
	Minimum capital and construction costs	No construction or capital costs	Road improvements and signal installation have lowest capital/construction costs - est. \$1.15 million	Highest Capital Costs due to additional payement, curb, signage and line markings - est. \$1.57 million.			
	 Minimum property impacts? requirements 	No additional property required.	No additional property required	Approximately 350 sm of property is required on NE corner, which can be obtained at no cost to the City			
	Minimize operating and maintenance costs	Operating and maintenance costs do not change.	Operating and maintenance costs include powering and maintaining signals	4. No signal power and maintenance costs.			
				Wales of the latest and the latest a			

Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout			
Engineering and Technical	Engineering and Technical					
Congestion and collisions will continue	Is safe for all travel modes.	1. Safe for all travel modes	Safe for all travel modes, floundabout reduces severity of collisions (i.e., less conflict points and sideswipes vs head-on or "T bone" collisions)			
Create an Active Transportation Erlandly Environment (Cyclets, pedestrans etc.)	No additional sidewalks or cycling facilities	Sidewalks, cycle facilities provided. Motorist must stop at red light and be aware of pediestrians.	 Sidewells, cycle facilities provided, Requires pedestrians to be sure motorists are awape of their presence. Cyclists can use Roundabout or multi- use path at Roundabout. 			
Accommodate tuture travel demands	Future travel demands not accommodated	Future travel demands accommodated (20 years)	Future travel demands accommodated (20 years). Roundahout results in less datays/congestion			
 Improve transportation made choice including transit. 	4. Transportation mode choice not improved	All transportation modes accommodated locluding transit	All transportation modes accommodated including transit.			
5. Accommodate emergency services	Fire trucks can be accommodated, but may experience congestion in future	Fire Truck can use priority signal to enhance access through intersection	Fire trucks can ravigate roundabout within acceptable response times - less congestion			
6. Minimize impacts to utilities in the corridor	6. No utility relocations required	Utility relocations will be required, but somewhat less than Roundabout	Drifty relocations required will be slightly more than signalized due mainly to additional street lighting			
	O 1	4	3 3			

Does not recet planning objectives nor active

transportation requirements, and will result in

Increased congestion.

Mosts Planning and Englosering/Technical

natural areas; lefting traffic will continue/

increase, and noise and orban look will increase.

objectives; some intersections encruch into

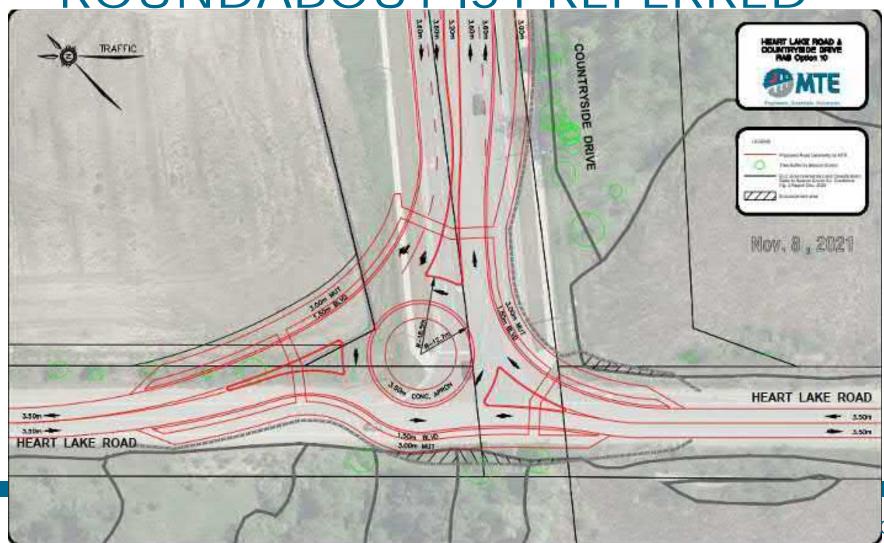
13

Meets Planning and Engineering/ Technical

with no intrusions into wetlands: Fedestrians/ cyclists may be initially unhamiliar with

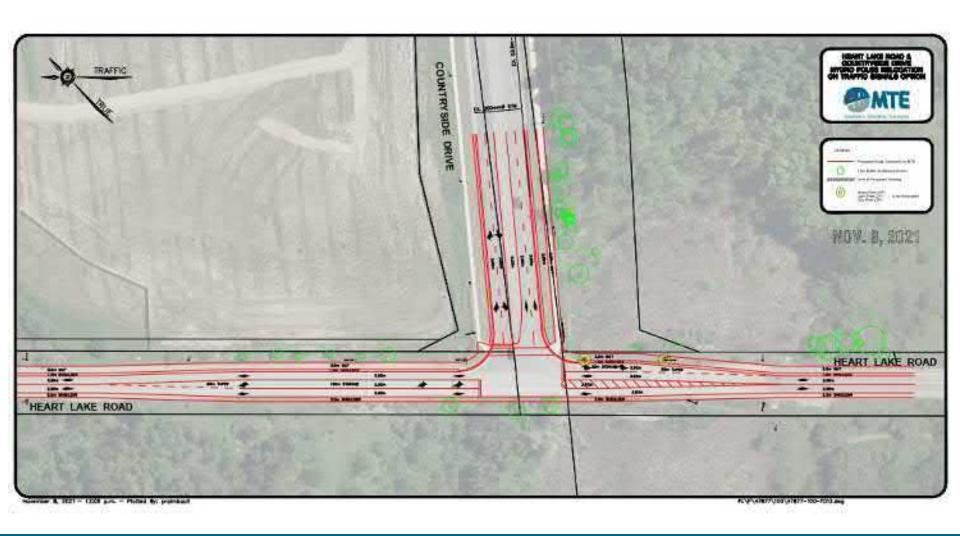
objectives: visual/ landscaping can be

Roundabouts


enhanced; less tifling/ congestion; lower lifecycle cost due to very low maintenance.

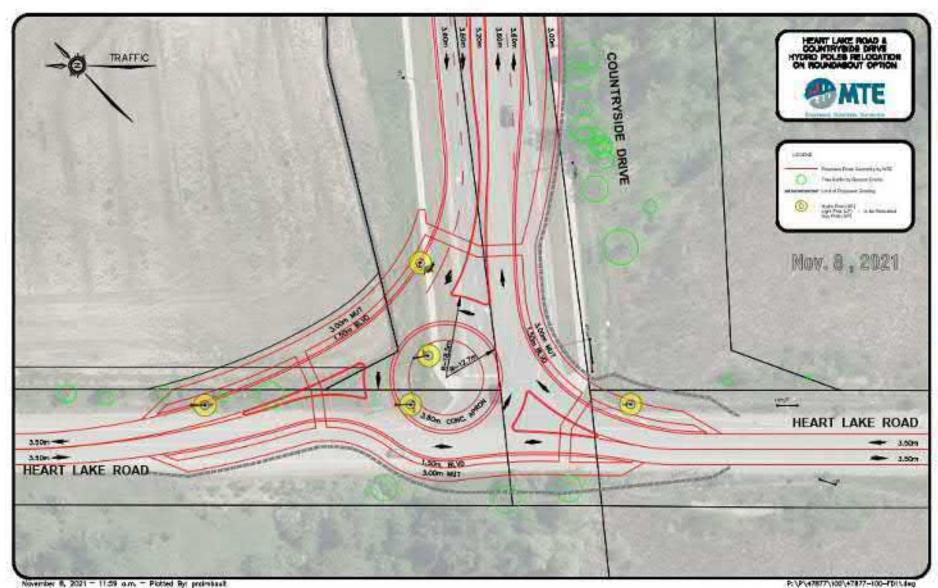
15

ROUNDABOUT IS PREFERRED



UTILITY ISSUES?

- Have not received much utility feedback based on Notice of Commencement
- Region of Peel Watermain/Wastewater
- Now that alternatives have been developed, specific comments can be based on the actual alternatives.

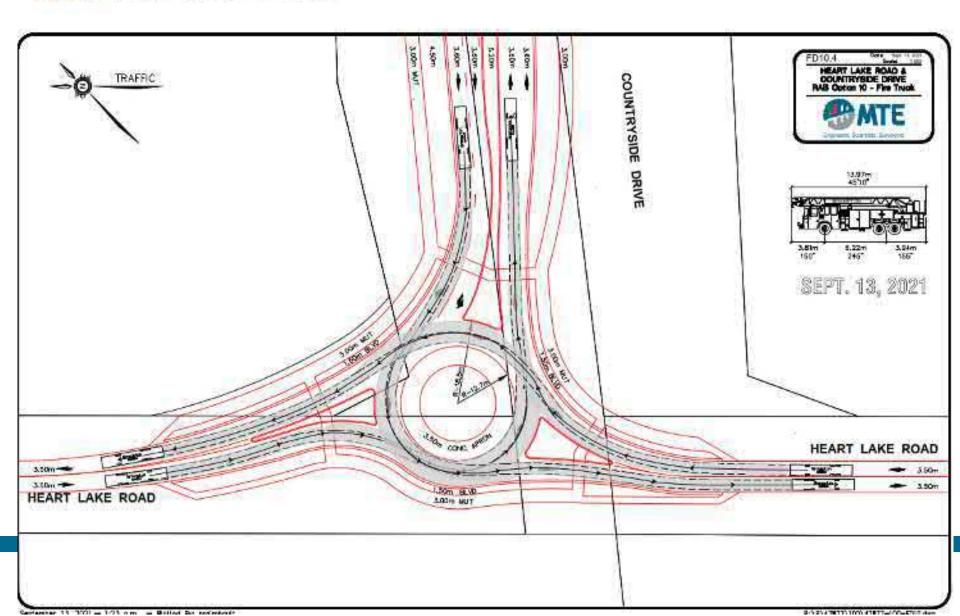


Next Steps:

- ✓ Complete Preliminary Preferred Design
- ✓ Stakeholder Meetings
- √ Finalize Technical Studies
- ✓ Public Information Centre (PIC) 1
- √ Finalize Recommended Design
- ✓ Write Environmental Project Report
- ✓ Notice Of Completion



Questions?



Heart Lake Rd. & Countryside Dr. Class EA

Project Team Meeting October 21, 2021

- Introduction of Team Members
- Agenda Project Background
 - Function & Design Review Nov/2019
 - Where are we in the Class EA "Process"
 - Need & Justification
 - Traffic Study (Paradigm)
 - Brief update on other Studies
 - Alternative Solutions (Preferred)
 - Evaluation Matrix
 - Next Steps PIC
 - **Questions**

Introduction

The City of Brampton initiated a Schedule B Class Environmental Assessment (EA) for improvements to the intersection of Heart Lake Road and Countryside Drive

Desired Outcomes of this Class EA Study:

- ✓ Safety and Operations Including Traffic Calming;
- ✓ Minimize natural environment impacts and wildlife mortality;
- ✓ Conservation of Cultural Heritage Landscape;
- ✓ Consider proposed land uses and meet travel demands;
- ✓ Vison Zero Initiative, Active Transportation, Safety.

Introduction – Study Limits

2019 Function & Design Review Study

Study Limits - Background

Function & Design Review of Heart Lake Rd From Sandalwood Parkway to Mayfield Road.

Recommendations (Short Term):

- ✓ Transportation Improvements Narrower Lanes, M.U.T.;
- ✓ Traffic Calming Reclassify as Collector Rd., 50 kmh speed limit; speed cushions between Mayfield and Hwy 410 Ramp; traffic circle at Conservation Area entrance;
- ✓ Wildlife mortality Maintain solar powered flashers, maintain optical speed bars, install additional eco-passages, wildlife directional fencing, turtle nesting mounds.

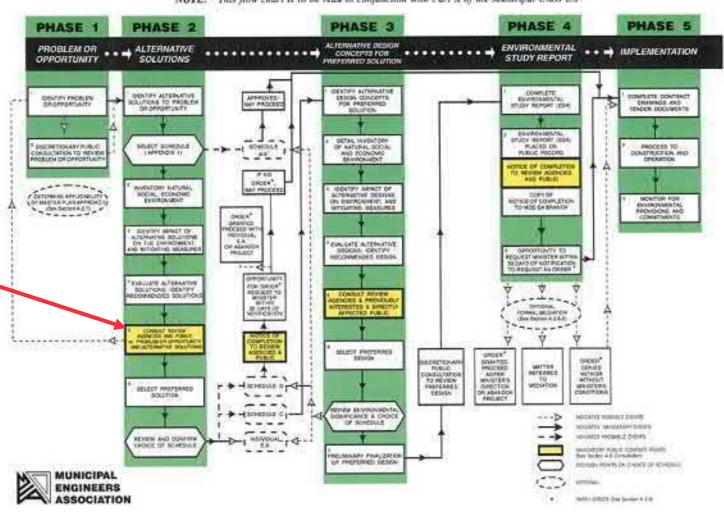
Function & Design Review (Continued)

Recommendations (Long Term):

Separated bike lanes on Heart Lake Rd. & Roundabout at Countryside

The EA Process

- ✓ The study is being undertaken in accordance with the Municipal Class EA planning and design process for Schedule "B" project.
- ✓ Study is for Heart Lake Rd. and Countryside Dr. intersection only
- ✓ The "Function & Design Review of Heart Lake Road Corridor (2019)" provides background information, provide support for problem/opportunity identification for this intersection improvement
- ✓ Additional studies have been undertaken building upon existing background information and studies.



NOTE: This flow chart is to be read in conjunction with Part A of the Municipal Class EA

The Class EA Process

We are Here...

NEED AND JUSTIFICATION

Improve the safety and operations of the Heart Lake Road and Countryside Drive intersection, while incorporating traffic calming and wildlife mortality reduction recommendations for the Heart Lake Road Corridor. The study should minimize impacts to the natural environment, existing and proposed land use, conserve the cultural heritage landscape and include recommendations to meet the traffic demand of increasing population and growth.

Studies

- ✓ Traffic, Transportation and Safety Report
- ✓ Drainage Study
- √ Phase I ESA
- ✓ Natural Environment Study
- √ Stage 1 Archaeological Investigation
- ✓ Cultural/Built Heritage Study
- ✓ Geotechnical Investigation

TRAFFIC STUDY (Paradigm)

- ✓ Paradigm Transportation Solutions Limited (Paradigm) undertook a transportation analysis;
- ✓ The analysis included the feasibility of a roundabout;
- ✓ Westbound left-turn movement a critical movement under existing conditions, and operates over-capacity - will continue under future 2031 and 2041 traffic conditions.
- ✓ **SAFETY REVIEW** (Paradigm)
- ✓ Collision history (2015 2019) revealed no fatal collisions.
- ✓ Majority were 'single motor vehicle' collisions driver error/behaviour

SAFETY REVIEW (Continued)

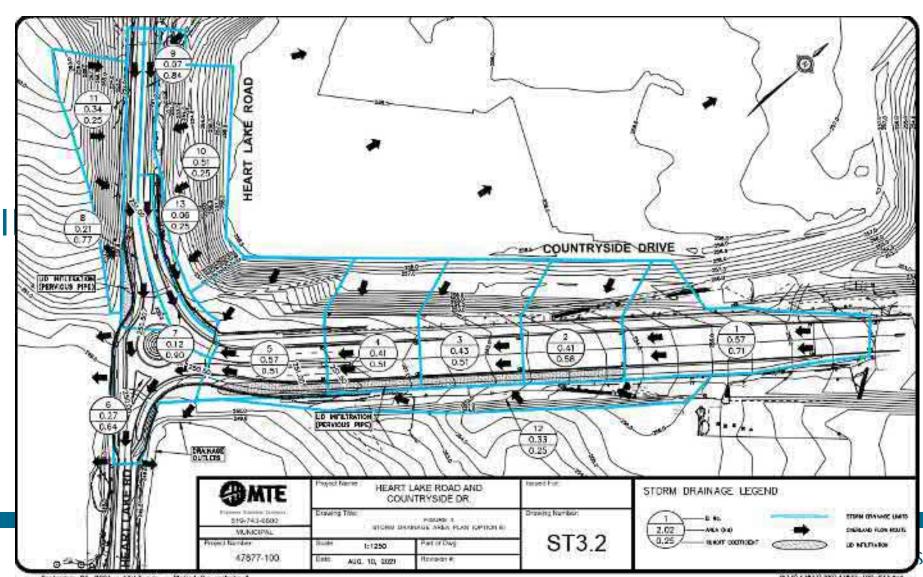
- ✓ Sight distance investigation confirmed there is more than adequate approach and departure sight distance available;
- ✓ However, even with the adequate sight distances a high frequency of collisions were reported, and were determined to be attributed to aggressive driver behaviour.
- ✓ Correlates with the poor traffic operations stemming for a lack of gaps within the traffic stream along Heart Lake Road.
- ✓ Based on these findings it indicates the current intersection traffic warrants improvement.
- ✓ Reported number of 'correctible collisions' fall just short of the warrant the consideration of traffic signal control.

INTERSECTION IMPROVEMENTS

- ✓ Under base year conditions the intersection falls just short of meeting the threshold criteria for a traffic signal control.
- ✓ Under future 2031 and 2041 traffic conditions the intersection is found to meet signal justification criteria.
- ✓ Under the 2041 horizon year operating under traffic signal control, the intersection was found to operate at acceptable levels of service and within capacity.

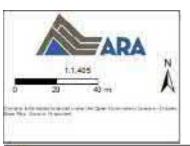
INTERSECTION IMPROVEMENTS (Continued)

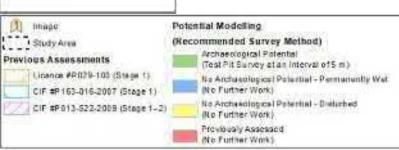
- ✓ It was determined that the Heart Lake Road/Countryside Drive intersection would be suitable for roundabout implementation to mitigate poor intersection operations
- ✓ Several roundabout configurations were investigated;
- ✓ A single-lane roundabout with single lane entry on the northbound and southbound Heart Lake Road approaches along with dual lane entry on the westbound Countryside Drive approach will operate at acceptable levels of service and well within capacity under 2041 traffic conditions.
- ✓ The feasibility of implementing an appropriately sized roundabout has been investigated from a detailed design perspective.

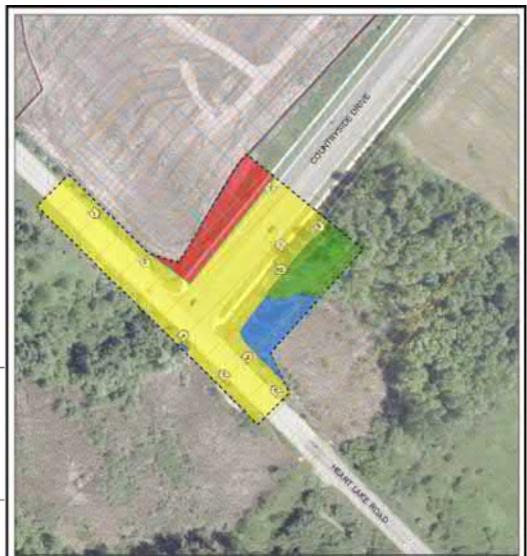


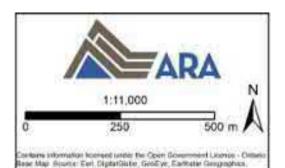
Other Studies – Summary of findings

- ✓ Drainage Study (MTE)
- ✓ Phase I ESA (MTE)
- ✓ Natural Environment Study (Beacon)
- ✓ Stage 1 Archaeological Investigation (ARA)
- ✓ Cultural/Built Heritage Study (ARA)
- ✓ Geotechnical Investigation (MTE)









CNESIA/Bus OS USSA USSS AA/OORID KIN mit tie GIS User

Community Source: Proponent

NOM:

20 40 60 85 100 cale(11x17): 1:2000

Constitution and

CITY OF BRAMPTON

HEART LAKE ROAD & COUNTRYSIDE DRIVE EA

HEART LAKE ROAD & COUNTRYSIDE DRIVE BRAMPTON, ONTARIO

SITE PLAN

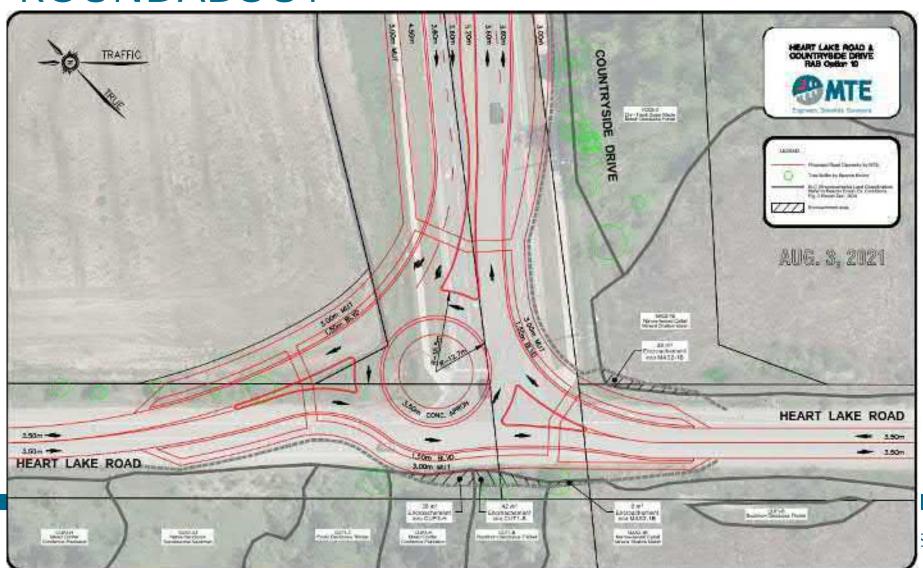
- 7	MEST TRANSPORTA		
117	Des	colony pr	41877-1
***	pis	The same	2

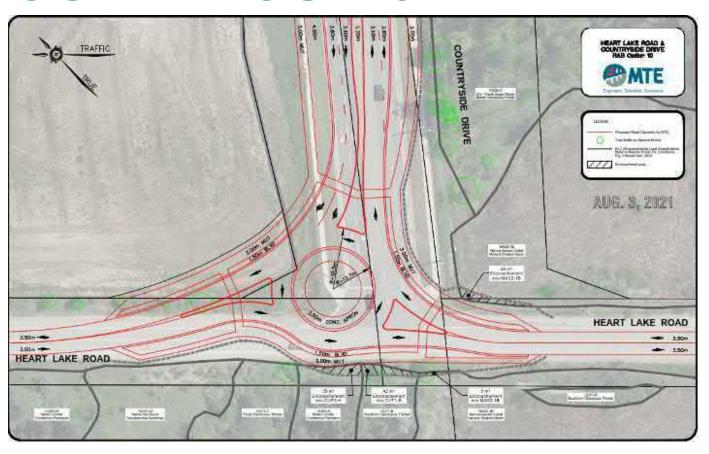
ALTERNATIVES

✓ DO NOTHING

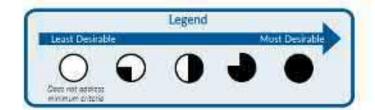
✓ SIGNALIZED INTERSECTION WITH TURN LANES

✓ ROUNDABOUT


SIGNALIZED WITH TURN LANES


ROUNDABOUT

ROUNDABOUT IS PREFERRED



Heart Lake Road at Countryside Drive Environmental Assessment

Draft Evaluation Matrix

Evaluation Criteria

Do Nothing

Signalized Intersection with Turn Lanes

Roundabout

Natural Environment

- Minimize impacts to Designated Natural Areas, vegetation, wildlife, aquatic features
- Minimize impacts to wetlands.
- Minimize impacts to surface water and groundwater
- Minimize air quality impacts and effects on climate change.

- No impacts to existing Natural Areas.
- vegetation, whillfle or aquatic features, but Heart Lake Road traffic will continue at speed limit, increasing chance of wildlife strikes.
- 2. No impacts to designated wetlands.
- 3. No change in runoff/ surface drainage.
- Traffic volumes will continue to increase, resulting in increase delays / congestion

- a) Traffic with green light will continue at speed limit increasing chance of wildlife strikes b) Wildlife fencing and eresion controls to be installed.
- Some slight intrusions into designated wetlands
- Least pavement drainage/surface water runoff
- Itathic delays/congestion resulting in vehicles idling at red lights

- a) All traffic will slow down to navigate roundabout, which should reduce wildlife strikes by Wildlife tencing and erosion controls to be installed.
- 2. No intrusions into designated wetlands.
- More pavement resulting in more drainage/ surface water runoff
- Less traffic delays due to vehicles not having to stop at red lights, less vehicle starting/stopping

- 1. Adhere to Transportation Master Plan
- 2. Adhere to Official Plan
- Adhere to Active Transportation
 Master Plan
- 4. Adhere to Region Official Plan Policies.
- Doës not implement required improvements per Transportation Master Plan
- Other transportation improvements will be required to aithere to the Official Plan
- Does not adhere to Active Transportation Master Plan
- Other transportation improvements will be required to adhere to Official Plan Plottes.
- 1. Adheres to Transportation Master Plan
- Z. Adheres to Official Plan
- Adheres to Active Transportation Master Plun
- Adheres to Region Official Plan Policies

- 1. Adheres to Transportation Master Plan
- Adhems to Official Plan
- Adheres to Active Transportation Master Plan
- 4. Adheres to Region Othciel Plan Policies

AZ.	Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout		
	Social and Cultural Environment					
	Improve visual aesthetics Preserve archaeological and cultural heritage features Preserve the agricultural setting community character and public realm. Minimize traffic naise Minimize disruption due to construction. Minimize Impacts to existing accesses in the area.	1. Vocal aesthetics will restain the same, no opportunities to enhance landscape 2. No impacts to existing setting, character or public realm 4. Traffic coise will continue to increase as traffic volumes increase 5. No damaption due to construction, however, increasing congestion may cause disruption 6. No impacts to existing access, however, increasing congestion may impact access.	Landscaping opportunities behind curb/ addevalk/MUT Taj No direct impacts to archaeological/ horitage teatures to Some impact on existing rural road cross section Signals contribute to orban look and setting Traffic noise will not decrease Least time for construction and traffic can be maintained during construction No accesses impacted in the area	1. Opportunities for landscaping in center stand and behind steewalk/MUT 2. If No direct impacts to known archaeological features b) Disrupt existing linear views: c) Changes the existing trass section: ii) Additional Stage 1/2 Archaeological investigation required in property purchase area. 3. Opportunity to enhance the public realm, and all traffic most slow to raivigate roundabout. 4. Traffic noise will decrease due to less stop/starts of traffic. 5. Most time for construction and traffic can be maintained during construction. 6. No accesses impacted in the area.		
⊋Sĭ	Economic Davetonment	D 2	D 2	3 3		
	Economic Development					
AIII.	Beneficial to business/ community with respect to travel time	Travel time will not be reduced, and will increase as traffic volumes increase.	More delays than with a roundabout due to stopped traffic stopped for red lights	Roundabout provides more free flowing traffic, and results in less traffic delays/congestion.		
	Minimum capital and construction costs	No construction or capital costs	Road improvements and signal installation have lowest capital/construction costs - est. \$1.15 million	Highest Capital Costs due to additional payement, curb, signage and line markings - est. \$1.57 million.		
	 Minimum property impacts? requirements 	No additional property required.	No additional property required	Approximately 350 sm of property is required on NE corner, which can be obtained at no cost to the City		
	Minimize operating and maintenance costs	Operating and maintenance costs do not change.	Operating and maintenance costs include powering and maintaining signals	4. No signal power and maintenance costs.		
				Wales of the latest and the latest a		

Meets Planning and Engineering/ Technical

with no intrusions into wetlands: Fedestrians/ cyclists may be initially unhamiliar with

objectives: visual/ landscaping can be

Roundabouts

enhanced; less tifling/ congestion; lower lifecycle cost due to very low maintenance.

-	Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout		
	Engineering and Technical					
	Congestion and collisions will continue	Is safe for all travel modes.	Safe for all travel modes	Sale for all travel modes, floundabout reduces severity of collisions (i.e. less conflict points and sideswipes vs head-on or "T bone" collisions)		
	Create an Active Doesportation Priently Environment (Cyclists, pedestrans etc.)	No additional sidewalks or cycling facilities	Sidewalks, cycle facilities provided. Motorist must stop at red light and be aware of pediestrians.	 Sidewalks, cycle facilities provided, Requires pedestrians to be sure motorists are aware of their presence. Cyclists can use Roundabout or multi- use path at Roundabout. 		
	Accommodate future trivel dentiruls.	Future travel demands not accommodated	Future travel demands accommodated (20 years)	Future travel demands accommodated (20 years). Roundabout results in loss datays/congestion		
	Improve transportation mode choice including transit.	4. Transportation mode choice not improved.	All transportation modes accommodated including transit	All transportation modes accommodated including transit.		
	5. Accommodate emergency services	 Fire trucks can be accommodated, but may experience congestion in future 	Fire Truck can use adority signal to enhance access through intersection	Fire trucks can revigate roundabout within acceptable response times - less congestion		
	6. Minimize impacts to utilities in the corridor	6. No utility relocations required	Utility relocations will be required, but somewhat less than Roundabout	Drifty relocations required will be slightly more than signalized due mainly to additional street lighting		
		O 1	●4	● 3		
AD			10 TO	18.005		
080	Overall Evaluation Score					

Mosts Planning and Engineering/Technical

natural areas; lefting traffic will continue/

increase, and noise and orban look will increase.

objectives; some intersections encruich into

Does not recet planning objectives nor active

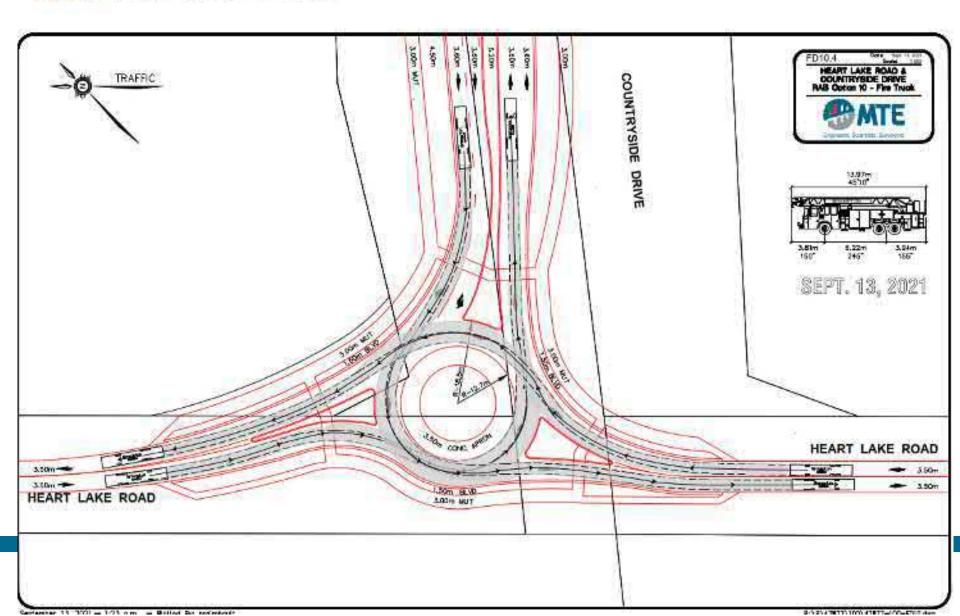
transportation requirements, and will result in

10

Increased congestion.

Next Steps:

- ✓ PIC NO. 1
- ✓ COLLECT AND INCORPORATE PUBLIC/AGENCY FEEDBACK
- ✓ FINALIZE RECOMMENDED ALTERNATIVE
- **✓ WRITE ENVIRONMENTAL REPORT**
- **✓ NOTICE OF COMPLETION**



Questions?

Heart Lake Rd. & Countryside Dr. Class EA

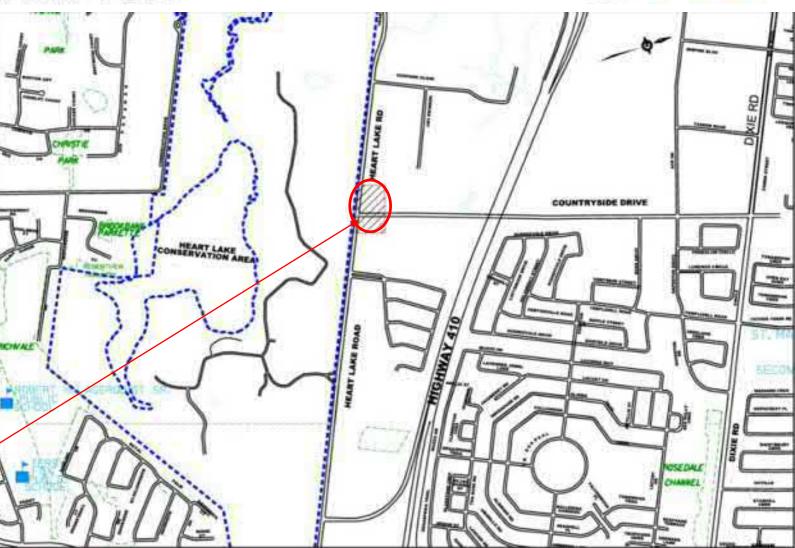
Stakeholder Group (SHG) Meeting February 25, 2022

Agenda

- Introduction of SHG
- Background: Function/Design Review
- Need & Justification Traffic Study
- Drainage and Natural Environment Studies
- Update on other Studies
- Alternative Solutions (Preferred)
- Evaluation Matrix
- Utilities
- Next Steps
- Questions

Introduction

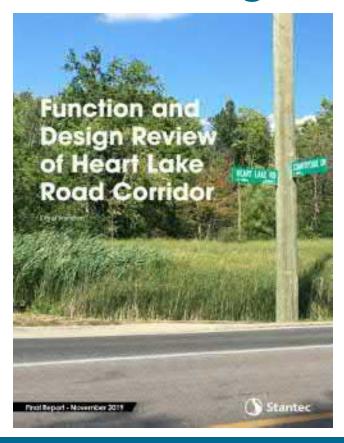
The City of Brampton initiated a Schedule B Class Environmental Assessment (EA) for improvements to the intersection of Heart Lake Road and Countryside Drive


Desired Outcomes of this Class EA Study:

- ✓ Safety and Operations Including Traffic Calming;
- ✓ Minimize natural environment impacts and wildlife mortality;
- ✓ Conservation of Cultural Heritage Landscape;
- ✓ Consider proposed land uses and meet travel demands;
- ✓ Vison Zero Initiative, Active Transportation, Safety.

Study Limits

KEY PLAN


STUDY AREA

Study Area

2019 Function & Design Review Study

Study Limits - Background

Function & Design Review of Heart Lake Rd From Sandalwood Parkway to Mayfield Road.

Recommendations (Short Term):

- ✓ Transportation Improvements Narrower Lanes, M.U.T.;
- ✓ Traffic Calming Reclassify as Collector Rd., 50 kmh speed limit; speed cushions between Mayfield and Hwy 410 Ramp; traffic circle at Conservation Area entrance;
- ✓ Wildlife mortality Maintain solar powered flashers, maintain optical speed bars, install additional eco-passages, wildlife directional fencing, turtle nesting mounds.

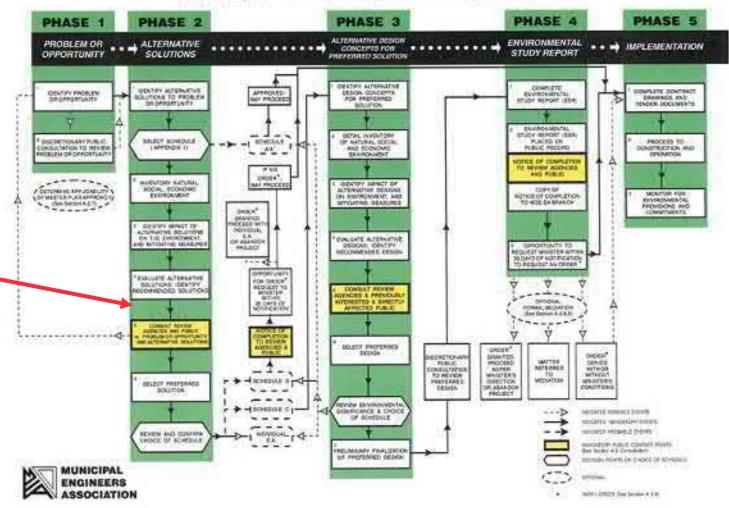
Function & Design Review (Continued)

Recommendations (Long Term):

Separated bike lanes on Heart Lake Rd. & Roundabout at Countryside

The EA Process

- ✓ The study is being undertaken in accordance with the Municipal Class EA planning and design process for Schedule "B" project.
- ✓ Study is for Heart Lake Rd. and Countryside Dr. intersection only
- ✓ The "Function & Design Review of Heart Lake Road Corridor (2019)" provides background information, provide support for problem/opportunity identification for this intersection improvement
- ✓ Additional studies have been undertaken building upon existing background information and studies.



OTE: This flow chart is to be read in conjunction with Part A of the Municipal Class EA

We are Here...

Improve the safety and operations of the Heart Lake Road and Countryside Drive intersection including meeting the traffic demand of increasing population and growth.

while incorporating traffic calming and wildlife mortality reduction recommendations for the Heart Lake Road Corridor.

Paradigm Transportation Solutions Ltd (Paradigm)

TRAFFIC STUDY

✓ Westbound left-turn movement a critical movement under existing conditions, and operates over-capacity - will continue under future 2031 and 2041 traffic conditions.

SAFETY REVIEW (Paradigm)

- ✓ Collision history (2015 2019) revealed no fatal collisions.
- ✓ Majority were 'single motor vehicle' collisions driver error/behaviour

SAFETY REVIEW (Continued)

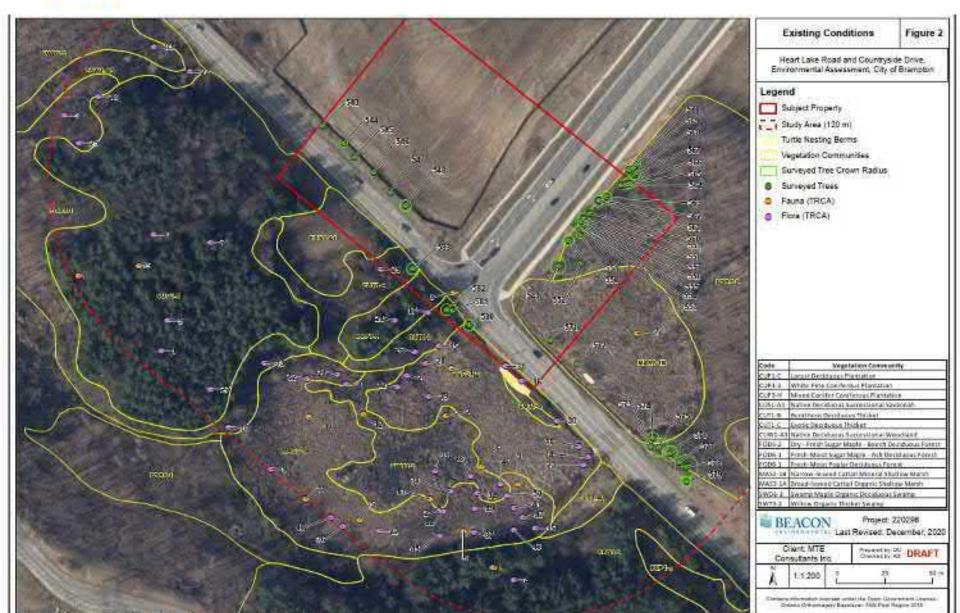
- ✓ Investigation confirmed there is more than adequate approach and departure sight distance available;
- ✓ However, even with the adequate sight distances a high frequency of collisions were reported, and were determined to be attributed to aggressive driver behavior (i.e. speed).
- ✓ Correlates with the poor traffic operations stemming from a lack of gaps within the traffic stream along Heart Lake Road.
- ✓ Concluded that the current intersection traffic warrants improvement.

INTERSECTION IMPROVEMENTS

- ✓ Under base year conditions the intersection falls just short of meeting the threshold criteria for traffic signal control.
- ✓ Under future 2031 and 2041 traffic conditions the intersection is found to meet signal justification criteria.
- ✓ Under the 2041 horizon year operating under traffic signal control, the intersection was found to operate at acceptable levels of service and within capacity.

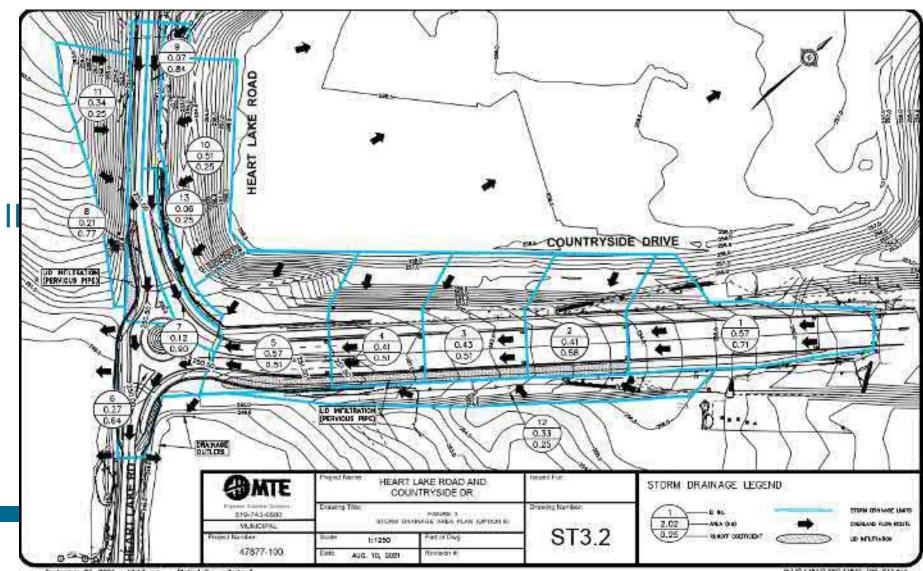
INTERSECTION IMPROVEMENTS (Continued)

- ✓ It was determined that the Heart Lake Road/Countryside Drive intersection would be suitable for roundabout implementation to mitigate poor intersection operations
- ✓ Several roundabout configurations were investigated;
- ✓ A single-lane roundabout with single lane entry on the northbound and southbound Heart Lake Road approaches along with dual lane entry on the westbound Countryside Drive approach will operate at acceptable levels of service and well within capacity under 2041 traffic conditions.


Other Studies – Summary of findings

- ✓ Natural Environment Study (Beacon)
- ✓ Drainage Study (MTE)
- ✓ Phase I ESA (MTE)
- ✓ Stage 1 Archaeological Investigation (ARA)
- ✓ Cultural/Built Heritage Study (ARA)
- ✓ Geotechnical Investigation (MTE)

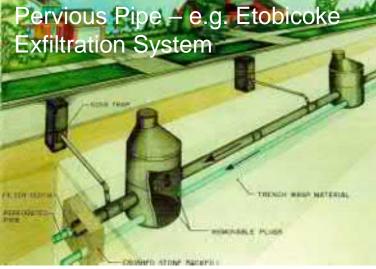
Natural Environment



Natural Environment (Beacon

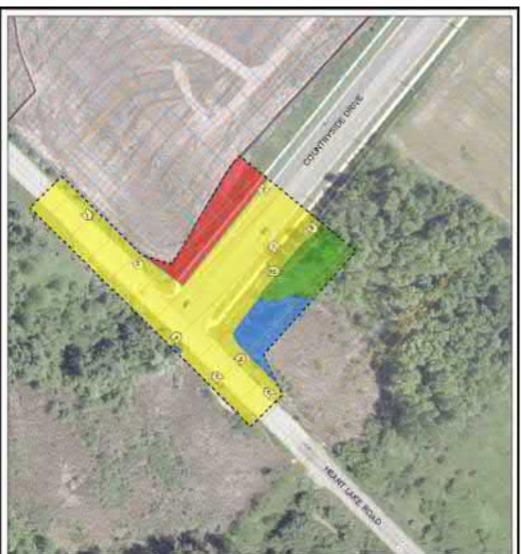
- ✓ Significant wetlands and woodlands near intersection (Part of Heart Lake PSW);
- ✓ Significant wildlife habitat in wetland & woodland communities – Endangered and threatened species:
 - ✓ Bats, turtles (incl. Snapping), waterfowl, raptor nesting, reptiles;
- ✓ Turtle nesting berms;
- ✓ No fish habitat;
- ✓ Adjacent to Heart Lake ANSI's

- ✓ Revised Draft study has been submitted to TRCA;
- ✓ Drainage basically the same as existing for signalized intersection;
- ✓ Roundabout results in an extra 14 l/s during 100 year storm compared to signalized intersection
- ✓ LID's recommended for quantity/quality control;
- ✓ Development drainage details to east (south side) on Countryside Drive to be included prior to construction *IF* their flows reach the Countryside Dr. road allowance.

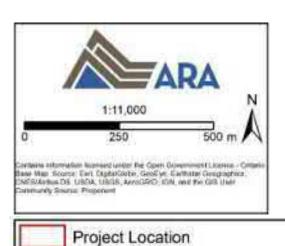


Existing	Proposed		
300 mm storm sewer with sub drains	 Replace existing and enhance with LID to promote infiltration 		
 Ditch drainage with culvert crossing Countryside Drive 	 Re-grade / enhance ditches and replace / relocate culvert 		
 Overland flow draining to ditch / wetlands (generally uncontrolled drainage) 	 Flows contained and conveyed into ditches or infiltrated within project limits 		

Phase 1 ESA


- √ No records of spills;
- √ Fill has been added over the years;
- ✓ Additional testing should be undertaken prior to construction;
- ✓ Excess fill regulations.

Stage 1 Archaeological

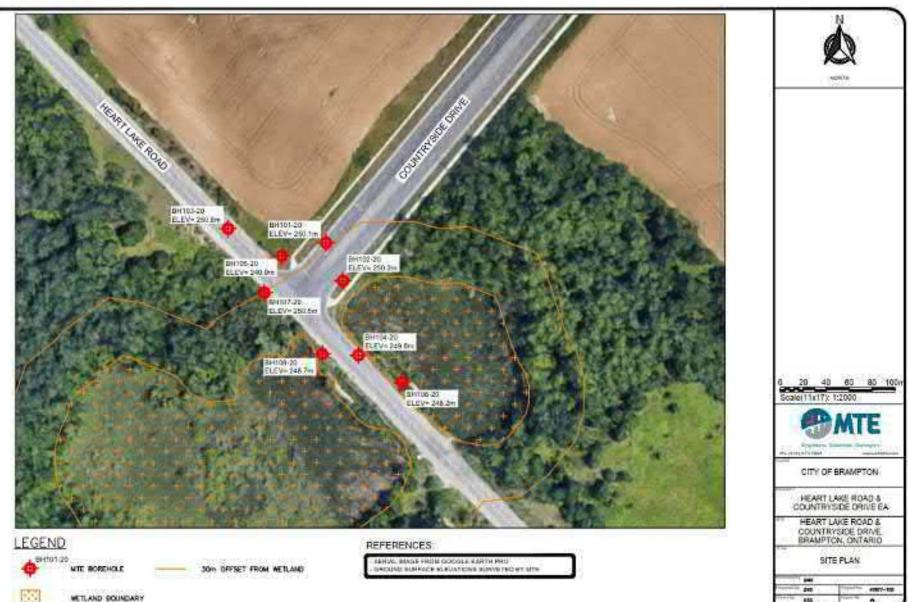

Stage 1 Archaeological (ARA)

- ✓ Most areas have no archaeological potential previously disturbed, permanently wet, previously assessed;
- ✓ Intersection options to be designed to avoid potential areas;
- ✓ If area on south side of Countryside east of Heart Lake Rd is disturbed, it may require a Stage 1 investigation;
- ✓ May require a Stage 1 investigation into property purchase area if not previously assessed.

BHR Assessment Results Map

Property Parcel

Built Heritage Resource (BHR 1)


Built/Cultural Heritage (ARA)

- ✓ Wetland is considered a BHR;
- ✓ Heart Lake Rd is considered a CHL;
- ✓ Depending on final impacts, undertake a Heritage Impact Assessment to evaluate final details;
- ✓ If bus stops or seating areas included, examine opportunities for interpretive signing

Geotechnical

Geotechnical

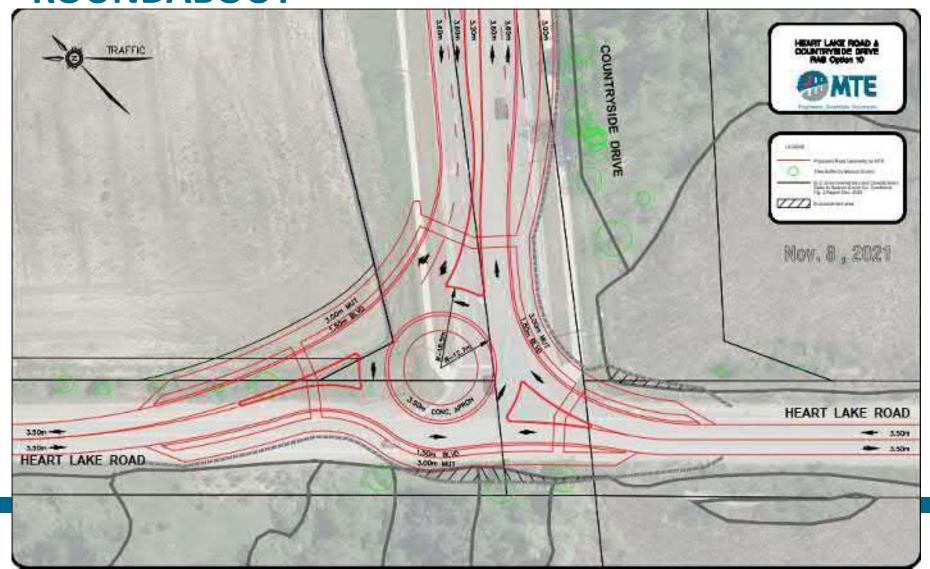
- ✓ Underlying soil is glacial till Gravelly silt;
- ✓ Pavement structure: 450 B, 150 A, 110 Binder, 50 Surface Asphalt;
- ✓ Peat deposit between 2-4 m, found on west side of Heart Lake south of Countryside Drive;
- ✓ Dewatering expected in excavations greater than 2 m deep;
- ✓ Excavated soil generally acceptable to be re-used on site – however some topsoil may need to be removed to a specialized site (waste transfer site)

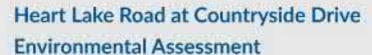
ALTERNATIVES

✓ DO NOTHING

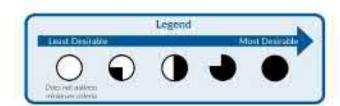
✓ SIGNALIZED INTERSECTION WITH TURN LANES

✓ ROUNDABOUT


SIGNALIZED WITH TURN LANES



ROUNDABOUT



Draft Evaluation Matrix

Evaluation Criteria

Do Nothing

Signalized Intersection with Turn Lanes

Roundabout

Natural Environment

- Minimize impacts to Designated Natural Areas, vegetation, wildlife, squatic features
- 2. Minimble impacts to westonds.
- Minimize impacts to earliest water and groundwider
- Minimize air quality impacts and effects on climate charge.

 No impacts to existing Natural Areas, vegetation, wildlife or aquatic features, but Heart Lake Road Institut will continue at classed.

time, increasing chance of wikible strikes

- 2. No impacts to designated wetlands
- 3. No change in runoff/ surface drainage
- Traffic volumes will continue to increuse, resulting in increase delays / congestion

- a) haths with green light will continue at speed limit increasing chance of wildfile bridge.
 b) Wildfile famility and around contrate to be installed.
- Some intrusions into designated wetlands (271m)
- 3. Least payament prainage/surface water runoff
- Traffic delays/congestion resulting in vehicles liding as red lights
- Id All traffic will flow down to readgate roundabout, which should reduce wild the strikes by Wildfife forcing and economic controls to be musted.
- Minimal intruction into designated wetlands. Intern[®]
- More payament resulting in more drainage/ surface water runoff
- Less traffic delays due to vehicles not having to stop at red lights, less vehicle darring/stroping

Planning Objectives

- 1. Achere to Transportation Master Plan
- 2. Anhere to Official Plan.
- Achere to Active Transportation Master Plan
- 4. Arthere to Region Official Plan Policies
- Does not implement expired ingrovements per Transportation Master Plan
- Other transportation improvements will be required to achieve to the Official Plan
- Does not achieve to Active Transportation Master Plan
- Other transportation improvements will be required to adhere to Official Plan Parkities.
- 1. Adheres to Transportation Master Plan-
- 2. Adheres to Official Plan
- Adheres to Active Tracsportation Infaster Plus
- 4. Adheres to Region Cifficial Plan Policies

- 1. Advers to Torreportation Macher Plan.
- 2. Adheres to Official Plan
- Adveres on Adlive Transportation Master Plan
- 4. Adheres to Region Official Plan Policies

4

Evaluation Criteria

Do Nothing

Signalized Intersection with Turn Lanes

Roundabout

Social and Cultural Environment

- 1. Improve Manal aesthetics
- Preserve archaeological and cultural heritage features
- Preserve the agricultural setting, community character and public reath.
- 4. Minimize traffic noise.
- 5. Minimize disruption due to construction
- Minimize impacts to existing accesses in the area

- Visual aeothetics will remain the same, eaopportunities to enhance landscape.
- No impaces to archaeological/ heritage features
- No impacts to existing setting, character or outilit realm
- Traffic noise will combinue to increase as traffic volumes increase.
- No disruption due to construction, however, increasing congretions may cause disruption.
- No impacts to existing access however, increasing congestion may impact access

- Landscaping opportunities berind outov sidework MAUT
- a) No direct impacts to archaestopical/ heritage features to Same impact on voliting rural most cross section.
- 3. Signals contribute to urban look and setting
- 4. Traffic noise will not decrease
- Least time for construction and traffic can be maintained during construction.
- 6. No accesses impacted in the area-

- Departunities for landscaping in center island and before sidewalk/MLR
- a) No direct impacts to known archaeological frakares to Discupt existing known dews c) Changes the existing cross section it) Additional Stage 1/2 Archaeological lowestigation required in property purchase area.
- Opportunity to enhance the public realm, and all traffic must slow to ruivigate roundabout.
- Traffic noise will decrease due to less stop/starts of traffic
- Most time for construction and traffic can be maintained during construction.
- 6. No accesses impacted in the area

Economic Development

- Beneficial to business/ community with respect to travel time
- Minimize capital and construction costs
- Minimoe property imports/ requirements
- Minimize operating and maintenance costs

- Travel time will not be reduced, and will increase as traffic volumes increase.
- 2. No construction or capital costs
- 3. No additional property required
- Operating and maintenance costs do not charge.

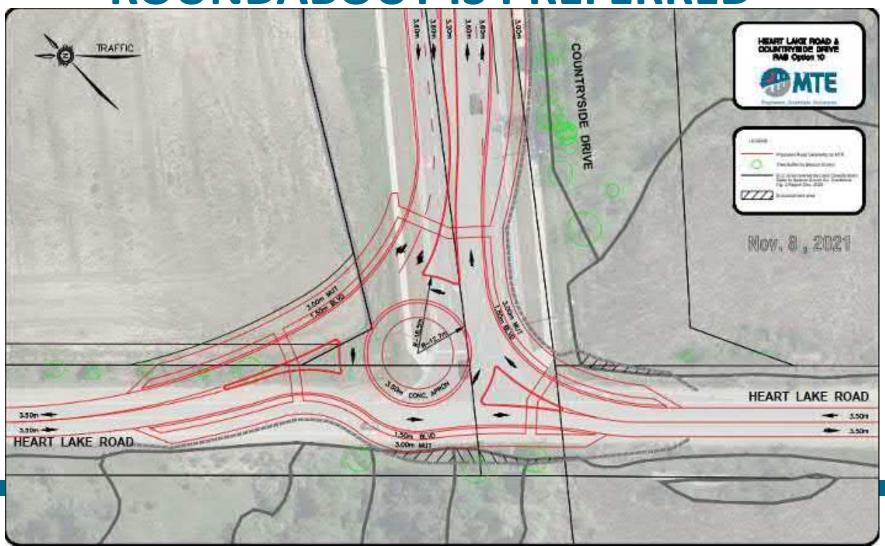
- More delays than with a nounciabout due to stopped traffic stopped for red lights.
- Wand improvements and signal costalibrium have lowest capital/construction costs - est. 52.35 million.
- 3. No additional property required
- Operating and maintenance custs include powering and maintaining signals

- Roundabout provides more free Flowing staffic, and assults in less traffic delays/congestion.
- Highest Capital Costs due to additional pavement, curb, signage and line markings - est. \$1.97 million.
- Approximately 590 sm of property is required on NE corner, which can be obtained through the subdivision approvals.
- 4. No signal power and maintenance costs

13

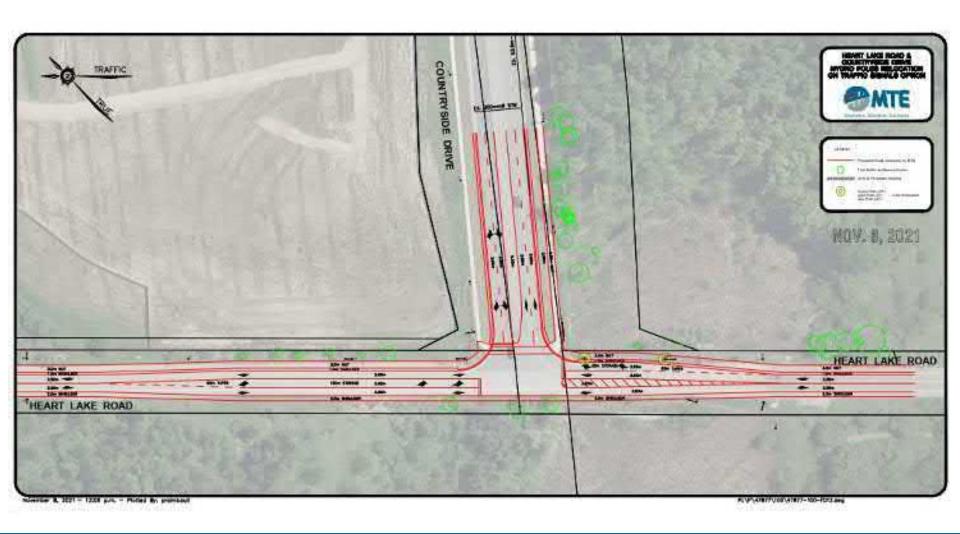
12

12



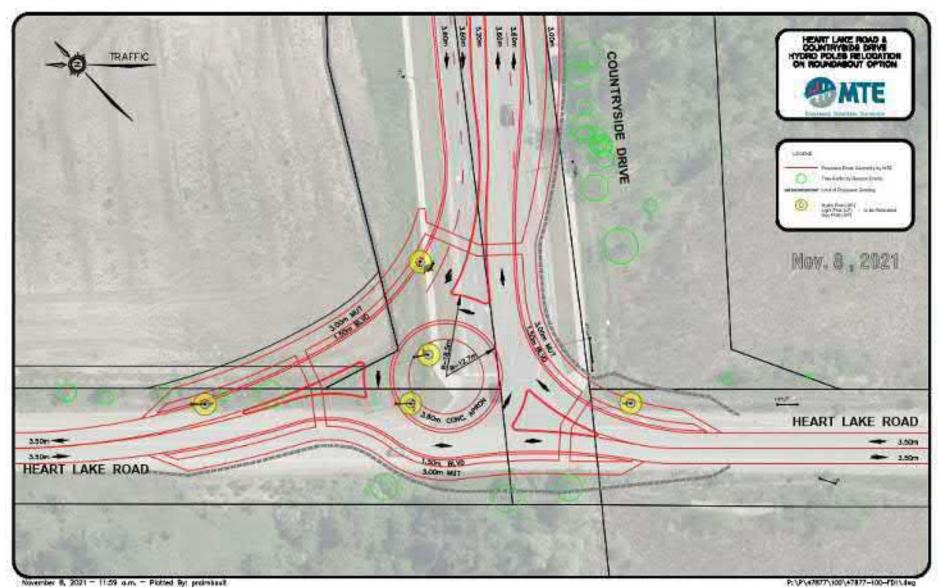
/555N	Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout
ng.	Engineering and Technical			
43.60	Congestion and collisions will continue	I. Is safe for all travel modes	L. Safe for all travel modes	Safe for all bravel mattes, Roundatious reduces severity of collisions (i.e. less conflict points and sides wipes vs head on or "T bone" collisions)
	Create an Active Transportation Friendly Environment (Cycliets, padestrians etc.).	2. No additional sidewalks of cucling facilities	Sidewalks, cycle facilities provided. Motorist must stop at ead light and be aware of pedestrians.	Sidewalis, cycle facilities provided. Requires pedestrians to be sore motorists are aware of their presence. Cyclists can use Roundshout or multi-use path at Roundshout.
	3. Accommodate future travel demands	Ruture travel demands not accommodated.	Future travel demands accommodated (20 years)	Future travel demands accommodated (20 years). Roundabout results in less delays/congestion
	Improve transportation mode choice including transit	4. Transportation mode choice not improved.	All transportation modes accommodated excluding transit	All transportation minles accommodated including transit
	5. Accommodate emergency services	Fire trucks can be accommodated, but may exputitioned congestion in future.	Fire Track carruse priority signal to enhance access through intersection	Fire trucks can havigate roundahout within acceptable response times. Jess congestion
	6. Minimize impacts to utilities in the corridor	6. No utility relocations required:	6. Utility relocations will be required, but somewhat less than Roundabout	 Utility relocations required will be slightly more than signalized due mainly to additional street lighting.
		O 1	4	-33
NI.			100	
OBC	Overall Evaluation Score			
		Does not meet planning objectives nor active transportation requirements, and will result in increased congestion.	Meets Planning and Engineering/ Technical objectives: some intersections encreach into ostural areas; iding traffic will continue/ increase; and noise and urban book will increase.	Meets Planning and Engineering/ Technical objectives visual/ landscaping can be enhanced less iding/ congestion; lower flecycle cost due to viry low maintenance with no introsons into wetlands. Pedestrians/ cyclists may be initially unfamiliar with

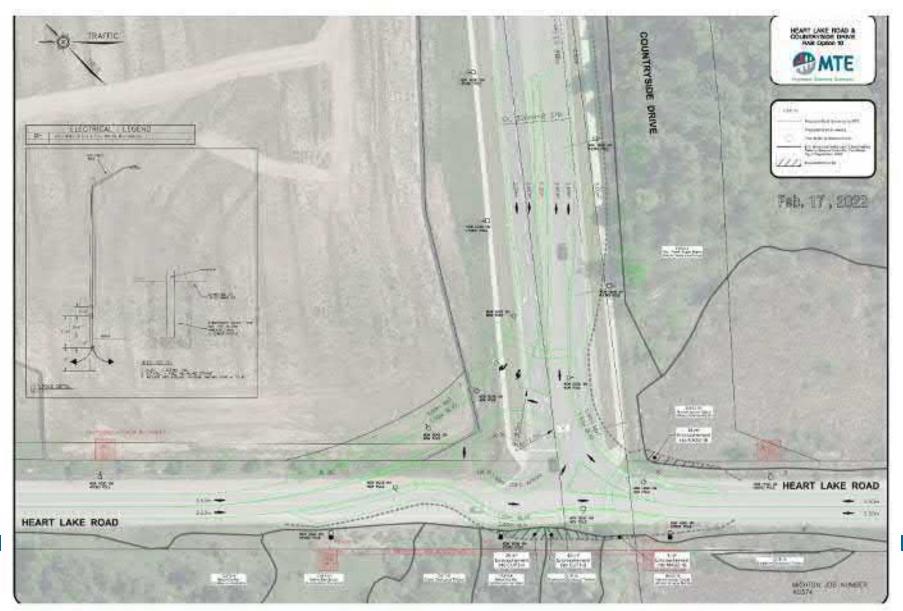
ROUNDABOUT IS PREFERRED



UTILITY ISSUES

- Hydro, some communications cables
- Not a lot of conflicts, but Hydro relocations
 & new Streetlighting is critical;
- Region of Peel Watermain/Wastewater
- Now that alternatives have been developed, specific comments can be based on the actual alternatives.

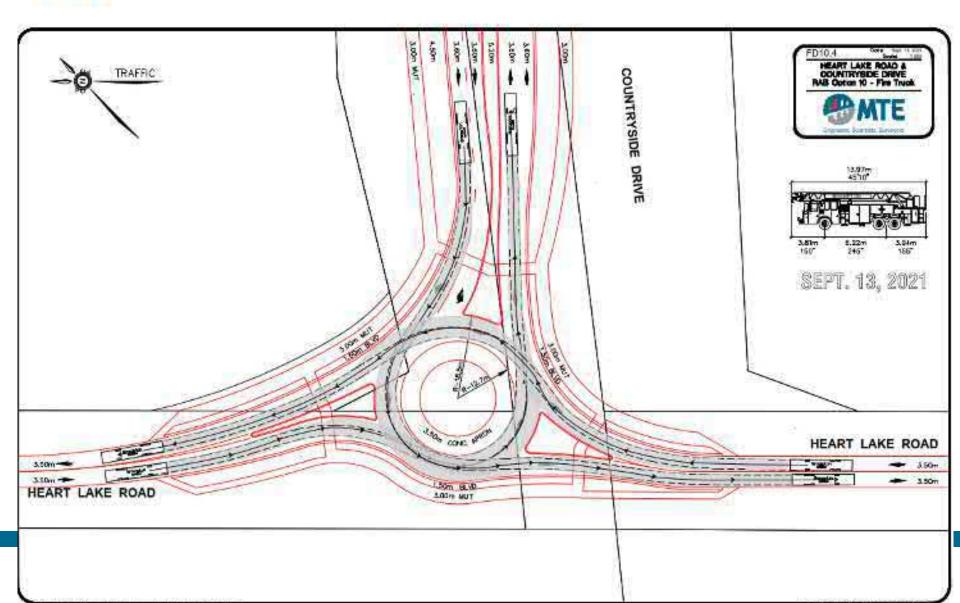




Next Steps:

- ✓ Review Comments/Info from SHG
- √ Complete Preliminary Preferred Design
- √ Finalize Technical Studies
- ✓ Public Information Centre (PIC) 1
- √ Finalize Recommended Design
- ✓ Write Environmental Project Report
- ✓ Notice Of Completion

Questions?



Appendix C

Natural Environmental Report

GUIDING SOLUTIONS IN THE NATURAL ENVIRONMENT

DRAFT

Natural Environment Report Heart Lake Road and Countryside Drive Intersection Improvements

Prepared For:

MTE Consultants Inc.

Prepared By:

Beacon Environmental Limited

Date: Project:

September 2022 220296

Table of Contents

			page
1.	Intro	ductionduction	1
2.	Stud	y Methodology	1
	2.1	Background Review	1
	2.2	Field Investigations	2
		2.2.1 Vegetation Communities and Flora	
		2.2.2 Tree Inventory	
		2.2.3 Wildlife	
3.	Stud	·	
J.		y Findings	
	3.1	Background Review	
	3.2	Field Investigations	
		3.2.2 Tree Inventory	
		3.2.3 Wildlife	
	3.3	Species at Risk	7
4.	Evalu	uation of Significance	8
	4.1	Habitat of Endangered Species and Threatened Species	
	4.2	Significant Woodlands	
	4.3	Significant Wetlands	10
	4.4	Significant Wildlife Habitat	
	4.5	Significant Areas of Natural and Scientific Interest	
	4.6	Fish Habitat	
5 .	Desc	cription of Proposed Alternatives	11
6.	Impa	ict Assessment	12
	6.1	Terrestrial (Upland) Vegetation	12
		6.1.1 Do nothing	
		6.1.2 Alternative 1: Round About	
		6.1.3 Alternative 2: T-Intersection Improvements	
	6.2	Wetlands	_
	0.2	6.2.1 Do nothing	
		6.2.2 Alternative 1: Round About	
		6.2.3 Alternative 2: T-Intersection	14
		6.2.4 Summary	
	6.3	Wildlife and Wildlife Habitat	
	6.4	Summary	
7.	Reco	ommended Mitigation	17
8.	Conc	clusion	17

9.	References	19

Figures

Figure 1.	Site Location	after page 2
•	Existing Conditions	. •
Figure 3a	. Intersection Design Alternative 1 – Roundabout	after page 12
Figure 3b	. Intersection Design Alternative 2 – T-Intersection	after page 12

Tables

Table 1.	Vegetation Species of Regional Conservation Concern	5
Table 2.	Fauna Records from TRCA for Study Area	6
Table 3.	Endangered, Threatened or Special Concern Species Likelihood of Presence	8
Table 4.	Tree Removals Required for Alternative 1	13
Table 5.	Tree Removals required for Alternative 2	13
Table 6.	Impacts on features identified as Potential Signficant Wildlife Habitat	15
Table 7	Summary of Impacts	16

Appendices

Appendix A. Vascular Plan Species List Appendix B. Limitations of Tree Assessment

Appendix C. Tree Inventory

Appendix D. Species at Risk Screening

Appendix E. Significant Wildlife Habitat Screening

1. Introduction

Beacon Environmental Limited (Beacon), on behalf of MTE Consultants Inc., was retained by the City of Brampton to provide input for the Heart Lake Road and Countryside Drive Environmental Assessment (EA), which is being completed for the proposed update to this intersection in the City of Brampton and the Region of Peel. The Study Area for this EA includes lands within 120 m of the intersection of Heart Lake Road and Countryside Drive (refer to **Figure 1**).

Lands immediately northeast of Countryside Drive are being developed, while other surrounding lands consist of forest and wetland, including portions of the Heart Lake Provincially Signficant Wetland (PSW). The Heart Lake Conservation Area is located west of Heart Lake. Natural areas within the Study Area are part of the City's Natural Heritage System (NHS) as depicted on Schedule D of the City of Brampton Official Plan and represent Core Areas that are part of the Region of Peel Greenlands System.

This Natural Environment Report identities, describes, and evaluates natural heritage features associated with the Study Area. This information is intended to support the decision-making process regarding options for upgrades to the Heart Lake Road and Countryside Drive intersection.

2. Study Methodology

2.1 Background Review

Background information on natural heritage resources was gathered and reviewed at the outset of the project. This involved consideration of the following documents or information sources relevant to the Subject Property:

- Ministry of Natural Resources' Natural Heritage Information Centre (NHIC) rare species database (accessed December 2020);
- Natural Heritage data for the Study Area provided by TRCA in October 2020, including ELC mapping, and records of flora and fauna;
- Peel-Caledon Significant Woodlands and Significant Wildlife Habitat Study (NSEI *et al.*, 2009);
- Heart Lake Road Ecology and Turtle Population Study (White et al., 2018);
- Road Ecology Study and Mitigation: Provincially Significant Wetland Area "C" (TRCA, 2016);
- Ontario Breeding Bird Atlas data (Cadman et al. 2007);
- Atlas of the Mammals of Ontario (Dobbyn 1994);
- Ontario Nature Reptile and Amphibian Atlas; and
- Ontario Butterfly Atlas (MacNaughton et al. 2016).

Other sources of information (such as aerial photography) were also consulted prior to commencing a field investigation.

2.2 Field Investigations

2.2.1 Vegetation Communities and Flora

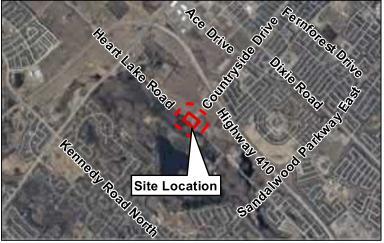
Vegetation communities in the Study Area were classified and mapped based on field observations of October 22, 2020. A floristic survey was completed concurrently. Surveys were conducted in accordance with the methodology of the *Ecological Land Classification for Southern Ontario: First Approximation and Its Application* (Lee *et al.* 1998) by an ecologist certified by the MNRF in the Ecological Land Classification (ELC) system. Privately-owned lands were assessed from within the road right-of-way.

To classify the ecological communities within the Subject Property, publicly accessible lands were walked, and discrete units of natural and semi-natural communities were delineated as polygons on an aerial photograph of the property. Information on site conditions, soils, vegetation composition and structure of each community was recorded, including dominant species, percent cover, and relative abundance of species in each height class. Vegetation community data provided by TRCA was ground-truthed. Vegetation communities not previously assessed by the TRCA were subject to a full assessment to the extent feasible given land access restrictions.

Additionally, a list of vascular plants encountered during the field investigation was compiled. TRCA records of significant species within and ajdacnt to the study area were also included.

2.2.2 Tree Inventory

As part of the terrestrial field investigations, an inventory and assessment of all trees with a diameter at breast height (DBH) of 10 centimetres (cm) or more was completed on October 22, 2020 by an Arborist Certified by the International Society of Arboriculture (ISA). Trees were assessed and the following information was collected for each tree:


- Species;
- DBH (cm);
- Crown Diameter (m); and
- Condition rating based on health and structure (good, fair, poor, or dead).

Each tree was assigned a condition rating of good, fair, poor, or dead, based on the following criteria:

- **Poor** Severe dieback, significant lean, missing leader, major defects, significant decay and/or disease presence;
- **Fair** Moderate dieback and/or lean, limb defects, multiple stems, moderate foliage damage from stress:
- Good Healthy vigorous growth, minor visible defects or damage; or
- **Dead** No live crown (epicormic growth may be present).

Tree condition was assessed based on presence and severity of external flaws, damage, evidence of pests or diseases, structural condition, dead or dying branches, or other decline indicators.

Site Location Figure 1

Heart Lake Road and Countryside Drive, Environmental Assessment, City of Brampton

₩ BEACON	Project: 220296		
BEACON Last F	Revised: December, 2020		
Client: MTE	Decreased by DII		

Client: MTE
Consultants Inc.

Prepared by: DU
Checked by: AB

Prepared by: DU
Checked by: AB

Inset Map:1:50,000

Contains information licensed under the Open Government License– Ontario Orthoimagery Baselayer: FBS Peel 2019

C:\Dropbox\Dropbox (Beacon)\All GIS Projects\2020\220296 EA Heart Lake Rd & Countryside Dr Intersection\MXD\20201020_Figure01_SiteLocation_220296.mxd

Trees were tagged, with metal numbered labels, using a staple gun. The location of individual trees and/or tree groupings was determined using a survey-grade Arrow Gold GNSS Receiver and incorporated into Geographical Information Systems (GIS) and AutoCAD platforms.

Limitations of the assessment are included in **Appendix B**.

2.2.3 Wildlife

Beacon did not complete specialized terrestrial wildlife surveys in the Study Area in 2020, although incidental records of terrestrial species were noted during other surveys. The characterization of the terrestrial wildlife will be completed through background resources, as described in **Section 3.1**.

2.2.4 Aquatic Habitat

An aquatic ecologist visited the subject property on October 8, 2020 with the intention of completing a habitat assessment of the mapped watercourse that crosses Heart Lake Road east of the Subject Property. However, an aquatic habitat assessment was not undertaken as it was determined that no channel or direct fish habitat were present.

3. Study Findings

3.1 Background Review

The data obtained during the background review supports the field work completed by Beacon in 2020 to characterize the biological environment in the Study Area and has been integrated in the results of the field investigations detailed in **Section 4.2** where applicable. Additionally, the background resources were used to screen for SAR (including Endangered, Threatened and Special Concern species) in the Study Area, as detailed in **Section 4.3**.

It is known through the review of background information that the stretch of Heart Lake Road spanning from the intersection with Countryside Drive approximately 200 m south east is a wildlife road mortality hotspot. The TRCA, in partnership with the City of Brampton, installed a wildlife crossing structure and directional fencing to mitigate wildlife road mortality in this area.

3.2 Field Investigations

3.2.1 Vegetation Communities and Flora

Upon completion of vegetation surveys, Beacon determined that vegetation community boundaries and types provided by TRCA were generally correct. Minor refinements were made to some polygon boundaries and one wetland community east of Countryside Drive was re-classified. The TRCA had identified this wetland as a Willow Organic Thicket Swamp (SWT3-2) but upon review it was determined

that is it a Cattail Mineral Shallow Marsh (MAS2-1). The MAS2-1 community is shown in **Photograph**1

Additionally, there is a mid-aged Dry - Fresh Sugar Maple - Beech Deciduous Forest (FOD5-2) community located east of Countryside Drive that was not previously mapped by TRCA. The canopy is dominated by Sugar Maple (*Acer saccharum spp. saccharum*), with American Beech (*Fagus grandifolia*) and Red Oak (*Quercus rubra*), forming lesser associates. Sugar Maple is also dominant in the subcanopy, with American Beech as an occasional associate. The understory is dominated by European buckthorn (*Rhamnus cathartica*) with Sugar Maple as an occasional associate. Large-leaved Aster (*Eurybia macrophylla*) and Common White Snakeroot (*Ageratina altissima* var. *altissima*) are abundant in the ground layer. Soil sampling using an auger confirmed soils are comprised of silty sands. No mottled soils, water or bedrock was encountered in the auger sampling. This vegetation community is shown in **Photograph 1**.

Photograph 1. Facing North, MAS2-1 in Foreground and FOD5-2 in Background (October 8, 2020)

A total of 32 species of vascular plants were catalogued during the botanical inventory and vegetation community classification surveys conducted by Beacon within the ELC community FOD5-2 community. Additionally, the TRCA provided flora data known to the Study Area that included 31 species. All together, 62 vascular plants have been recorded in the Study Area, of which 61 were identified to the species level, and of this identified group, 53 (87%) are native to Ontario and 8 (13%) are introduced species. One sedge plant Carex sp. could not be identified to the species level due to the timing of the surveys. A list of flora recorded within the Study Area is included in **Appendix A**.

Most species recorded have a high range of habitat tolerances, as evidenced by the high proportion of species with a low coefficient of conservatism (CC) values. Species with narrow habitat tolerances (i.e., with CC values ≥7), of which five were recorded: one was found within ELC community FOD5-2 and four were recorded by TRCA in the Heart Lake Conservation Area. None of the species recorded during surveys are of global, national, or provincial significance. SAR flora, including and not limited to

Butternut, were not observed. Although, 12 species of local significance (i.e., ranked L1-L3 by the TRCA) were in the Study Area. These species are listed in **Table 1** below and are mapped on **Figure 2**. Please note that the occurrence numbers used to label species on **Figure 2** are listed in the table as well, with the exception for Running Strawberry-bush (*Euonymus obovata*), which was recorded by Beacon in the western edge of ELC community FOD5-2.

Table 1. Vegetation Species of Regional Conservation Concern

Species	Common Name	S-Rank ¹	L- Rank²	Data Source	Occurrence Number(s) (Fig. 2)
Calla palustris	Water Arum	S5	L2	TRCA	36, 41
Carex comosa	Bristly Sedge	S5	L3	TRCA	47
Carex crinita	Fringed Sedge	S5	L3	TRCA	20
Euonymus obovata	Running Strawberry-bush	S5	L3	Beacon	n/a, in FOD5-2
llex verticillata	Winterberry	S5	L3	TRCA	30
Iris versicolor	Northern Blue-flag	S5	L3	TRCA	28, 50
Lemna trisulca	Star Duckweed	S5	L3	TRCA	19, 34
Persicaria sagittata	Arrow-leaved Tearthumb	S4	L3	TRCA	35
Picea glauca	White Spruce	S5	L3	TRCA	1, 7, 17
Pinus resinosa	Red Pine	S5	L1	TRCA	6
Rosa palustris	Swamp Rose	S5	L2	TRCA	46
Sparganium emersum ssp. emersum	Narrow-leaved Bur-reed	S5	L3	TRCA	49

¹Provincial Rank (NHIC): S4=Apparently Secure, S5=Secure

- L1= Unable to withstand disturbance; many criteria are limiting factors; generally occur in high-quality natural areas in natural matrix; almost certainly rare in the TRCA jurisdiction; of concern regionally.
- L2= Unable to withstand disturbance; some criteria are very limiting factors; generally occur in high-quality natural areas, in natural matrix; probably rare in the TRCA jurisdiction; of concern regionally.
- L3= Able to withstand minor disturbance; generally secure in natural matrix; considered to be of regional concern.

Additionally, through the background review, one vascular plant and one non-vascular plant listed by the NHIC as having provincial ranks of S2, meaning they are considered imperiled because of rarity due to very restricted range, very few populations(often 20 or fewer), steep declines, or other factors making it very vulnerable to extirpation. These two species are Honey Locust (*Gleditsia triacanthos*) and Narrow-leaved Beard Moss (*Elodium paludosum*), neither of which were recorded in the Study Area by Beacon or the TRCA.

3.2.2 Tree Inventory

At total of 41 roadside trees measuring between 10 cm DBH and 82 cm DBH were inventoried and assessed on and adjacent to the Study Area.

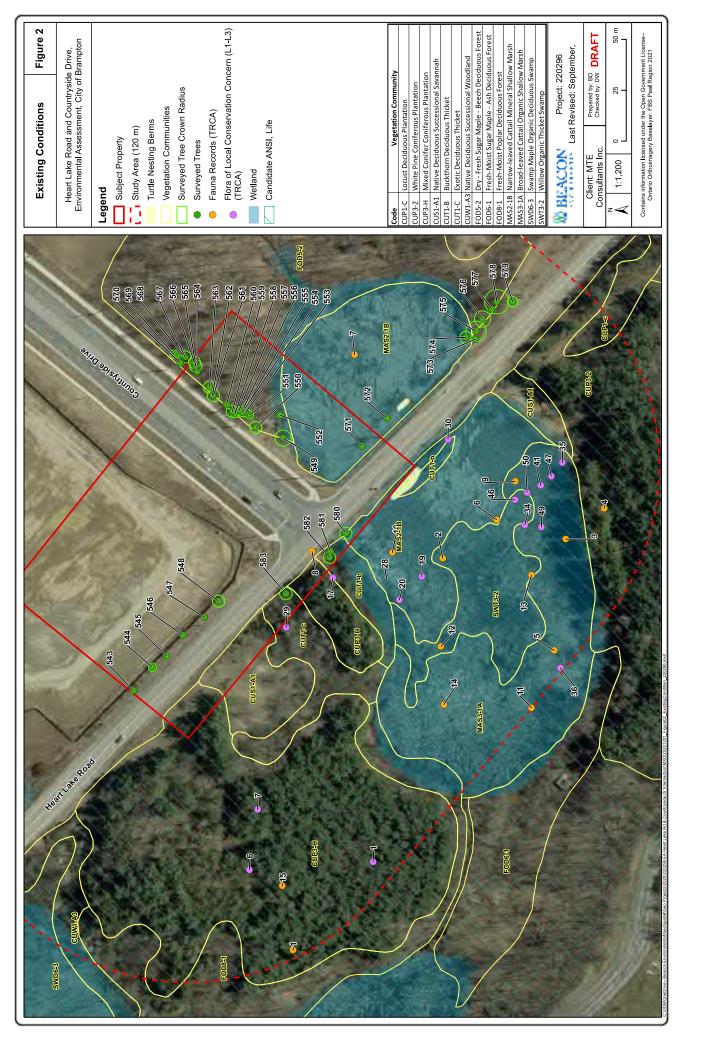
The majority of trees are Red Oak and Sugar Maple. Most trees inventoried are in good condition and ten were dead.

²Local Rank (TRCA):

Tree locations are shown on **Figure 2**, and tree inventory data are presented in **Appendix C**. A detailed tree inventory and protection plan, will be produced for the preferred option selected though the EA process.

3.2.3 Wildlife

Beacon did not complete wildlife surveys in the Study Area in 2020, although during a vegetation survey on October 22, 2020, a single Eastern Garter snake (*Thamnophis sirtalis sirtalis*) was noted on the edge of the Native Deciduous Successional Savannah (ELC community CUS1-A1) near Heart Lake Road. This species is ranked as L4 by TRCA, meaning it is able to withstand some disturbance and is generally secure in rural matrix but of concern in urban matrix.


Also during the vegetation survey conducted in 2020, it was noted that the Dry - Fresh Sugar Maple - Beech Deciduous Forest (FOD5-2) community east of Countryside Drive contained suitable habitat for bat maternity roosts as described in the *Survey Protocol for Species at Risk Bats within Treed Habitats Little Brown Myotis, Northern Myotis & Tri-Colored Bat* (Guelph District MNRF 2017). The community contains numerous mature cavity trees, contains a relatively open understory, and is adjacent to a marsh. At the time of writing, no further bat habitat assessment was completed or planned for this feature.

As mentioned in **Section 3.2.3**, the terrestrial wildlife within the Study Area can be further characterized through the background data for the Study Area provided by the TRCA. Their species record for the Study Area are included in **Table 2**; these records are mapped on **Figure 2** in accordance with the occurrence numbers listed in the last column in the table.

Table 2. Fauna Records from TRCA for Study Area

Туре	Species	Common Name	Breeding Status	Call Code ¹	S- Rank²	L- Rank³	Occurrence Number (Fig. 2)
Amphibian	Pseudacris crucifer crucifer	Spring Peeper	Probable	3	S5	L2	5
Amphibian	Lithobates sylvatica	Wood Frog	Probable	2	S5	L2	6
Amphibian	Lithobates sylvatica	Wood Frog	Probable	1	S5	L2	7
Amphibian	Pseudacris crucifer crucifer	Spring Peeper	Probable	1	S5	L2	9
Amphibian	Lithobates sylvatica	Wood Frog	Probable	1	S5	L2	10
Bird	Vireo olivaceus	Red-eyed Vireo	Probable	n/a	S5	L4	1
Bird	Melospiza georgiana	Swamp Sparrow	Possible	n/a	S5	L4	2
Bird	Vireo olivaceus	Red-eyed Vireo	Probable	n/a	S5	L4	3
Bird	Accipiter cooperii	Cooper's Hawk	Confirmed	n/a	S4	L4	4
Bird	Setophaga ruticilla	American Redstart	Probable	n/a	S5	L4	11
Bird	Geothlypis trichas	Common Yellowthroat	Probable	n/a	S5	L4	12
Bird	Melospiza georgiana	Swamp Sparrow	Probable	n/a	S5	L4	13
Bird	Ceryle alcyon	Belted Kingfisher	Possible	n/a	S4	L4	14
Bird	Setophaga pinus	Pine Warbler	Possible	n/a	S5	L4	15
Reptile	Storeria occipitomaculata occipitomaculata	Red-bellied Snake	Probable	n/a	S5	L3	8

¹Call Count as per the Marsh Monitoring Protocol (Bird Studies Canada 2009):

- Call Code 1 individuals of one species can be counted, calls not simultaneous.
- Call Code 2 some calls of one species simultaneous, numbers can be reliably estimated.
- Call Code 3 full chorus, calls continuous and overlapping.

²Provincial Rank (NHIC): S4=Apparently Secure, S5=Secure

³Local Rank (TRCA):

- L2= Unable to withstand disturbance; some criteria are very limiting factors; generally occur in high-quality natural areas, in natural matrix; probably rare in the TRCA jurisdiction; of concern regionally.
- L3= Able to withstand minor disturbance; generally secure in natural matrix; considered to be of regional concern.
- L4 = Able to withstand some disturbance; generally secure in rural matrix; of concern in urban matrix.

As noted in **Table 2**, there is one L3 fauna species and five L2 fauna species on record in the vicinity of the Study Area. TRCA records do not include species that are of national or provincial significance.

Additionally, the TRCA has been studying road mortality on Heart Lake Road south of Countryside Drive and have found that turtle mortalities are very high for the section of Heart Lake Road east of Countryside Drive. In response to that, a wildlife crossing structure (open-bottom box culvert) and directional wildlife fencing have been installed, as shown in **Photograph 2** below. In addition to this, as illustrated on **Figure 2**, two turtle nesting berms exist on either side of Heart Lake Road south of Countryside Drive have also been installed.

Photograph 2. Wildlife Culvert with Fencing in Foreground, and Heart Lake Road in Background (October 8, 2020)

3.3 Species at Risk

Through the background review and surveys completed by Beacon, 20 species identified as Endangered, Threatened, or Special Concern under the provincial ESA that have been recorded within

5 km of the Study Area. To determine which of these species may be associated with the Study Area, Beacon completed an assessment based on habitat suitability. The assessment is provided in **Appendix D** and determines that suitable habitat exists in the study area for at least 8 of the 20 species noted, as summarized in **Table 3**.

Table 3. Endangered, Threatened or Special Concern Species Likelihood of Presence

Species	Endangered Species Act Status	Likelihood of Presence
Eastern Small-footed Myotis (Myotis leibii)	Endangered	Low, within FOD community
Little Brown Myotis (Myotis lucifugus)	Endangered	High, within FOD community
Northern Myotis (<i>Myotis septentrionalis</i>)	Endangered	Low, within FOD community
Tricoloured Bat (Perimyotis subflavus)	Endangered	Very Low, with FOD community
Eastern Wood-Pewee (Contopus virens)	Special Concern	Medium, within FOD/CUP community; however, there are no records for this species in the area based on TRCA data.
Red-headed Woodpecker (<i>Melanerpes erythrocephalus</i>)	Special Concern	Very Low, within FOD community; no records for this species in the area based on TRCA data.
Snapping Turtle (Chelydra serpentina)	Special Concern	Confirmed based on records for the area (White et al., 2018)
Wood Thrush (<i>Hylocichla mustelina</i>)	Special Concern	Medium, within FOD community; however, there are no records for this species in the area based on TRCA data.

The potentially suitable habitat that was identified in the Study Area for all these species is associated primarily with the forested and wetland habitats. None of the species listed in **Table 3** have been recorded in the Study Area by Beacon or have been noted by TRCA, with the exception of Snapping Turtle (*Chelydra serpentina*), which has been recorded using the wildlife crossing and artificial nesting habitat on and adjacent to Heart Lake Road, respectively (White et al. 2018; TRCA 2016).

4. Evaluation of Significance

4.1 Habitat of Endangered Species and Threatened Species

In regard to the habitat of endangered species and threatened species, significance is defined by the PPS (2020) as:

The habitat, as approved by the Ontario Ministry of Natural Resources, that is necessary for the maintenance, survival, and/or the recovery of naturally occurring or reintroduced populations of endangered species or threatened species, and where those areas of occurrence are occupied or habitually occupied by the species during all or any part(s) of its life cycle.

As described in **Section 3.3**, there is potential for endangered bats to occur within the study area. The *Survey Protocol for Species at Risk Bats within Treed Habitats Little Brown Myotis, Northern Myotis & Tri-Colored Bat* (MNRF 2017) indicates that coniferous, deciduous or mixed wooded ecosite, including treed swamps, that includes trees at least 10 cm diameter-at-breast height (dbh) are potentially suitable for bat maternity roosts. Based on this guideline, the forest and swamp communities within the study represents potential habitat for SAR bats.

4.2 Significant Woodlands

Significant Woodlands are recognized as components of the City's Natural Heritage System. Significant Woodlands are defined in the PPS, ROP and City of Brampton Official Plan. All of the definitions are consistent with respect to attributes and functions that make a woodland special or significant.

The PPS (2020) defines Significant Woodlands as follows:

... an area which is ecologically important in terms of features such as species composition, age of trees and stand history; functionally important due to its contribution to the broader landscape because of its location, size or due to the amount of forest cover in the planning area; or economically important due to site quality, species composition, or past management history. These are to be identified using criteria established by the Ontario Ministry of Natural Resources.

The PPS definition suggests that significant woodlands are to be identified using criteria established by the MNRF; however, such criteria do not currently exist.

The Region of Peel Official Plan defines Significant Woodlands as follows:

An area which is ecologically important in terms of features such as species composition, age of trees and stand history; functionally important due to its contribution to the broader landscape because of its location, size or ...the amount of forest cover in the planning area; or economically important due to site quality, species composition, or past management history.

The City of Brampton Official Plan does not explicitly define Significant Woodlands; however, it utilizes the PPS definition as follows:

In regard to provincially significant natural heritage features, those identified by the Ministry of Natural Resources using evaluation procedures established by the Province.

Based on the application of the significance criteria noted above and through the criteria listed in Table 7-2 of the *Natural Heritage Reference Manual* (MNR 2010), the treed communities associated with the Study Area would be considered a significant woodland due to criteria such as their size, their proximity

to other significant natural heritage features and in the case of woodland overlapping with the Heart Lake Conservation Area, social functional value. The following vegetation communities have been included as Significant Woodland:

- Locust Deciduous Plantation (CUP1-C);
- White Pine Coniferous Plantation (CUP3-2);
- Mixed Conifer Coniferous Plantation (CUP3-H);
- Native Deciduous Successional Woodland (CUW-A1);
- Dry Fresh Sugar Maple Beech Deciduous Forest (FOD5-2);
- Fresh Moist Poplar Deciduous Forest (FOD8-1); and
- Swamp Maple Organic Deciduous Swamp (SWD6-3).

4.3 Significant Wetlands

In regard to wetlands, significance is defined by the PPS (2020) as:

An area identified as provincially significant by the Ontario Ministry of Natural Resources using evaluation procedures established by the Province, as amended from time to time.

The wetlands within the Study Area form part of the Heart Lake Provincially Significant Wetland (PSW) complex. According to White et al. (2018), this PSW is ranked in the top ten of all evaluated wetlands in Ontario. The following vegetation communities are included within the portion of the Heart Lake PSW that falls within the Study Area:

- Narrow-leaved Cattail Mineral Shallow Marsh (MAS2-1B);
- Broad-leaved Cattail Organic Shallow Marsh (MAS3-1A);
- Swamp Maple Organic Deciduous Swamp (SWD6-3); and
- Willow Organic Thicket Swamp (SWT3-2).

4.4 Significant Wildlife Habitat

Significant wildlife habitat (SWH) is one of natural heritage features that require site-specific, comprehensive analysis to identify candidate features. It is our understanding that the Region of Peel has developed SWH criteria and thresholds which are included in Figure 5 of the ROP, but that the thresholds are not adopted as policy. The City of Brampton Official Plan does not define SWH, so it is presumed that it is defined as per the PPS.

Significant: means: d) "in regard to other features and areas, ecologically important in terms of features, functions, representation or amount, and contributing to the quality and diversity of an identifiable geographic area or natural heritage system"

According to the Significant Wildlife Habitat Technical Guidelines (MNR 2000), there are four broad categories of Significant Wildlife Habitat (SWH):

- Seasonal Concentration Areas of Animals;
- Rare Vegetation Communities or Specialized Habitat for Wildlife;

Habitat for Species of Conservation Concern; and

Animal Movement Corridors.

Within each of these categories, there are multiple types of SWH, each intended to capture a specialized type of habitat that may or may not be captured by other existing feature-based categories (e.g., significant wetlands, significant woodlands).

To determine if the Study Area potentially supports SWH, the Significant Wildlife Habitat Criteria Schedules for Ecoregion 6E (MNRF 2015) was consulted. A complete screening in included in **Appendix E**. Based on the results of the screening, the Study Area supports potential SWH for the following:

- Bat Maternity Colonies associated of FOD5 community;
- Woodland Raptor Nesting Habitat based on presence of Cooper's Hawk nest (Fauna point number 4 in Figure 2);
- Turtle Wintering Area within cattail marsh community;
- Turtle Nesting Area (associated with constructed habitat as illustrated in Figure 2); and
- Habitat for Species of Conservation Concern based on records for Snapping Turtle.

4.5 Significant Areas of Natural and Scientific Interest

In regard to ANSIs, significance is defined by the PPS as:

Areas of land and water containing natural landscapes or features that have been identified as having life science or earth science values related to protection, scientific study or education.

The Study Area overlaps with two Candidate Provincially Significant ANSIs: the Brampton Buried Esker Earth Science ANSI and the Heart Lake Forest and Bog Life Science ANSI. These two ANSIs are coincident with the Heart Lake Conservation Area.

4.6 Fish Habitat

No defined watercourses or aquatic features supporting direct fish habitat were identified in the Study Area. Diffuse flows from the wetlands within the Study Area may provided indirect contributions to downstream fish habitat.

5. Description of Proposed Alternatives

The current intersection of Hearth Lake Road and Countryside Drive consists of a T-intersection controlled by stop signs.

Two alternative designs were considered for the future intersection of Heart Lake Road and Countryside Drive:

- Round-about; and
- T-intersection controlled by traffic lights, with roads widened to accommodate left and right turning lanes.

The round-about and T-intersection alternatives are illustrated in Figure 3a and 3b.

Alternative 1 includes changes in stormwater management that includes curb and gutter at all approaches, a new culvert crossing east of the intersection, proposed stormwater capture using LID along the west side of Heart Lake Road and south side of Countryside Drive, new outlets to the southwest ditch and regrading and enhancement of the existing ditches (MTE 2022).

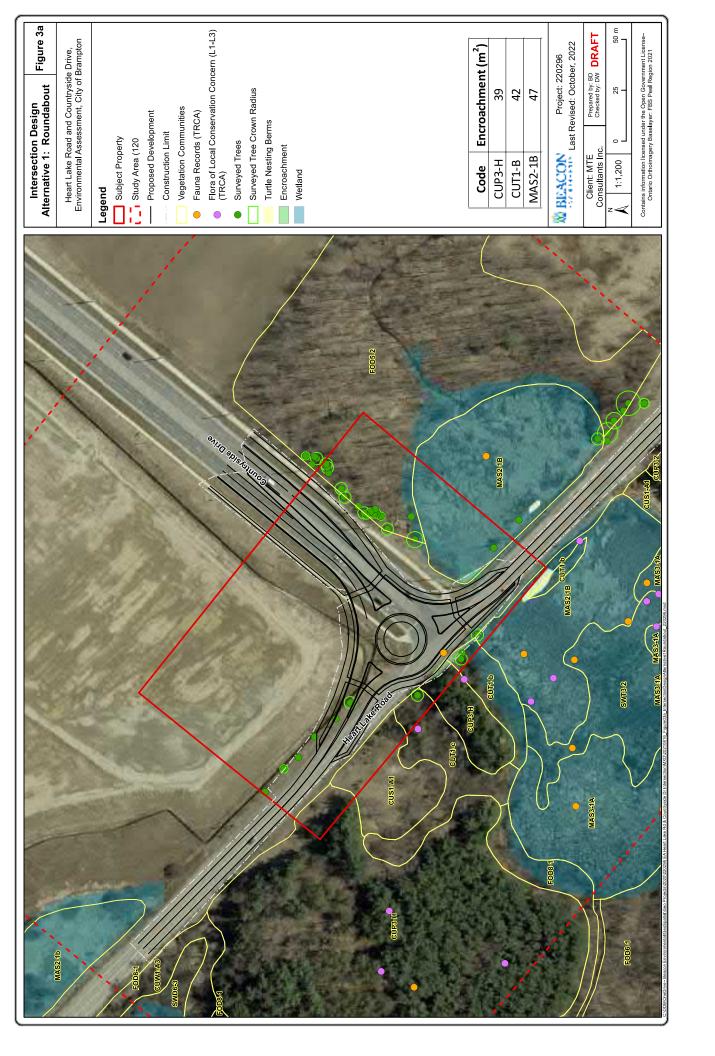
Under Alternative 2, the only significant change in the proposed drainage infrastructure from the existing design is the addition of curb and gutter along Heart Lake Road at the intersection approaches and proposed LID and new outlet along the south side of Countryside Drive (MTE 2022).

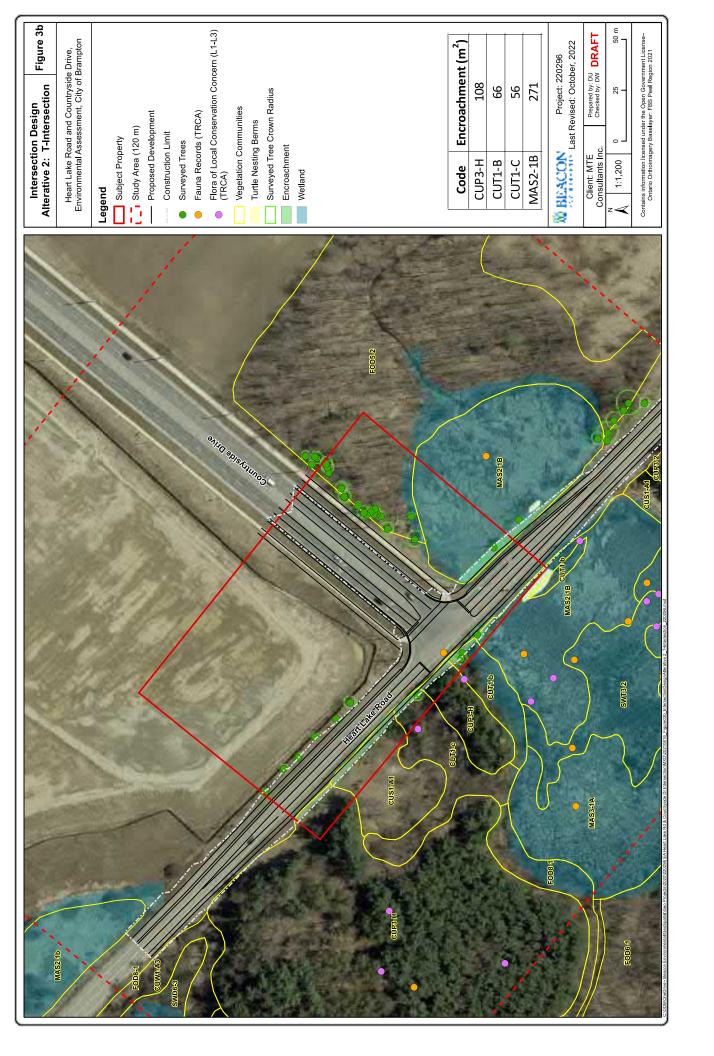
6. Impact Assessment

The following is an assessment/comparison of the impacts of the alternative intersection designs on the natural heritage and hydrological features within the study area. A "do nothing" option was also considered.

6.1 Terrestrial (Upland) Vegetation

6.1.1 Do nothing


Doing nothing would not result in any impacts on terrestrial vegetation


6.1.2 Alternative 1: Round About

Alternative 1 will require removal of vegetation from the edge of a Buckthorn cultural thicket and mixed conifer plantation on the west side of Heart Lake Road. The following is the approximate areas of encroachment into these vegetation communities:

- Buckthorn Cultural Thicket 42 m²; and
- Mixed Conifer Plantation 39 m².

Based on the tree inventory, five trees will require removal under this alternative as summarized in **Table 4**. Four of the trees are dead and one is in poor condition.

Tree Number	Scientific Name	Common Name	DBH (cm)	Condition
546	Fraxinus pennsylvanica	Green Ash	8, 10, 4	Dead
547	Fraxinus pennsylvanica	Green Ash	22	Dead
548	Fraxinus pennsylvanica	Green Ash	23, 30	Dead
580	Acer negundo	Manitoba Maple	28	Poor
581	Ulmus americana	White Elm	41	Dead

6.1.3 Alternative 2: T-Intersection Improvements

Alternative 2 requires removal of vegetation from the edge of an Exotic Cultural Thicket, Buckthorn Cultural Thicket, Mixed Conifer Plantation, and Deciduous Successional Savannah on the west side of Heart Lake Road. The following is the total area of encroachment into these vegetation communities:

- Exotic Cultural Thicket 56 m²:
- Buckthorn Cultural Thicket 66 m²;
- Mixed Conifer Plantation 108 m²; and
- Native Deciduous Successional Savanah 137 m².

Based on the tree inventory, six trees will require removal under this alternative as summarized in **Table 5**. Three of the identified trees are Buckthorn, a highly invasive shrub. Other trees include a Service Berry in fair to good condition, a Manitoba Maple in poor condition, and a dead White Elm.

Table 5. Tree Removals required for Alternative 2

Tree Number	Scientific Name	Common Name	DBH (cm)	Condition
543	Rhamnus cathartica	Common Buckthorn	14	Good
545	Amelanchier sp.	Serviceberry	12	Fair-Good
580	Acer negundo	Manitoba Maple	28	Poor
581	Ulmus americana	White Elm	41	Dead
582	Rhamnus cathartica	Common Buckthorn	13, 14	Good
583	Rhamnus cathartica	Common Buckthorn	10,7, 8, 4, 9, 6	Fair-Good

6.1.4 Summary

The total area of encroachment into the terrestrial vegetation communities under Alternative 2 is 286 m² more than Alternative 1.

However, under both alternatives, the encroachments are limited to the edges of disturbed cultural vegetation communities, requiring removal of shrub thicket (dominated by invasive species) and cultural meadow vegetation.

While greater encroachment is required under Alternative 2, the encroachments are fairly minor under both alternatives, and are not likely to have significant negative impacts on the features or their ecological functions.

Under both alternatives, tree removals are minimal and involve the removal of low-quality vegetation (i.e. invasive species, trees that are in poor condition or dead).

6.2 Wetlands

6.2.1 Do nothing

Doing nothing would not result in any impacts on wetlands.

6.2.2 Alternative 1: Round About

The roundabout will involve encroachment into the adjacent cattail marsh wetland (MAS2-1b) communities on the east and west sides of Heart Lake Road. A total of 47 m² of wetland will be permanently impacted by this design alternative (38 m² on the east side and 9 m² on the west side).

The roundabout increases the amount of impervious surface and drainage footprint of the intersection by 300 m² (<1% increase over existing), which will result in an increase in run-off of 14L/s under the 100-year storm event. Impacts on wetland hydrology resulting from this increase are expected to be minimal and Low Impact Development (LID) options are proposed to mitigate this increase (MTE 2022).

6.2.3 Alternative 2: T-Intersection

Alternative 2 also impacts on adjacent wetlands on both sides of Heart Lake Road. A total of 271 m2 of wetland will be permanently impacted by this design alternative (201 m² on the east side, and 70 m² on the west side).

Peak runoff generated by a signal-controlled T-intersection is essentially unchanged from the existing condition due to the nominal changes in the configuration of the impervious and pervious surfaces of the right-of-way (MTE 2022).

6.2.4 Summary

The total area of encroachment into wetland vegetation communities (cattail marsh) under Alternative 2 is 224 m² more than Alternative 1.

While more wetland removal is required under Alternative 2, the encroachments into the wetland are fairly minor under both alternatives, representing a relatively small proportion of the total wetland area. The loss of wetland is not likely to have significant negative impacts on the wetland features or their ecological functions.

6.3 Wildlife and Wildlife Habitat

The loss of vegetation from upland and wetland features associated with the alternative intersection designs (discussed in preceding sections) will result in a corresponding loss of wildlife habitat.

The impacts of the alternatives on Potential SWH identified in **Section 4.4** are summarized in **Table 6**. The T-intersection improvements (alternative 3) results in a greater impact on wildlife habitat compared to the Round-about (alternative 2); however, under both alternatives, the loss of habitat is small and limited to the edges of the features and is not expected to have a signficant impact on wildlife.

Table 6. Impacts on features identified as Potential Signficant Wildlife Habitat

SWH Type	SWH Status	Location within Study Area	Do Nothing	Round-about	T-Intersection
Bat Maternity Colonies	Potential	FOD and SWD Communities	No Impact	No Impact	No Impact
Turtle Wintering Areas	Potential	MA- and SW- Communities	No Impact	Minor impact – lost of 47 m ² of potentially suitable marsh habitat	Minor impact – 271 m² of potentially suitable marsh habitat
Woodland Raptor Nesting Habitat	Potential	Cooper's Hawk Nest (occurrence number 4 on Figure 2)	No Impact	No Impact	No Impact
Turtle Nesting Areas	Potential	Artificial nesting habitats (see Figure 2).	No Impact	No Impact	No Impact
Habitat for Species of Conservation Concern	Potential	There are records for Snapping Turtle, a species Special Concern, in the Study Area.	No Impact	Minor impact – lost of 47 m² of marsh habitat No Impact	Minor impact – loss of 271 m² of marsh habitat

No impacts on habitat for threatened or endangered species are expected to occur on under either alternative.

As discussed previously, a wildlife crossing structure (open-bottom box culvert) and directional wildlife fencing have been installed within the study area. The culvert passage is located outside the construction limits for the Roundabout. The culvert is located within the construction limits for the T-Intersection alternative. The culvert would remain in place during construction and lengthened to accommodate a slightly wider roadway. Wildlife may be deterred from using the culvert during construction due to construction-related interruptions and disturbances such as noise. However, long term impacts on wildlife passage are not anticipated.

6.4 Summary

A summary of the impacts of the intersection design alternatives on natural heritage features and functions within the study area is provided in **Table 7**.

Table 7. Summary of Impacts

Natural Environment	Measure of Potential Impact	Do Nothing	Alternative 1 Roundabout	Alternative 2 Signalized T-Intersection
Surface Water	Aquatic Species and Habitat	No impact on aquatic species or habitat	Potential impacts to aquatic species and habitat (outside of study area) through sedimentation during construction.	Potential impacts to aquatic species and habitat (outside of study area) through sedimentation during construction.
Vegetation	Wetlands	No impact on PSW	47 m2 encroachment into cattail marsh community associated with Heart Lake PSW. Potential for minor hydrological impact on wetlands due to small increase in impervious surface area and peak runoff.	271 m2 encroachment into cattail marsh community associated with Heart Lake PSW No change to impervious surface area and peak runoff.
	Terrestrial Vegetation	No impact on terrestrial vegetation	81 m2 encroachment along edges of cultural thicket and cultural plantation communities	367 m2 encroachment along edges of cultural thicket, cultural plantation, and cultural savanna communities
	Signficant Wildlife Habitat	No impacts on SWH	Minor impact on cattail marsh which represents potential SWH for Turtle Wintering Area and Habitat for Species of Conservation Concern (i.e. Snapping Turtle). The small encroachment into the wetland along roadside is not expected to have a negative impact on these types of habitat.	Minor impact on cattail marsh which represents potential SWH for Turtle Wintering Area and Habitat for Species of Conservation Concern (Snapping Turtle). The small encroachment into the wetland along roadside is not expected to have a negative impact on these types of habitat.
	Species at Risk	No impacts on SAR	No impacts on SAR	No impacts on SAR
Wildlife	Breeding Birds	No impacts on breeding birds	Potential impacts on breeding birds if vegetation is removed during the nesting period	Potential impacts on breeding birds if vegetation is removed during the nesting period
	Wildlife Crossing (open bottom culvert)	No impacts on wildlife crossing	The wildlife crossing structure is located outside the construction limits.	The wildlife crossing culvert is located within the construction limits. While the culvert will remain in-situ, wildlife may be deterred from using the culvert during construction due to construction-related interruptions and disturbances such as noise. However, Long term impacts on wildlife passage are not anticipated.

7. Recommended Mitigation

The following measures are recommended to avoid or minimize impacts on natural heritage and hydrological features within study area. Potential impacts can largely be avoided or minimized through the following mitigation recommendations, which are relevant to both intersection alternatives.

- Construction works such as grading, grubbing and excavation have the potential to result in
 the movement of sediment into the offsite watercourses and wetlands. An Erosion and
 Sediment Control (ESC) plan should be prepared prior to the start of the construction phase
 of the development and approved by the TRCA. The plan should include but not be limited
 to establishment of silt fence at the construction limit. ESC measures should be regularly
 inspected and maintained in good working order throughout the construction period;
- A spill response plan should be prepared for works in or near the watercourses and wetlands and take necessary actions and notify appropriate personnel in the event of a spill (identification of local MECP office);
- Low impact design (LID) measures should be utilized where feasible to promote infiltration and provide stormwater quality and quantity treatment (see MTE 2022);
- Following construction, temporary ESC measures should be removed after soils are sufficiently covered and stabilized. Exposed soils should be stabilized as soon as possible through re-vegetation using native species or other appropriate methods;
- Exterior lighting fixtures adjacent to the natural area should direct light downward to the surface where it is needed and minimize up-light;
- Landscaping plans should utilize a diversity of local native species that are complimentary to the adjacent natural features;
- The limits of the work area should be delineated by exclusion fencing for the protection of trees and other vegetation. Silt fence may double as tree/vegetation protection fencing;
- During construction, if wildlife is encountered within the construction limits, a qualified biologist should be contacted to ensure appropriate handling and relocation; and
- The removal of trees and other vegetation from the site has the potential to disturb nesting birds. The federal *Migratory Birds Convention Act* protects the nests, eggs and young of most bird species from harassment, harm, or destruction. The breeding bird season in southern Ontario is generally from April 1 to August 31; therefore, the clearing of vegetation should be outside of these dates (i.e., between September 1 and March 31).

8. Conclusion

This Natural Environment Report was prepared to support the Heart Lake Road and Countryside Drive EA that is being undertaken by MTE Consultants Inc.

The report identifies, describes, and evaluates existing conditions of the aquatic and terrestrial environment within the Hearth Lake Road and Countryside Drive Intersection Study Area using information collected from background resources and scoped field investigations. The information was used to evaluate impacts of alternative intersection designs on the natural heritage and hydrological features within the study area.

Significant natural heritage features identified in the Study Area include PSW, Signficant Woodland, Candidate ANSI, potential SWH, and potential habitat for threatened or endangered species (i.e. bats).

Two intersection designs were evaluated: a round-about and a signal-controlled T-Intersection. Both options would result in minimal direct impacts on the adjacent wetland and upland terrestrial vegetation communities in the study area. However, of the two alternatives, the round-about design results in less encroachment into the adjacent natural heritage features (notably PSW) and will not require construction in the vicinity of or modification to the wildlife passage culvert compared to the T-intersection. The roundabout option is the preferred alternative. The report provides a number of mitigation measures to minimize impacts on the natural environment prior to, during, and after construction.

Prepared by: **Beacon Environmental**

DRAFT

Dan Westerhof, B.Sc., M.E.S. Senior Terrestrial Ecologist, ISA Certified Arborist (ON-1536A) Reviewed by: **Beacon Environmental**

DRAFT

Ken Ursic, B.Sc., M.Sc. Principal, Senior Ecologist

9. References

Bird Studies Canada. 2009.

Marsh Monitoring Program Participant's Handbook for Surveying Amphibians. Bird Studies Canada, Environment Canada, U.S. Environmental Protection Agency. February 2009.

Cadman, M.D., D.A. Sutherland, G.G. Beck, D. Lepage and A.R. Couturier (eds.). 2007.

Atlas of the Breeding Birds of Ontario, 2001–2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto, ON. xxii + 706. Available online at: https://www.birdsontario.org/atlas/index.jsp. Accessed December 2020.

City of Brampton. 2020.

Official Plan. September 2020 Consolidation.

Dobbyn, J.S. 1994.

Atlas of the Mammals of Ontario. Federation of Ontario Naturalists, ISBN 1-896059-02-3.

Government of Canada. 1985.

Fisheries Act.

Government of Canada. 1994.

Migratory Birds Convention Act.

Government of Ontario. 2007.

Endangered Species Act.

Lee, H.T., W.D. Bakowsky, J. Riley, J. Bowles, M. Puddister, P. Uhlig and S. McMurray. 1998. *Ecological Land Classification for Southern Ontario: First Approximation and Its Application*. Ontario Ministry of Natural Resources. SCSS Field Guide FG-02. 225 pp.

Macnaughton, A., R. Layberry, C. Jones and B. Edwards. 2016.

Ontario Butterfly Atlas. Available online at: https://www.ontarioinsects.org/atlas/. Accessed December 2020.

Natural Heritage Information Center (NHIC). 2020.

https://www.ontario.ca/page/get-natural-heritage-information. Accessed December 2020.

North South Environmental Inc (NSEI), Dougan and Associates, and Sorensen Gravely Lowes. 2009. Peel-Caledon Significant Woodland and Significant Wildlife Habitat Study. June 2009.

Ontario Ministry of Municipal Affairs and Housing (MMAH). 2020.

Provincial Policy Statement. Toronto, Ontario.

Ontario Ministry of Natural Resources (MNR). 2000.

Significant Wildlife Habitat Technical Guide. October 200.

Ontario Ministry of Natural Resources (MNR). 2010.

Natural Heritage Reference Manual for Natural Heritage Policies of the Provincial Policy Statement, 2005. Second Edition. March 18, 2010.

Ontario Ministry of Natural Resources and Forestry (MNRF). 2015. Significant Wildlife Habitat Criteria for Ecoregion 6E. January 2015.

Ontario Ministry of Natural Resources and Forests - Guelph District. 2017.

Bat and Bat Habitat Surveys of Treed Habitats. Updated April 2017. 13 p

Ontario Nature, 2020.

Atlas of Ontario Herpetofauna. Available online at: https://www.ontarionature.org/oraa/maps/. Accessed December 2020.

Region of Peel. 2018.

Region of Peel Official Plan. December 2018 Consolidation.

Toronto and Region Conservation Authority (TRCA). 2006.

Development, Interference with Wetlands and Alterations to Shorelines and Watercourses. Ontario Regulation 166/06. Published on e-laws May 8, 2006.

Toronto and Region Conservation Authority (TRCA). 2014.

The Living City Policies for Planning and Development in the Watersheds of the Toronto and Region Conservation Authority. November 28, 2014.

Toronto and Region Conservation Authority (TRCA). 2016.

Road Ecology Study and Mitigation: Provincially Significant Wetland - Area "C".

Toronto and Region Conservation Authority (TRCA). 2020.

ELC, Flora Species and Fauna Species Records in Area. Received October 2020.

White, B., Burns, R. and Tan, T. 2018.

Heart Lake Road Turtle Population Study. Toronto and Region Conservation Authority. December 2018.

Appendix A

Vascular Plant Species List

Appendix A

Vascular Plant Species List

Sp	ecies					Status				Data Source	
Scientific Name	Common Name	cc	CW	COSEWIC	COSSARO TRCA* G-Ra		G-Rank	S-Rank	Introduced 0=n 1=y	ELC Polygon FOD5-2	TRCA Data
Acer platanoides	Norway Maple	0	5			L+	G?	SE5	Ī	Х	
Acer rubrum	Red Maple	4	0			L4	G5	S5	0		X
Acer saccharum ssp. saccharum	Sugar Maple	4	3			L5	G5	S5	0	Х	
Acer X freemanii	Freeman's Maple	n/a	n/a			L4	G?	S5	0		Х
Ageratina altissima var. altissima	White Snakeroot	5	3			L5	G5	S5	0	Х	
Alliaria petiolata	Garlic Mustard	0	0			L+	G?	SE5	I	Х	
Asclepias incarnata ssp. incarnata	Swamp Milkweed	6	-5			L4	G5	S5	0		Х
Betula papyrifera	White Birch	2	2			L4	G5	S5	0		Х
Boehmeria cylindrica	False Nettle	4	-5			L4	G5	S5	0		X
Calla palustris	Water Arum	8	-5			L2	G5	S5	0		Х
Carex comosa	Bristly Sedge	5	-5			L3	G5	S5	0		X
Carex crinita	Fringed Sedge	6	-4			L3	G5	S5	0		Х
Carex lacustris	Lakebank Sedge	5	-5			L4	G5	S5	0		X
Carex pedunculata	Long-stalked Sedge	5	5			L4	G5	S5	0	X	
Carex pensylvanica	Pennsylvania Sedge	5	5			L4	G5	S5	0	Х	
Carex Sp -unknown	Sedge	n/a	n/a			n/a	n/a	n/a	0	Х	
Carya cordiformis	Bitternut Hickory	6	0			L4	G5	S5	0		Х
Cornus amomum ssp. obliqua	Silky Dogwood	5	-4			L4	G5	S5	0		Х
Cuscuta gronovii	Common Dodder	4	-3			L4	G5	S5	0		Х
Dactylis glomerata	Orchard Grass	0	3			L+	G?	SE5	I	Х	
Dryopteris carthusiana	Spinulose Wood Fern	5	-2			L5	G5	S5	0	Х	
Epifagus virginiana	Beechdrops	6	5			L4	G5	S5	0	Х	
Euonymus obovata	Running Strawberry-bush	6	5			L3	G5	S5	0	Х	
Eupatorium perfoliatum	Common Boneset	2	-4			L5	G5	S5	0		Х
Eurybia macrophylla	Large-leaved Aster	5	5			L4	G5	S5	0	Х	
Fagus grandifolia	American Beech	6	3			L4	G5	S5	0	Х	
Geranium robertianum	Herb Robert	0	5			L+?	G5	SE5	I	Х	
Hydrophyllum virginianum	Virginia Water-leaf	6	- 2			L5	G5	S5	0	X	
llex verticillata	Winterberry	5	-4			L3	G5	S5	0		X
Iris versicolor	Northern Blue-flag	5	-5			L3	G5	S5	0		X
Juglans nigra	Black Walnut	5	3			L4	G5	S4	0	Х	
Lemna trisulca	Star Duckweed	4	-5			L3	G5	S5	0		Х
Lonicera tatarica	Tartarian Honeysuckle	0	3			L+	G?	SE5	I	Х	
Lysimachia thyrsiflora	Tufted Loosestrife	7	-5			L4	G5	S5	0		X
Persicaria sagittata	Arrow-leaved Tearthumb	5	-5			L3	G5	S4	0		Х
Picea glauca	White Spruce	6	3			L3	G5	S5	0		Х
Pinus resinosa	Red Pine	8	3			L1	G5	S5	0		Х

Spec	cies		cw	Status					Introduced	Data Source	
Scientific Name	Common Name	cc		COSEWIC	COSSARO	TRCA*	G-Rank	S-Rank	0=n 1=y	ELC Polygon FOD5-2	TRCA Data
Pinus strobus	Eastern White Pine	4	3			L4	G5	S5	0	X	Х
Prunus pensylvanica	Pin Cherry	3	4			L4	G5	S5	0	X	
Prunus serotina	Black Cherry	3	3			L5	G5	S5	0	X	
Prunus virginiana ssp. virginiana	Choke Cherry	2	1			L5	G5	S5	0	X	
Quercus rubra	Red Oak	6	3			L4	G5	S5	0	X	
Rhamnus cathartica	Common Buckthorn	0	3			L+	G?	SE5	I	X	
Ribes cynosbati	Prickly Gooseberry	4	5			L5	G5	S5	0	X	
Rosa palustris	Swamp Rose	7	-5			L2	G5	S5	0		Х
Rubus idaeus ssp. idaeus	Red Raspberry	0	5			L5	G5	SE1	I	X	
Rumex britannica	Great Water Dock	6	-5			L4	G5	S4S5	0		Х
Salix amygdaloides	Peach-leaved Willow	6	-3			L4	G5	S5	0		Х
Salix discolor	Pussy Willow	3	-3			L4	G5	S5	0		Х
Sium suave	Water-parsnip	4	-5			L5	G5	S5	0		Х
Solidago caesia	Blue-stem Goldenrod	5	3			L5	G5	S5	0	X	
Solidago canadensis var. canadensis	Canada Goldenrod	1	3			L5	G5	S5	0	X	
Sparganium emersum ssp. emersum	Narrow-leaved Bur-reed	5	-5			L3	G5	S5	0		Х
Spiraea alba	Narrow-leaved Meadowsweet	3	-4			L4	G5	S5	0		Х
Symphyotrichum cordifolium	Heart-leaved Aster	5	5			L5	G5	S5	0	X	
Taraxacum officinale	Common Dandelion	0	3			L+	G5	SE5	I	X	
Thelypteris palustris var. pubescens	Marsh Fern	5	-4			L4	G5	S5	0		Х
Thuja occidentalis	Eastern White Cedar	4	-3			L5	G5	S5	0		Χ
Tilia americana	Basswood	4	3			L5	G5	S5	0	X	
Tsuga canadensis	Eastern Hemlock	7	3			L4	G5	S5	0	X	
Typha latifolia	Broad-leaved Cattail	3	-5			L4	G5	S5	0		Х
Ulmus americana	White Elm	3	-2			L5	G5?	S5	0	X	

<u>Legend</u> CC = Coefficient of Conservatism

CW = Wetness Index: The wetness index gives an indication of where plant species are typically found. A wetness value (coefficient of wetness) between -5 and 5. The wetland categories and their corresponding values are as follows: OBL -5, FACW -3, FACW -2, FAC + - 1, FAC 0, FAC- 1, FACU 3, wetlands (estimated 67-99% probability); FAC = Facultative Equally likely to occur in wetlands or non-wetlands (estimated 1-33% probability); FACU = Facultative Upland Occasionally occurs in wetlands, but usually occurs in non-wetlands (estimated 1-33% probability); UPL = Obligate Upland Occurs almost never in wetlands under natural conditions (estimated < 1 % probability).

COSEWIC = Committee on the Status of Endangered Wildlife in Canada COSSARO = Committee on the Status of Species at Risk in Ontario

COSEWIC/COSSARO: END = Endangered, THR = Threatened, SC = Special Concern

*Local status per TRCA Rank (Toronto and Region Conservation Authority) for breeding status: L5 (Able to withstand high levels of disturbance; generally secure throughout the jurisdiction, including the urban matrix; may be of very localized concern in highly degraded areas), L4 (Able to withstand some disturbance; generally secure in rural matrix; of concern in urban matrix), L3 (Able to withstand minor disturbance; generally secure in natural matrix; considered to be of regional concern), L2 (Unable to withstand disturbance; some criteria are very limiting factors; generally occur in high-quality natural areas, in natural matrix; probably rare in the TRCA jurisdiction; of concern regionally), L1 (Unable to withstand disturbance; many criteria are limiting factors; generally occur in high-quality natural areas in natural matrix; almost certainly rare in the TRCA jurisdiction; of concern regionally) and L+ (non-native species).

G-Rank = Global: G1 - extremely rare, G2 - very rare, G3 - rare to uncommon, GH - historic, no record in past 20 years, GX - globally extinct, GX - globally extinct, G - no information

S-Rank = Provincial (NHIC - Natural Heritage Information Centre of Ontario): S1 - extremely rare, S2 - very rare, S3 - rare to uncommon, S4 - common, S5 - very common, S1 - historic, no records in last 20 years, SNA = plant is not a native component of Ontario flora, NR = unranked

Appendix B

Tree Inventory Limitations of Assessment

Appendix B

Limitations of Tree Assessment

It is the policy of Beacon Environmental Ltd. to attach the following clause regarding limitations of the tree assessment. The intent is to ensure that the client is aware of what is technically and professionally realistic in assessing and/or retaining trees.

The assessment of the trees presented in this report has been made using accepted arboricultural techniques. These techniques include a visual examination of the above-ground parts of each tree for structural defects, scars, external indications of decay such as fungal fruiting bodies, evidence of insect attack, crown dieback, discoloured foliage, the condition of any visible root structures, the degree and direction of lean (if any), the general condition of the tree(s) and the surrounding site, and the proximity of property and people. Except where specifically noted in the report, none of the trees examined were dissected, cored, probed, or climbed, and detailed root crown examinations involving excavation were not undertaken.

Notwithstanding the recommendations and conclusions made in this report, it must be recognized that trees are living organisms and their health and vigour constantly change over time. They are not immune to changes in site conditions, pests, or variations in the weather conditions including severe storms with high-speed winds. Furthermore, some symptoms may only be visible seasonally; the extent of observations that can be made may be limited by the time of year in which the inspection took place.

While reasonable efforts have been made to ensure that the trees recommended for retention are healthy unless stated otherwise within the report, no warranty or guarantees are offered, or implied, that these trees, or any parts of them, will have continued health or structure as noted in the report. It is both professionally and practically impossible to predict with absolute certainty the behaviour of any single tree or group of trees or their component parts in all circumstances. Inevitably, a standing tree will always pose some risk. Most trees have the potential for failure if provided with the necessary combinations of stresses and elements. This risk can only be eliminated if the tree is removed.

Although every effort has been made to ensure that this assessment is reasonably accurate, it is recommended that trees be re-assessed periodically to identify changes in condition. Design or site plan changes may also necessitate re-assessment and/or revisions to this report. **The assessment presented in this report is valid at the time of the inspection and is intended for sole use of the client.** Any use of this report by a third party, and any decision based on this report, is the singular responsibility of the third party.

Appendix C

Tree Inventory Table

Appendix C

Tree Inventory Table

Tree Number	Scientific Name	Common Name	DBH (cm)	Condition	Crown Diameter (m)	Comments
543	Rhamnus cathartica	Common Buckthorn	14	Good	1.5	
544	Fraxinus pennsylvanica	Green Ash	33	Poor	2	
545	Amelanchier sp.	Serviceberry	12	Fair-Good	1.5	Multiple stems growing into each other
546	Fraxinus pennsylvanica	Green Ash	8, 10, 4	Dead	1.5	
547	Fraxinus pennsylvanica	Green Ash	22	Dead	1	
548	Fraxinus pennsylvanica	Green Ash	23, 30	Dead	3	
549	Juglans nigra	Black Walnut	32	Good	4	
550	Juglans nigra	Black Walnut	11, 20	Good	3	
551	Quercus rubra	Red Oak	21	Good	2	
552	Prunus serotina	Black Cherry	10	Dead	1.5	Crown dieback
553	Quercus rubra	Red Oak	11	Good	2	
555	Acer saccharum	Sugar Maple	14	Good	2	
554	Quercus rubra	Red Oak	11	Good	2	
556	Pinus sp	Pine species	66	Dead	0.5	
557	Prunus serotina	Black Cherry	17	Good	2	
558	Quercus rubra	Red Oak	12	Good	2	
559	Acer x freemanii	Freeman's Maple	42	Fair-Good	3	Canopy trimmed near power lines
560	Prunus serotina	Black Cherry	10	Fair-Good	1.5	Some crown dieback
561	Acer saccharum	Sugar Maple	19	Poor-Fair	3	Suckers, broken crown
562	Acer saccharum	Sugar Maple	11	Fair	1	Adjacent tree fell on canopy and caused crown damage
563	Acer saccharinum	Silver Maple	35	Good	3	
564	Ulmus americana	White Elm	28	Dead	0	
565	Acer saccharum	Sugar Maple	17	Good	3	
566	Acer saccharum	Sugar Maple	20	Good	3	
567	Fagus grandifolia	American Beech	14	Good	3	
568	Fagus grandifolia	American Beech	39	Dead	0	
569	Fagus grandifolia	American Beech	15	Good	2	
570	Fagus grandifolia	American Beech	10	Good	1.5	
571	Ulmus americana	White Elm	39	Dead	1	
572	Ulmus americana	White Elm	15	Dead	0.5	
573	Ulmus americana	White Elm	12	Good	1	
575	Quercus rubra	Red Oak	53	Good	5	Suppressed crown on west side
574	Juglans nigra	Black Walnut	18	Good	3	
576	Acer saccharum	Sugar Maple	40	Good	4	
577	Acer platanoides	Norway Maple	15	Good	1	
578	Quercus rubra	Red Oak	82	Good	6	
579	Quercus rubra	Red Oak	17	Good	2.5	
580	Acer negundo	Manitoba Maple	28	Poor	3	
581	Ulmus americana	White Elm	41	Dead	0	
582	Rhamnus cathartica	Common Buckthorn	13, 14	Good	3	
583	Rhamnus cathartica	Common Buckthorn	10,7, 8, 4, 9, 6	Fair-Good	3	

Appendix D

Species at Risk Screening

Appendix D

Species at Risk Screening

Species	ESA Status	SARA Status	COSEWIC Status	Preferred Habitat ^{1, 2}	Known Species Range ^{1, 2}	Potentially Suitable Habitat Present within the Subject Property	Likelihood of Presence
Butternut Juglans cinerea	END	END Schedule 1	END	In Ontario, Butternut usually grows alone or in small groups in deciduous forests. It prefers moist, well-drained soil and is often found along streams. It is also found on well-drained gravel sites and rarely on dry rocky soil. This species does not do well in the shade, and often grows in sunny openings and near forest edges.	Butternut can be found throughout central and eastern North America. In Canada, Butternut occurs in Ontario, Quebec and New Brunswick. In Ontario, this species is found throughout the southwest, north to the Bruce Peninsula, and south of the Canadian Shield.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	Not present (species not located during targeted field surveys in 2020 or by TRCA)
Redside Dace Clinostomus elongatus	END	END Schedule 1	END	The Redside Dace is found in pools and slow-moving areas of small streams and headwaters with a gravel bottom. They are generally found in areas with overhanging grasses and shrubs, and can leap up to 10 cm out of the water to catch insects. During spawning, they can be found in shallow parts of streams, which are also popular spawning areas for other minnow species.	In Canada, Redside Dace are found in a few tributaries of Lake Huron, in streams flowing into western Lake Ontario, the Holland River (which flows into Lake Simcoe), and Irvine Creek of the Grand River system (which flows into Lake Erie).	No Potentially suitable habitat is not present on the Subject Property or within the Study Area. Record associated with the Humber watershed aproximately 4.75 km to the east.	-
Eastern Small- footed Myotis (Bat) <i>Myotis leibii</i>	END	No Status	No Status	In the spring and summer, eastern small-footed bats will roost in a variety of habitats, including in or under rocks, in rock outcrops, in buildings, under bridges, or in caves, mines, or hollow trees. These bats often change their roosting locations every day. At night, they hunt for insects to eat, including beetles, mosquitos, moths, and flies. In the winter, these bats hibernate, most often in caves and abandoned mines. They seem to choose colder and drier sites than similar bats and will return to the same spot each year.	The Eastern Small-footed bat has been found from south of Georgian Bay to Lake Erie and east to the Pembroke area. There are also records from the Bruce Peninsula, the Espanola area, Hilton Falls Conservation Area and Lake Superior Provincial Park. Most documented sightings are of bats in their winter hibernation sites.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	Low
Little Brown Myotis (Bat) Myotis lucifugus	END	END Schedule 1	END	Bats are nocturnal. During the day they roost in trees and buildings. They often select attics, abandoned buildings and barns for summer colonies where they can raise their young. Bats can squeeze through very tiny spaces (as small as six millimetres across) and this is how they access many roosting areas. Little brown bats hibernate from October or November to March or April, most often in caves or abandoned mines that are humid and remain above freezing. This species can typically be associated with any community where suitable roosting (i.e. cavity trees, houses, abandoned buildings, barns, etc.) habitat is available.	The Little Brown Myotis is widespread in southern Ontario and found as far north as Moose Factory and Favourable Lake. Outside Ontario, this bat is found across Canada (except in Nunavut) and most of the United States.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	High
Northern Myotis (Bat) Myotis septentrionalis	END	END Schedule 1	END	Northern Myotis bats are associated with boreal forests, choosing to roost under loose bark and in the cavities of trees. These bats hibernate from October or November to March or April, most often in caves or abandoned mines.	The Northern Myotis is found throughout forested areas in southern Ontario, to the north shore of Lake Superior and occasionally as far north as Moosonee, and west to Lake Nipigon.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	Low

Species	ESA Status	SARA Status	COSEWIC Status	Preferred Habitat ^{1, 2}	Known Species Range ^{1, 2}	Potentially Suitable Habitat Present within the Subject Property	Likelihood of Presence
Tricoloured Bat Perimyotis subflavus	END	END Schedule 1	END	Tricoloured Bat inhabits a variety of forested communities, and will roost older forests and barns (or other structures). Foraging habitats include areas over water and streams. They hibernate in cave where they typically roost independently rather than in groups.	Tricoloured Bat is found in southern Ontario, where its northern limit is in proximity to Sudbury. Due to its rarity, their distribution is scattered.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	Very Low
Bank Swallow Riparia riparia	THR	THR Schedule 1	THR	Bank Swallows nest in burrows in natural and human-made settings where there are vertical faces in silt and sand deposits. Many nests are on banks of rivers and lakes, but they are also found in active sand and gravel pits or former ones where the banks remain suitable. The birds breed in colonies ranging from several to a few thousand pairs.	The Bank Swallow is found all across southern Ontario, with sparser populations scattered across northern Ontario. The largest populations are found along the Lake Erie and Lake Ontario shorelines, and the Saugeen River (which flows into Lake Huron).	No Potentially suitable habitat is not present on the Subject Property or within the Study Area.	-
Barn Swallow Hirundo rustica	THR	THR Schedule 1	THR	Bam Swallows often live in close association with humans, building their cup-shaped mud nests almost exclusively on human-made structures such as open barns, under bridges and in culverts. The species is attracted to open structures that include ledges where they can build their nests, which are often re-used from year to year. They prefer unpainted, rough-cut wood, since the mud does not adhere as well to smooth surfaces.	The Barn Swallow may be found throughout southern Ontario and can range as far north as Hudson Bay, wherever suitable locations for nests exist.	Yes The wildlife crossing structure could provide nesting habitat for this species.	Not Present Nests were not observed during field surveys.
Bobolink Dolichonyx oryzivorus	THR	THR Schedule 1	THR	Historically, Bobolinks lived in North American tallgrass prairie and other open meadows. With the clearing of native prairies, Bobolinks moved to living in hayfields. Bobolinks often build their small nests on the ground in dense grasses. Both parents usually tend to their young, sometimes with a third Bobolink helping.	The Bobolink breeds across North America. In Ontario, it is widely distributed throughout most of the province south of the boreal forest, although it may be found in the north where suitable habitat exists.	No Potentially suitable habitat is not present on the Subject Property or within the Study Area as agricultural fields are currently under construction.	-
Chimney Swift Chaetura pelagica	THR	THR Schedule 1	THR	Before European settlement Chimney Swifts mainly nested on cave walls and in hollow trees or tree cavities in old growth forests. Today, they are more likely to be found in and around urban settlements where they nest and roost (rest or sleep) in chimneys and other manmade structures. They also tend to stay close to water as this is where the flying insects they eat congregate.	The Chimney Swift breeds in eastern North America, possibly as far north as southern Newfoundland. In Ontario, it is most widely distributed in the Carolinian zone in the south and southwest of the province, but has been detected throughout most of the province south of the 49th parallel. It winters in northwestern South America.	No Potentially suitable habitat is not present on the Subject Property or within the Study Area.	-
Eastern Meadowlark Sturnella magna	THR	THR Schedule 1	THR	Eastern Meadowlarks breed primarily in moderately tall grasslands, such as pastures and hayfields, but are also found in alfalfa fields, weedy borders of croplands, roadsides, orchards, airports, shrubby overgrown fields, or other open areas. Small trees, shrubs or fence posts are used as elevated song perches.	In Ontario, the Eastern Meadowlark is primarily found south of the Canadian Shield but it also inhabits the Lake Nipissing, Timiskaming and Lake of the Woods areas.	No Potentially suitable habitat is not present on the Subject Property or within the Study Area as agricultural fields are currently under construction.	-

Species	ESA Status	SARA Status	COSEWIC Status	Preferred Habitat ^{1, 2}	Known Species Range ^{1, 2}	Potentially Suitable Habitat Present within the Subject Property	Likelihood of Presence
Eastern Whip-poor- will Caprimulgus vociferus	THR	THR Schedule 1	THR	The Eastern Whip-poor-will is usually found in areas with a mix of open and forested areas, such as savannahs, open woodlands or openings in more mature, deciduous, coniferous and mixed forests. It forages in these open areas and uses forested areas for roosting (resting and sleeping) and nesting. It lays its eggs directly on the forest floor, where its colouring means it will easily remain undetected by visual predators.	The Eastern Whip-poor-will's breeding range includes two widely separate areas. It breeds throughout much of eastern North America, reaching as far north as southern Canada and also from the southwest United States to Honduras. In Canada, the Whip-poor-will can be found from east-central Saskatchewan to central Nova Scotia and in Ontario they breed as far north as the shore of Lake Superior.	No Potentially suitable habitat is not present within the Subject Property and within the Study Area.	
Common Nighthawk Chordeiles minor	SC	THR Schedule 1	SC	Traditional Common Nighthawk habitat consists of open areas with little to no ground vegetation, such as logged or burned-over areas, forest clearings, rock barrens, peat bogs, lakeshores, and mine tailings. Although the species also nests in cultivated fields, orchards, urban parks, mine tailings and along gravel roads and railways, they tend to occupy natural sites.	The range of the Common Nighthawk spans most of North and Central America. In Canada, the species is found in all provinces and territories except Nunavut. In Ontario, the Common Nighthawk occurs throughout the province except for the coastal regions of James Bay and Hudson Bay.	No Potentially suitable habitat is not present on the Subject Property or within the Study Area.	-
Eastern Wood- Pewee Contopus virens	SC	SC Schedule 1	sc	The Eastern Wood-pewee lives in the mid-canopy layer of forest clearings and edges of deciduous and mixed forests. It is most abundant in intermediate-age mature forest stands with little understory vegetation.	The eastern wood-pewee is found across most of southern and central Ontario, and in northern Ontario as far north as Red Lake, Lake Nipigon and Timmins.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	Medium, however the species has not been recorded from the Study Area based on TRCA data
Grasshopper Sparrow Ammodramus savannarum	SC	SC Schedule 1	sc	It lives in open grassland areas with well-drained, sandy soil. It will also nest in hayfields and pasture, as well as alvars, prairies and occasionally grain crops such as barley. It prefers areas that are sparsely vegetated. Its nests are well-hidden in the field and woven from grasses in a small cup-like shape.	The Grasshopper Sparrow can be found throughout southern Ontario, but only occasionally on the Canadian Shield. It is most common where grasslands, hay or pasture dominate the landscape.	No Potentially suitable habitat is not present on the Subject Property or within the Study Area as agricultural fields are currently under construction.	-
Red-headed Woodpecker Melanerpes erythrocephalus	SC	THR Schedule 1	END	The Red-headed Woodpecker lives in open woodland and woodland edges, and is often found in parks, golf courses and cemeteries. These areas typically have many dead trees, which the bird uses for nesting and perching. This woodpecker regularly winters in the United States, moving to locations where it can find sufficient acorns and beechnuts to eat. A few of these birds will stay the winter in woodlands in southern Ontario if there are adequate supplies of nuts.	The Red-headed Woodpecker is found across southern Ontario, where it is widespread but rare. Outside Ontario, it lives in Alberta, Saskatchewan, Manitoba and Quebec, and is relatively common in the United States.	Yes Potentially suitable habitat is present within the forested and open habitat on the Subject Property and within the Study Area.	Low
Wood Thrush Hylocichla mustelina	SC	THR Schedule 1	THR	The Wood Thrush lives in mature deciduous and mixed (conifer- deciduous) forests. They seek moist stands of trees with well- developed undergrowth and tall trees for singing perches. These birds prefer large forests, but will also use smaller stands of trees. They build their nests in living saplings, trees or shrubs, usually in sugar maple or American beech.	The wood thrush is found all across southern Ontario. It is also found, but less common, along the north shore of Lake Huron, as far west as the southeastern tip of Lake Superior. There is a very small population near Lake of the Woods in northwestern Ontario, and there have been scattered sightings in the mixed forest of northern Ontario.	Yes Potentially suitable habitat is present within the forested habitat on the Subject Property and within the Study Area.	Medium, however the species has not been recorded from the Study Area based on TRCA data

Species	ESA Status	SARA Status	COSEWIC Status	Preferred Habitat ^{1, 2}	Known Species Range ^{1, 2}	Potentially Suitable Habitat Present within the Subject Property	Likelihood of Presence
Northern Map Turtle Graptemys geographica	SC	SC Schedule	SC	The Northern Map Turtle inhabits rivers and lakeshores where it basks on emergent rocks and fallen trees throughout the spring and summer. In winter, the turtles hibernate on the bottom of deep, slow-moving sections of river. They require high-quality water that supports the female's mollusc prey. Their habitat must contain suitable basking sites, such as rocks and deadheads, with an unobstructed view from which a turtle can drop immediately into the water if startled.	The Northern Map Turtle's range extends from the Great Lakes region west to Oklahoma and Kansas, south to Louisiana and east to the Adirondack and Appalachian mountain barrier. There are isolated populations in New Jersey and New York states. In Canada, it is found in southwestern Quebec and southern Ontario. In southern Ontario, it lives primarily on the shores of Georgian Bay, Lake St. Clair, Lake Erie and Lake Ontario, and along larger rivers including the Thames, Grand and Ottawa.	No Potentially suitable habitat is not present within the marsh and swamp habitat on the Subject Property and within the Study Area. However, this species is known to occur in Heart Lake (White et al., 2018).	-
Snapping Turtle Chelydra serpentina	SC	SC Schedule 1	SC	Snapping Turtles spend most of their lives in water. They prefer shallow waters so they can hide under the soft mud and leaf litter, with only their noses exposed to the surface to breathe. During the nesting season, from early to mid summer, females travel overland in search of a suitable nesting site, usually gravelly or sandy areas along streams. Snapping Turtles often take advantage of man-made structures for nest sites, including roads (especially gravel shoulders), dams and aggregate pits.	The Snapping Turtle's range extends from Ecuador to Canada. In Canada this turtle can be found from Saskatchewan to Nova Scotia. It is primarily limited to the southern part of Ontario. The Snapping Turtle's range is contracting.	Yes Potentially suitable habitat is present within the wetland habitat on the Subject Property and within the Study Area.	Confirmed This species use of the wildlife tunnel and artificial nesting area within the Study Area has been confirmed (White et al., 2018; TRCA, 2016).
Western Chorus Frog Pseudacris triseriata	No Status	THR Schedule 1	THR	Western Chorus Frogs inhabit lowland areas such as marshes and wooded wetland areas. Like most frogs, it needs terrestrial and aquatic habitats in close proximity to each other to carry out its life cycle. For breeding purposes, Western Chorus Frog utilizes seasonally dry, temporary ponds devoid of predators, such as fish. They are rarely found in permanent ponds. This species hibernates in terrestrial habitats under rocks, dead trees or leaves, loose soil or animal burrows.	In southern Ontario, Western Chorus Frog's range is bounded by the United States border in the south, Georgian Bay in the northwest, and south of Algonquin Park and up the Ottawa River valley to the vicinity of Eganville in the east. This species is divided into two distinct populations: the Carolinian population (southwestern Ontario) and the Great Lakes/St. Lawrence—Canadian Shield population (other regions of Ontario). Only the Canadian Shield population as been listed as Threatened federally.	Yes Potentially suitable habitat is present within the wetland habitat on the Subject Property and within the Study Area.	Low This species has not been recorded by TRCA staff.

Appendix E

Significant Wildlife Habitat Screening

Appendix E

Significant Wildlife Habitat Screening

Wildlife Habitat Category and Associated Species and Ecological Land Classification (ELC) Communities		Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area						
Seasonal Concentrati	on Areas								
1. Waterfowl Stopover a	1. Waterfowl Stopover and Staging Areas (Terrestrial)								
American Black Duck Wood Duck Mallard Northern Pintail Gadwall Blue-winged Teal Green-winged Teal American Wigeon Northern Shoveler 2. Waterfowl Stopover and Canada Goose Cackling Goose	CUM1 CUT1 Plus evidence of annual spring flooding from malt water or run- off within these Ecosites.	Suitable Habitat • Fields with sheet water during Spring (mid-March to May) Suggested Criteria Studies carried out and verified presence of an annual concentration of any listed species	No suitable habitat						
Snow Goose American Black Duck Northem Pintail Northern Shoveler American Wigeon Gadwall Green-winged Teal Blue-winged Teal Hooded Merganser Common Merganser Lesser Scaup Greater Scaup Long-tailed duck Surf Scoter White-winged Scoter Black Scoter Ring-necked duck Common Goldeneye Bufflehead Redhead Redhead Ruddy Duck Red-breasted Merganser Brant Canvasback	MAS1 MAS2 MAS3 SAS1 SAM1 SAP1 SWD1 SWD2 SWD3 SWD4 SWD5 SWD5 SWD6 SWD7	Suitable Habitat Ponds, marshes, lakes, bays, coastal inlets, and watercourses used during migration Sewage treatment ponds and storm water ponds do not qualify as SWH, however a reservoir managed as a large wetland or pond/lake does qualify These habitats have an abundant food supply (mostly aquatic invertebrates and vegetation in shallow water) Suggested Criteria Studies carried out and verified presence of: Aggregations of 100 or more of listed species for 7 days, results in > 700 waterfowl use days Areas with annual staging of ruddy ducks, canvasbacks, and redheads are SWH Wetland area and shorelines associated with sites identified within the Significant Wildlife Habitat Technical Guide (SWHTG) (MNRF 2000) Appendix K are SWH	Potentially suitable ELC community present within the study area; however, no records for listed species.						
3. Shorebird Migratory Sto	pover Area								
Greater Yellowlegs Lesser Yellowlegs Marbled Godwit Hudsonian Godwit Black-bellied Plover American Golden-Plover Semipalmated Plover Solitary Sandpiper Spotted Sandpiper Semipalmated Sandpiper	BB01 BB02 BBS1 BBS2 BBT1 BBT2 SD01 SD52 SDT1 MAM1 MAM2	Suitable Habitat Shorelines of lakes, rivers and wetlands, including beach areas, bars and seasonally flooded, muddy and unvegetated shoreline habitats Great Lakes coastal shorelines, including groynes and other forms of armour rock lakeshores, are extremely important for migratory shorebirds in May to mid-June and early July to October. Sewage treatment ponds and storm water ponds do not qualify as a SWH Suggested Criteria Presence of 3 or more of listed species and > 1000 shorebird use days during spring or fall migration period (shorebird use days are the accumulated number of shorebirds counted per day over the course of the fall or spring migration period)	No suitable habitat within study area						

	y and Associated Species and sification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
Pectoral Sandpiper White-rumped Sandpiper Baird's Sandpiper Least Sandpiper Purple Sandpiper Stilt Sandpiper Stort-billed Dowitcher Red-necked Phalarope Whimbrel Ruddy Turnstone Sanderling Dunlin	MAM3 MAM4 MAM5	Whimbrel stop briefly (<24hrs) during spring migration, any site with >100 Whimbrel used for 3 years or more is significant The area of significant shorebird habitat includes the mapped ELC shoreline ecosites plus a 100 m radius area	
4. Raptor Wintering Area			
Rough-legged Hawk Red-tailed Hawk Northern Harrier American Kestrel Snowy Owl Short-eared Owl Bald Eagle	Hawks/Owls: Combination of ELC Community Series; need to have present one Community Series from each land class; Forest: FOD, FOM, FOC. Upland: CUM, CUT, CUS, CUW. Bald Eagle: Forest Community Series: FOD, FOM, FOC, SWD, SWM, or SWC on shoreline areas adjacent to large rivers to adjacent to lakes with open water (hunting area).	Suitable Habitat The habitat provides a combination of fields and woodlands that provide roosting, foraging and resting habitats for wintering raptors Raptor wintering (hawk/owl) sites need to be > 20 ha with a combination of forest and upland Suggested Criteria Studies confirm the use of these habitats by: One or more Short-eared Owls or; One of more Bald Eagles or at least 10 individuals and two listed hawk/owl species To be significant a site must be used regularly (3 in 5 years) for a minimum of 20 days by the above number of birds The habitat area for an Eagle winter site is the shoreline forest ecosites directly adjacent to the prime hunting area	No suitable habitat (combination of ELC communities) identified within the Study Area. No records for listed species.
5. Bat Hibernacula			
Big Brown Bat Tri-colored Bat	Bat Hibernacula may be in the Ecosites: CCR1 CCR2 CCA1	Suitable Habitat Hibernacula may be found in caves, mine shafts, underground foundations and Karsts Suggested Criteria All sites with confirmed hibernating bats are SWH The area includes 200m radius around the entrance of the hibernaculum for most development types and for wind farms (Note: buildings are not to be considered SWH)	No suitable habitat identified within the study area.
6. Bat Maternity Colonies	3		
Big Brown Bat Silver-haired Bat	Maternity Colonies considered for SWH are found in forested Ecosites. All ELC Ecosites in ELC Community Series: FOD FOM SWD SWM	Suitable Habitat Maternity colonies can be found in tree cavities, vegetation and often in buildings (buildings are not considered to be SWH) Maternity colonies located in mature deciduous or mixed forest stands with >10/ha large diameter (>25cm dbh) wildlife trees Female bats prefer wildlife tree (snags) in early stages of decay, class 1-3 or class 1 or 2 Silver-haired Bats prefer older mixed or deciduous forest and form maternity colonies in tree cavities and small hollows. Older forest areas with at least 21 snags/ha are preferred Suggested Criteria Maternity colonies with confirmed use by; > >10 Big Brown Bats > >5 Adult Female Silver-haired Bats The area of the habitat includes the entire woodland or the forest stand ELC ecosite or an ecoelement containing the maternity colonies	Potentially suitable habitat associated with FOD5-2 community.

Wildlife Habitat Category and Associated Species and Ecological Land Classification (ELC) Communities		Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
7. Turtle Wintering Areas	1		
Midland Painted Turtle Northern Map Turtle Snapping Turtle	Snapping and Midland Painted Turtles: ELC Community Classes; SW, MA, OA and SA, ELC Community Series; FEO and BOO. Northern Map Turtles: Open Water areas such as deeper rivers, or streams and lakes with current can also be used as over-wintering habitat.	Suitable Habitat For most turtles, wintering areas are in the same general area as their core habitat. Water has to be deep enough not to freeze and have soft mud substrates Over-wintering sites are permanent water bodies, large wetlands, and bogs or fens with adequate Dissolved Oxygen Man-made ponds such as sewage lagoons or storm water ponds should not be considered SWH Suggested Criteria Presence of 5 over-wintering Midland Painted Turtles is significant One or more Northern Map Turtle or Snapping Turtle over-wintering within a wetland is significant The mapped ELC ecosite area with the over wintering turtles is the SWH If the hibernation site is within a stream or river, the deep-water pool where the turtles are over wintering is the SWH	Potentially suitable habitat associated with wetlands.
8. Reptile Hibernaculum			
Eastern Gartersnake Northern Water Snake Northern Red-bellied Snake Northern Brownsnake Smooth Green Snake Northern Ring-necked Snake Milksnake Eastern Ribbonsnake Five-lined Skink	For all snakes, habitat may be found in any ecosite other than very wet ones. Talus, Tock Barren, Crevice, Cave and Alvar may be directly related to these habitats. Observations or congregations of snakes on sunny warm days in the spring or fall is a good indicator. For Five-lined Skink, ELC Community Series of FOD and FOM and ecosite: FOC1 and FOC3.	Suitable Habitat For snakes, hibernation takes place in sites located below frost lines in burrows, rock crevices and other natural locations The existence of features that go below frost line; such as rock piles or slopes, old stone fences, and abandoned crumbling foundations assist in identifying Candidate SWH Areas of broken and fissured rock are particularly valuable since they provide access to subterranean sites below the frost Wetlands can also be important over-wintering habitat in conifer or shrub swamps and swales, poor fens, or depressions in bedrock terrain with sparse trees or shrubs with sphagnum moss or sedge hummock ground cover For five-lined Skink, Community Series FOD and FOM, and FOC1 and FOC3 should be considered. They prefer mixed forests with rock outcrop openings with cover rock overlaying granite bedrock with fissures Suggested Criteria Studies confirming: Presence of snake hibernacula used by a minimum of five individuals of a snake sp. or; individuals of two or more snake spp. near potential hibernacula (e.g., foundation or rocky slope) on sunny warm days in spring	No potentially suitable habitat identified within the study area.
9. Colonially-Nesting Bir	d Breeding Habitat (Bank and Clif	ff)	
Cliff Swallow Northern Rough-winged Swallow (this species is not colonial but can be found in Cliff Swallow colonies)	Eroding banks, sandy hills, steep slopes and sand piles. Cliff faces, bridge abutments, silos and barns. Habitat found in the following ecosites: CUM1 CLO1 CUT1 CLS1 CUS1 CLT1 BLO1 BLS1 BLS1 BLT1	Suitable Habitat Any site or areas with exposed soil banks, undisturbed or naturally eroding that is not a licensed/permitted aggregate area Does not include man-made structures (bridges or buildings) or recently (2 years) disturbed soil areas, such as berms, embankments, soil or aggregate stockpiles Does not include a licensed/permitted Mineral Aggregate Operation Suggested Criteria Studies confirming: Presence of 1 or more nesting sites with 8 or more cliff swallow pairs or 50 Bank Swallow and/or Roughwinged Swallow pairs during the breeding season A colony identified as SWH will include a 50m radius habitat area from the peripheral nests	No suitable habitat identified within the study area.
10. Colonially-Nesting B	rd Breeding Habitat (Tree/Shrubs	s)	
Great Blue Heron Black-crowned Night- Heron Great Egret Green Heron	SWM2 SWM3 SWM5 SWM6 SWD1 SWD2 SWD3 SWD4 SWD5 SWD6	Suitable Habitat Nests in live or dead standing trees in wetlands, lakes, islands, and peninsulas. Shrubs and occasionally emergent vegetation may also be used Most nests in trees are 11 to 15 m from ground, near the top of the tree Suggested Criteria Studies confirming: Presence of 2 or more active nests of Great Blue Heron or other listed species The habitat extends from the edge of the colony and a minimum 300m radius or extent of the forest ecosite containing the colony or any island <15.0 ha with a colony is the SWH	No nesting colonies, nests or pairs of target species were identified within the Study Area.

It. Colonially-Nesting Brid Breding Habitat (Ground)		y and Associated Species and ification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
Any rocky island to perinsul, formation Any rocky island		SWD7 FFT1		
Any rocky island to peninsular (ansurar or antifician) with a like				
12. Migratory Butterffy Stopover Areas Community Series; need to have present; Community Series; Community Serie	Great Black-backed Gull Little Gull Ring-billed Gull Common Tem Caspian Tern	(natural or artificial) with a lake or larger river. Close proximity or watercourses in open fields or pastures with scattered trees or shrubs (Brewer's Blackbird). MAM1-6 MAS1-3 CUM CUT	Nesting colonies of gulls and terns are on islands or peninsulas associated with open water or in marshy areas Brewers Blackbird colonies are found loosely on the ground in or in low bushes in close proximity to streams and irrigation ditches within farmlands Suggested Criteria Studies confirming: Presence of >25 active nests for Herring Gulls or Ring-billed Gulls, >5 active nests for Common Tern or >2 active nests for Caspian Tern Any active nesting colony of one or more Little Gull, and Great Black-backed Gull is significant Presence of 5 or more pairs for Brewer's Blackbird The edge of the colony and a minimum 150m area of habitat, or the extent of the ELC ecosites containing the	No suitable habitat within the Study Area.
Series; need to have present one Community Series from each land class: Solitable Habitat one Community Series from each land class: Field: CUM CUM CUT CUM CUT CUS Red Admiral Monarch Forest: FOC FOD COM CUP A candidate site will have a history of butterflies being observed. A candidate site will have a history of butterflies being observed.	12. Migratory Butterfly St	opover Areas	Colorly of any Island Co.ona with a Colorly is the Own I	
Suitable Habitat All Ecosites associated with the ELC Community Series; FOC FOM FOD SWC SWM SWD All migratory songbirds Suitable Habitat Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie If multiple woodlands are located along the shoreline those Woodlands <2 km from Lake Erie or Ontario are more significant Sites have a variety of habitats; forest, grassland and wetland complexes The largest sites are more significant Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore and located within 5km of Lake Ontario are Candidate SWH Suggested Criteria Suitable Habitat Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie Noodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie Does not occur as the study area is over 5 km from Suggested Criteria	Red Admiral	Series; need to have present one Community Series from each land class: Field: CUM CUT CUS Forest: FOC FOD COM CUP A candidate site will have a history of butterflies being	A butterfly stopover area will be a minimum of 10 ha in size with a combination of field and forest habitat present, and will be located within 5 km of Lake Ontario or Lake Erie The habitat is typically a combination of field and forest, and provides the butterflies with a location to rest prior to their long migration south The habitat should not be disturbed, fields/meadows with an abundance of preferred nectar plants and woodland edge providing shelter are requirements for this habitat Staging areas usually provide protection from the elements and are often spits of land or areas with the shortest Suggested Criteria Studies confirm: The presence of Monarch Use Days (MUD) during fall migration (Aug/Oct). MUD is based on the number of days a site is used by Monarchs, multiplied by the number of individuals using the site. Numbers of butterflies can range from 100-500/day * significant variation can occur between years and multiple years of sampling should occur	Does not occur as the study area is over 5 km from Lake Ontario.
* Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie * Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie * If multiple woodlands are located along the shoreline those Woodlands <2 km from Lake Erie or Ontario are more significant * Sites have a variety of habitats; forest, grassland and wetland complexes * The largest sites are more significant * Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore and located within 5km of Lake Ontario are Candidate SWH * Sites have a variety of habitats; forest, grassland and wetland complexes * The largest sites are more significant * Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore and located within 5km of Lake Ontario are Candidate SWH * Sites have a variety of habitats; forest, grassland and wetland complexes * The largest sites are more significant * Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore and located within 5km of Lake Ontario are Candidate SWH * Sites have a variety of habitats; forest, grassland and wetland complexes * The largest sites are more significant * Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore and located within 5km of Lake Ontario are Candidate SWH * Sites have a variety of habitats; forest, grassland and wetland complexes * The largest sites are more significant * Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore are important habitats to migrating birds, these features located along the shore are important habitats to migrating birds, these features located along the shore are important habitats to migrating birds, these features located along the shore are important habitats to migrating birds, these features located al	13. Landbird Migratory St			
Studies confirm: • Use of the woodlot by >200 birds/day and with >35 species with at least 10 bird spp. recorded on at least 5 different survey dates This abundance and diversity of migrant bird species is considered above average and significant	All migratory songbirds	ELC Community Series; FOC FOM FOD SWC SWM	Woodlots >10 ha in size and within 5 km of Lake Ontario and Lake Erie If multiple woodlands are located along the shoreline those Woodlands <2 km from Lake Erie or Ontario are more significant Sites have a variety of habitats; forest, grassland and wetland complexes The largest sites are more significant Woodlots and forest fragments are important habitats to migrating birds, these features located along the shore and located within 5km of Lake Ontario are Candidate SWH Suggested Criteria Studies confirm: Use of the woodlot by >200 birds/day and with >35 species with at least 10 bird spp. recorded on at least 5 different survey dates	Does not occur as the study area is over 5 km from Lake Ontario.

Wildlife Habitat Category and Associated Species and Ecological Land Classification (ELC) Communities		Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area	
White-tailed Deer	Note: MNRF to determine this habitat. ELC Community Series providing a thermal cover component for a deer yard would include: FOD, FOC, SWM and SWC. Or ELC Ecosites: CUP2, CUP3, FOD3 and CUT	Suitable Habitat Deer yarding areas or winter concentration areas (yards) are areas deer move to in response to the onset of winter snow and cold. Deer establish traditional use areas with two areas called Stratum I and Stratum II Stratum II covers entire winter yard and is usually in FOD or FOM (or agricultural lands) where browsing can occur. Deer move here in early winter, and will continue to stay here until snow depths reach about 30 cm. Stratum I is the core of a deer yard, and is found within the Stratum II, and is critical for deer survival in areas where winter is severe. It is primarily coniferous trees with a canopy cover of at least 60% Suggested Criteria Studies confirm: Snow depth and temperature or the greatest influence on deer use of winter yards. Snow depths of >40 cm for more than 60 days are minimum criteria for a deer yard to be considered as SWH Deer management is an MNRF responsibility, and they field investigations (by aircraft over a series of winters to establish boundaries of Stratum I and II. Deer yarding areas considered significant will be mapped by MNRF If SWH is determined for deer wintering area or if a proposed development is within Stratum II yard areas, then movement corridors are to be considered	Habitat has not been identified in the Study Area by MNRF.	
15. Deer Winter Congre	gation Areas	movement contacts are to be considered		
White-tailed Deer Rare Vegetation Com		Suitable Habitat Woodlots >100 ha in size. Woodlots <100 ha may be considered significant based on MNRF studies or assessment Deer movement during winter in Ecoregion 6E are not constrained by snow depth, however deer will annually congregate in large numbers in suitable woodlands Large woodlots > 100 ha and up to 1500 ha are known to be used annually by densities of deer that range from 0.1-1.5 deer/ha Woodlots with high densities of deer due to artificial feeding are not significant Suggested Criteria Studies confirm: Deer management is an MNRF responsibility, deer winter congregation areas considered significant will be mapped by MNRF Use of the woodlot by white-tailed deer will be determined by MNRF, all woodlots exceeding the area criteria are significant, unless determined not to be significant by MNRF If SWH is determined for deer wintering area or if a proposed development is within Stratum II yard areas, then movement corridors are to be considered	Habitat has not been identified in the Study Area by MNRF.	
16. Cliffs and Talus Slop	pes	A Cliff is vertical to near vertical bedrock >3m in height		
ELC Communities: TAO, TAS, TAT, CLO, CL	_S, CLT	A Talus Slope is rock rubble at the base of a cliff made up of coarse rocky debris Most cliff and talus slopes occur along the Niagara Escarpment	Does not occur within study area.	
17. Sand Barren				
ELC Communities: SBO1, SBS1, BT1		Sand Barrens typically are exposed sand, generally sparsely vegetated and caused by lack of moisture, periodic fires and erosion Usually located within other types of natural habitat such as forest or savannah Vegetation can vary from patchy and barren to tree covered but less than 60% Suggested Criteria A sand barren area >0.5ha in size Site must not be dominated by exotic or introduced species (<50% vegetative cover exotics).	Does not occur within study area.	
18. Alvar				

Wildlife Habitat Category and Associated Species and Ecological Land Classification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
Field studies identify four of the five Alvar indicator species within ELC communities: ALO1, ALS, ALT1, FOC1, FOC2, CUM2, CUS2, CUT2-1, CUW2	An alvar is typically a level, mostly unfractured calcareous bedrock feature with a mosaic of rock pavements and bedrock overfain by a thin veneer of soil The hydrology of alvars is complex, with alternating periods of inundation and drought Vegetation cover varies from sparse lichen-moss associations to grasslands and shrublands and comprising a number of characteristic or indicator plant Undisturbed alvars can be phyto- and zoogeographically diverse, supporting many uncommon or are relict plant and animal species Vegetation cover varies from patchy to barren with a less than 60% tree cover Suggested Criteria An Alvar site > 0.5 ha in size Five indicator species specific to alvars within Ecoregion 6E: 1) Carex crawei 2) Panicum philadelphicum 3) Eleocharis compressa 4) Scutellaria parvula 5) Trichostema brachiatum Site must not be dominated by exotic or introduced species (<50% vegetative cover exotics) The Alvar must be in excellent condition and fit in with surrounding landscape with few conflicting land uses	Does not occur within Study Area.
19. Old Growth Forest		
ELC Communities: FOD FOC FOM SWD SWC SWM	Old-growth forests are characterized by heavy mortality or turnover of over-storey trees resulting in a mosaic of gaps that encourage development of a multi-layered canopy and an abundance of snags and downed woody debris Suggested Criteria Woodland area is >30 ha with at least 10 ha of interior habitat If dominant trees species of the ecosite are >140 years old, then stand is SWH The-forested area containing the old growth characteristics will have experienced no recognizable forestry activities (cut stumps will not be present) The area of forest ecosites combined or an eco-element within an ecosite that contain the old growth characteristics is the SWH	Does not occur within the Study Area.
20. Savannah		
ELC Communities: TPS1 TPS2 TPW1 TPW2 CUS2	A Savannah is a tallgrass prairie habitat that has tree cover between 25 – 60% Suggested Criteria No minimum size to site. Site must be restored or a natural site. Remnant sites such as railway right of ways are not considered to be SWH Field studies confirm one or more of the Prairie indicator species listed in Appendix N should be present. Note: Savannah plant spp. list from Ecoregion 6E should be used Site must not be dominated by exotic or introduced species (<50% vegetative cover exotics)	Does not occur within the Study Area.
21. Tallgrass Prairie		
ELC Communities: TPO1 TPO2	A Tallgrass Prairie has ground cover dominated by prairie grasses. An open Tallgrass Prairie habitat has < 25% tree cover In ecoregion 6E, known Tallgrass Prairie and savannah remnants are scattered between Lake Huron and Lake Erie, near Lake St. Clair, north of and along the Lake Erie shoreline, in Brantford and in the Toronto area (north of Lake Ontario) Suggested Criteria No minimum size to site. Site must be restored or a natural site. Remnant sites such as railway right of ways are not considered to be SWH ELC communities TPO1, TPO2 Field studies confirm one or more of the Prairie indicator species listed in Appendix N in SWHTG (MNRF 2000) should be present. Prairie plant spp. list from Ecoregion 6E should be used Site must not be dominated by exotic or introduced species (<50% vegetative cover exotics)	Does not occur within the Study Area.
22. Other Rare Vegetation Communities	- One must not be definitiated by exelle of introduced species (500 /// regelative cover exelles)	
	Provincially Rare S1, S2 and S3 vegetation communities are listed in Appendix M of the SWHTG (MNRF 2000) Rare Vegetation Communities may include beaches, fens, forest, marsh, barrens, dunes and swamps ELC Ecosite codes that have the potential to be a rare ELC Vegetation Type as outlined in SWHTG (MNRF 2000) Appendix M	Does not occur within the Study Area.

	y and Associated Species and ification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
		The MNRF/NHIC will have up to date listing for rare vegetation communities	
Specialized Habitat for	Species		
23. Waterfowl Nesting Ar	ea		
American Black Duck Northern Pintail Northern Shoveler Gadwall Blue-winged Teal Green-winged Teal Wood Duck	Pintail Shoveler MAS1, MAS2, MAS3 SAS1, SAM1, SAF1 MAM1, MAM2, MAM3, MAM4, MAM5, MAM6 SWT1, SWT2, SWD1, SWD2, SWD2, SWD4	Suitable Habitat A waterfowl nesting area extends 120 m from a wetland (> 0.5 ha) or a wetland (> 0.5 ha) with small wetlands (< 0.5 ha) within 120 m or a cluster of 3 or more small (< 0.5 ha) wetlands within 120 m of each individual wetland where waterfowl nesting is known to occur Upland areas should be at least 120m wide so that predators such as racoons, skunks, and foxes have difficulty finding nests Suggested Criteria Studies confirm:	Suggested criteria not satisfied; no waterfowl have been recorded by the TRCA in the Heart Lake Conservation Area.
Hooded Merganser Mallard		Presence of 3 or more nesting pairs for listed species excluding Mallards, or presence of 10 or more nesting pairs for listed species including Mallards Any active nesting site of an American Black Duck is considered significant Wood Ducks and Hooded Mergansers utilize large diameter trees (>40 cm dbh) in woodlands for cavity nest sites	
24. Bald Eagle and Ospre	y Nesting, Foraging and Perchin		
Osprey Bald Eagle	ELC Forest Community Series: FOD, FOM, FOC, SWD, SWM, SWC directly adjacent to riparian areas - rivers, lakes, ponds and wetlands.	Nests are associated with lakes, ponds, rivers or wetlands along forested shorelines, islands, or on structures over water Osprey nests are usually at the top a tree whereas Bald Eagle nests are typically in super canopy trees in a notch within the tree's canopy Nests located on man-made objects are not to be included as SWH (e.g. telephone poles and constructed nesting platforms) Suggested Criteria Studies confirm the use of these nests by: One or more active Osprey or Bald Eagle nests in an area Some species have more than one nest in a given area and priority is given to the primary nest with alternate nests included within the area of the SWH For an Osprey, the active nest and a 300 m radius around the nest or the contiguous woodland stand is the SWH covil, maintaining undisturbed shorelines with large trees within this area is important For a Bald Eagle the active nest and a 400-800 m radius around the nest is the SWH. Area of the habitat from	No records for Osprey or Bald Eagle Nests in the Study Area, and none were noted by Beacon during field investigations in 2020.
25. Woodland Raptor Ne	esting Habitat	400-800m is dependent on site lines from the nest to the development and inclusion of perching and foraging habitat To be significant a site must be used annually. When found inactive, the site must be known to be inactive for >3 years or suspected of not being used for >5 years before being considered not significant	

sets within tops or insulas or small st A Cooper's Hawk nest was confirmed by TRCA within ELC community CUP3-2 in the southern portion of the Study Area (point 4 on Figure 2). uitable habitat is d around the
to loss of eggs by The able to dig in The ab
er system (could ally support a bundwater No seeps or springs were observed within the study area.
а

Wildlife Habitat Category and Associated Species and Ecological Land Classification (ELC) Communities		Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
Eastern Newt Blue-spotted Salamander Spotted Salamander Gray Treefrog Spring Peeper Western Chorus Frog Wood Frog	All Ecosites associated within these ELC Community Series: FOC, FOM, FOD, SWC, SWM, SWD Breeding pools within the woodland or the shortest distance from the forest habitat are more significant because they are more likely to be used due to reduced risk to migrating amphibians.	Suitable Habitat Presence of a wetland, pond, or woodland pool within or adjacent (within 120m) to a woodland (no minimum size) Some small wetlands may not be mapped and may be important breeding pools for amphibians Woodlands with permanent ponds or those containing water in most years until mid-July are more likely to be used as breeding habitat Suggested Criteria Studies confirm: Presence of breeding population of 1 or more of the listed salamander species or 2 or more of the listed frog species with at least 20 individuals (adults, juveniles, eggs/larval masses) or 2 or more of the listed frog species with Call Level Codes of 3	Based on TRCA data, there are no records for breeding amphibians from forest or treed swamp features in the study area.
29. Amphibian Breeding	Habitat (Wetland)	Call Level Codes of 3	
Eastern Newt American Toad Spotted Salamander Four-toed Salamander Blue-spotted Salamander Gray Treefrog Western Chorus Frog Northern Leopard Frog Pickerel Frog Green Frog Mink Frog Bullfrog	Classes SW, MA, FE, BO, OA and SA. Typically, these wetland Ecosites will be isolated >120 m) from woodland ecosites, however larger wetlands containing predominantly aquatic species (e.g. Bullfrog) may be adjacent to woodland.	Suitable Habitat Wetlands >500 m² (about 25 m diameter) supporting high species diversity are significant Some small or ephemeral habitats may not be identified on MNRF mapping and could be important amphibian breeding habitats Presence of shrubs and logs increase significance of pond for some amphibian species because of available structure for calling, foraging, escape and concealment from predators Bullfrogs require permanent water bodies with abundant emergent vegetation Suggested Criteria Studies confirm: Presence of breeding population of 1 or more of the listed newt/salamander species or 2 or more of the listed frog or toad species and with at least 20 individuals (adults, juveniles, eggs/larval masses) or 2 or more of the listed frog species with Call Level Codes of 3 The ELC ecosite wetland area and the shoreline are the SWH	Based on data provided by TRCA, the wetlands provide habitat for breeding anurans; however, the reported call level codes are lower than the identified thresholds for significance.
30. Woodland Area-Sens	tive Bird Breeding Habitat		
Yellow-bellied Sapsucker Red-breasted Nuthatch Veery Blue-headed Vireo Northern Parula Black-throated Green Warbler Black-throated Blue Warbler Ovenbird Scarlet Tanager Winter Wren Cerulean Warbler Canada Warbler	All Ecosites associated with these ELC Community Series: FOC FOM FOD SWC SWM SWD	Suitable Habitat Habitats where interior forest breeding birds are breeding Typically large mature (>60 yrs old) forest stands or woodlots >30 ha Interior forest habitat is at least 200 m from forest edge habitat Suggested Criteria Studies confirm: Presence of nesting or breeding pairs of 3 or more of the listed wildlife species. Any site with breeding Cerulean Warblers or Canada Warblers is to be considered SWH	Potentially suitable habitat is present within the study area; however, based on records from TRCA, none of this listed species were recorded from the Study Area.
Habitat for Species of			
21 March Bird Broading	Habitat		

31. Marsh Bird Breeding Habitat

	y and Associated Species and sification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
American Bittern Virginia Rail Sora Common Moorhen American Coot Pied-billed Grebe Marsh Wren Sedge Wren Common Loon Sandhill Crane Green Heron Trumpeter Swan Black Tern Yellow Rail	MAM 1 MAM2 MAM3 MAM4 MAM5 MAM6 SAS1 SAM1 SAF1 FEO1 BOO1 For Green Heron: All SW, MA and CUM1 sites.	Suitable Habitat Nesting occurs in wetlands All wetland habitat is to be considered as long as there is shallow water with emergent aquatic vegetation present For Green Heron, habitat is at the edge of water such as sluggish streams, ponds and marshes sheltered by shrubs and trees. Less frequently, it may be found in upland shrubs or forest a considerable distance from water Suggested Criteria Studies confirm: Presence of 5 or more nesting pairs of Sedge Wren or Marsh Wren or breeding by any combination of 4 or more of the listed species Note: any wetland with breeding of 1 or more Trumpeter Swans, Black Terns or Yellow Rail is SWH Area of the ELC ecosite is the SWH	Potentially suitable habitat is present in the MAS and SW- communities within the Study Area. However, none of this listed species were recorded in the Study Area.
32. Open Country Bird B	reeding Habitat		
Upland Sandpiper Grasshopper Sparrow Vesper Sparrow Northern Harrier Savannah Sparrow Short-eared Owl	CUM1 CUM2	Suitable Habitat Large grassland areas (includes natural and cultural fields and meadows) >30 ha Grasslands not Class 1 or 2 agricultural lands, and not being actively used for farming (i.e. no row cropping or intensive hay or livestock pasturing in the last 5 years) Grassland sites considered significant should have a history of longevity, either abandoned fields, mature hayfields and pasturelands that are at least 5 years or older The Indicator bird species are area sensitive requiring larger grassland areas than the common grassland species Suggested Criteria Field Studies confirm: Presence of nesting or breeding of 2 or more of the listed species A field with 1 or more breeding Short-eared Owls is to be considered SWH. The area of SWH is the contiguous ELC ecosite field areas	No suitable habitat within the study area. Based on TRCA data, none of this listed species were recorded in the Study Area.
33. Shrub/Early Success	ional Bird Breeding Habitat	·	
Indicator Species: Brown Thrasher Clay-coloured Sparrow Common Species; Field Sparrow Black-billed Cuckoo Eastern Towhee Willow Flycatcher Special Concern: Yellow-breasted Chat Golden-winged Warbler	CUT1 CUT2 CUS1 CUS2 CUW1 CUW2 Patches of shrub ecosites can be complexed into a larger habitat for some bird species.	Suitable Habitat Large natural field areas succeeding to shrub and thicket habitats >10ha in size. Shrub land or early successional fields, not class 1 or 2 agricultural lands, not being actively used for farming (i.e. no row-cropping, haying or live-stock pasturing in the last 5 years) Shrub thicket habitats (>10 ha) are most likely to support and sustain a diversity of these species Shrub and thicket habitat sites considered significant should have a history of longevity, either abandoned fields or pasturelands Suggested Criteria Field Studies confirm: Presence of nesting or breeding of 1 of the indicator species and at least 2 of the common species A habitat with breeding Yellow-breasted Chat or Golden-winged Warbler is to be considered as Significant Wildlife Habitat The area of the SWH is the contiguous ELC ecosite field/thicket area	No suitable habitat is present within the Study Area.

	y and Associated Species and sification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area		
34. Terrestrial Crayfish	,				
Chimney or Digger Crayfish (Fallicambarus fodiens) Devil Crawfish or Meadow Crayfish (Cambarus Diogenes)	MAM1, MAM2, MAM3, MAM4, MAM5, MAM6, MAS2, MAS3 SWD, SWT, SWM CUM1 within inclusions of above meadow marsh or swamp ecosites can be used by terrestrial crayfish.	Suitable Habitat Wet meadow and edges of shallow marshes (no minimum size) identified should be surveyed for terrestrial crayfish Constructs burrows in marshes, mudflats, meadows; the ground can't be too moist Can often be found far from water Both species are a semi-terrestrial burrower which spends most of its life within burrows consisting of a network of tunnels; usually the soil is not too moist so that the tunnel is well formed Suggested Criteria Studies Confirm: Presence of 1 or more individuals of species listed or their chimneys (burrows) in suitable marsh meadow or terrestrial sites Area of ELC Ecosite polygon is the SWH	No evidence of Terrestrial Crayfish was documented during field studies.		
35. Special Concern and	Rare Wildlife Species				
		All Special Concern and Provincially Rare (S1-S3, SH) plant and animal species When an element occurrence is identified within a 1 or 10 km grid for a Special Concern or provincially rare species Linking candidate habitat on the site needs to be completed to ELC Ecosites Suggested Criteria Studies confirm: Assessment/inventory of the site for the identified special concern or rare species needs to be completed during the time of year when the species is present or easily identifiable Habitat form and function needs to be assessed from the assessment of ELC vegetation types and an area of significant habitat that protects the rare or special concern species identified The area of the habitat to the finest ELC scale that protects the habitat form and function is the SWH; this must be delineated through detailed field studies The habitat needs be easily mapped and cover an important life stage component for a species (e.g. specific neeting habitat or foraging habitat)	Records for Snapping Turtle, a Special Concern, has been identified with the study area.		
Animal Movement Cor	ridors				
36. Amphibian Movemen	t Corridors				
Eastern Newt American Toad Spotted Salamander Four-toed Salamander Blue-spotted Salamander Gray Treefrog Western Chorus Frog Northern Leopard Frog Pickerel Frog Green Frog Mink Frog Bullfrog		Amphibian movement corridors should only be identified as SWH where a confirmed or Candidate SWH has been identified by MNRF or the planning authority Movement corridors between breeding habitat and summer habitat Movement corridors must be considered when amphibian breeding habitat is confirmed as SWH Field Studies must be conducted at the time of year when species are expected to be migrating or entering breeding sites Corridors should consist of native vegetation, with several layers of vegetation Corridors unbroken by roads, waterways or bodies, and undeveloped areas are most significant Corridors should be at least 15 m of vegetation on both sides of waterway or be up to 200 m wide of woodland habitat and with gaps <20 m Shorter corridors are more significant than longer corridors, however amphibians must be able to get to and from their summer and breeding habitat	No amphibian corridors were identified within the Study Area.		
37. Deer Movement Corri	37. Deer Movement Corridors				
White-tailed Deer		Deer movement corridors should only be identified as SWH where a confirmed or Candidate SWH has been identified by MNRF or the planning authority Corridors follow riparian areas, woodlots, areas of physical geography (ravines or ridges) Field Studies must be conducted at the time of year when species are expected to be migrating or moving to and from winter concentration areas Corridors that lead deer to wintering habitat should be unbroken by roads or residential areas	No deer movement corridors meeting the SWH criteria have been identified by MNRF to date within the Study Area.		

Wildlife Habitat Category and Associated Species and Ecological Land Classification (ELC) Communities	Provincial Guidance for SWH in Ecoregion 6E*	Application to the Subject Lands and Study Area
	Corridors should be at least 200 m wide with gaps less than 20 m, and if following a riparian area, there must	
	be at least 15 m of vegetation on both sides of the waterway	

Appendix D

Stage 1 Archeological Assessment Archeological Research Associates October 2022

DRAFT

Stage 1 Archaeological Assessment
Heart Lake Road and Countryside Drive Intersection
Municipal Class Environmental Assessment
City of Brampton
Regional Municipality of Peel
Part of Lots 15–16, Concession 2–3 East of Centre Road
Geographic Township of Chinguacousy
Former Peel County, Ontario

Prepared for MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9 Tel: (519) 743-6500

Licensed under **P.J. Racher** MHSTCI Licence #P007 PIF #P007-1154-2020 ARA File #2020-0171

27/10/2020

Original Report

EXECUTIVE SUMMARY

Under a contract awarded in August 2020, Archaeological Research Associates Ltd. carried out a Stage 1 assessment for the proposed Heart Lake Road and Countryside Drive Intersection Improvements project in the City of Brampton, Regional Municipality of Peel, Ontario. The assessment was carried out as part of a Schedule 'B' Municipal Class Environmental Assessment in accordance with the *Environmental Assessment Act*. The intersection improvements are part of an overall operational and safety improvement plan for the Heart Lake Road corridor. This report documents the background research and potential modelling involved in the investigation, and presents conclusions and recommendations pertaining to archaeological concerns.

The Stage 1 assessment was conducted in October 2020 under Project Information Form #P007-1154-2020. The investigation encompassed the entirety of the project lands. All field observations were made from accessible public areas; accordingly, no permissions were required for property access. At the time of assessment, the study area comprised the roadway platforms, shoulders, ditches, culverts and sidewalks associated with Heart Lake Road and Countryside Drive, as well as adjacent natural areas.

The Stage 1 assessment determined that the study area comprised a mixture of areas of archaeological potential, areas of no archaeological potential and previously assessed lands of no further concern. It is recommended that all identified areas of archaeological potential be subject to a Stage 2 property assessment in accordance with Section 2.1 of the 2011 Standards and Guidelines for Consultant Archaeologists.

The identified areas of no archaeological potential and previously assessed lands of no further concern do not require any additional assessment. Given that there are still outstanding archaeological concerns within the project lands, no ground alterations or development of any kind may occur until the Stage 2 assessment is complete, a recommendation that the lands require no further archaeological assessment is made, and the associated report is entered into the Ontario Public Register of Archaeological Reports.

TABLE OF CONTENTS

EXE(CUTIVE SUMMARY	1
GLOS	SSARY OF ABBREVIATIONS	III
PERS	SONNEL	IV
1.0	PROJECT CONTEXT	1
1.1	Development Context	1
1.2	-	1
1	.2.1 Settlement History	2
	1.2.1.1 Pre-Contact	2
	1.2.1.2 Post-Contact	3
1	.2.2 Past and Present Land Use	4
	1.2.2.1 Overview	4
	1.2.2.2 Mapping and Imagery Analysis	4
1.3	Archaeological Context	5
1	.3.1 Condition of the Property	5
1	.3.2 Registered or Known Archaeological Sites	6
1	.3.3 Previous Archaeological Work	7
	1.3.3.1 Countryside Drive Widening and Reconstruction	(Stage 1) 7
	1.3.3.2 Countryside Villages (Stage 1)	8
	1.3.3.3 Emery Investments Property (Stage 1–2)	8
2.0	STAGE 1 BACKGROUND STUDY	9
2.1	Background	9
2.2	Field Methods (Property Inspection)	9
2.3	Analysis and Conclusions	10
3.0	RECOMMENDATIONS	12
5.0	ADVICE ON COMPLIANCE WITH LEGISLATION	13
6.0	IMAGES	14
7.0	MAPS	16
8.0	BIBLIOGRAPHY AND SOURCES	25
	LIST OF IMAGES	
Image	e 1: Disturbed Lands	14
_	2: Disturbed Lands	14
_	3: Disturbed Lands	14
Image	4: Disturbed Lands	14

Stage 1 Archaeological Assessment Heart Lake Road and Countryside Drive Intersection, City of Brampton	iii
	1.5
Image 5: Disturbed Lands	15
Image 6: Disturbed Lands	15
Image 7: Previously Assessed Lands	15
Image 8: Permanently Wet Lands	15
Image 9: Area of Potential	15
Image 10: Area of Potential	15
LIST OF MAPS	
Map 1: Location of the Study Area	16
Map 2: Chinguacousy Township Patent Plan (No Date)	17
Map 3: G.R. Tremaine's Tremaine's Map of the County of Peel, Canada West (1859)	18
Map 4: Walker & Miles' <i>Illustrated Historical Atlas of the County of Peel, Ont.</i> (1877)	19
Map 5: Topographic Map (1909)	20
Map 6: Aerial Image (1954)	21
Map 7: Aerial Image (2006)	22
Map 8: Features of Potential	23
Map 9: Potential Modelling and Recommendations	24
LIST OF TABLES	
Table 1: Pre-Contact Settlement History	2
Table 2: Post-Contact Settlement History	3
Table 3: Registered or Known Archaeological Sites	6
GLOSSARY OF ABBREVIATIONS	
ARA – Archaeological Research Associates Ltd.	
CHVI – Cultural Heritage Value or Interest	
CIF – Contract Information Form	
EA – Environmental Assessment	
ECR – East of Centre Road MHSTCL Ministry of Heritage Tourism Sport and Culture Industries	
MHSTCI – Ministry of Heritage, Tourism, Sport and Culture Industries PIF – Project Information Form	
PTP – Positive Test Pit	

S&Gs – Standards and Guidelines for Consultant Archaeologists

PERSONNEL

Project Director: P.J. Racher (#P007) Operations Manager: C.E. Gohm (#R187) Project Manager: S. Bolstridge (#R471)

Field Director: S. Bolstridge

Cartographers: A. Bailey (#R1069), K. Brightwell (#R341)

Report Writer: L. Zepf (#P1033)

Editor: C.J. Gohm

1.0 PROJECT CONTEXT

1.1 Development Context

Under a contract awarded in August 2020, ARA carried out a Stage 1 assessment for the proposed Heart Lake Road and Countryside Drive Intersection Improvements project in the City of Brampton, Regional Municipality of Peel, Ontario. The assessment was carried out as part of a Schedule 'B' Municipal Class EA in accordance with the *Environmental Assessment Act*. The intersection improvements are part of an overall operational and safety improvement plan for the Heart Lake Road corridor. This report documents the background research and potential modelling involved in the investigation, and presents conclusions and recommendations pertaining to archaeological concerns.

The subject study area consists of an irregularly-shaped parcel of land with a total area of 1.21 ha (Map 1). This parcel is traversed by the current intersection and is generally bounded by agricultural lands to the north, natural areas to the east and the Heart Lake Conservation Area to the south and west. In legal terms, the study area falls on part of Lots 15–16, Concession 2–3 ECR in the Geographic Township of Chinguacousy, former Peel County.

The Stage 1 assessment was conducted in October 2020 under PIF #P007-1154-2020. The investigation encompassed the entirety of the project lands. All field observations were made from accessible public areas; accordingly, no permissions were required for property access. In compliance with the objectives set out in Section 1.0 of the 2011 S&Gs, this investigation was carried out in order to:

- Provide information concerning the geography, history and current land condition of the study area;
- Determine the presence of known archaeological sites in the study area;
- Present strategies to mitigate project impacts to such sites, if they are located;
- Evaluate in detail the archaeological potential of the study area; and
- Recommend appropriate strategies for Stage 2 archaeological assessment, if some or all of the study area has archaeological potential.

The MHSTCI is asked to review the results and recommendations presented herein and enter the report into the Ontario Public Register of Archaeological Reports. ARA did not engage with any Indigenous groups over the course of the subject investigation.

1.2 Historical Context

After a century of archaeological work in southern Ontario, scholarly understanding of the historic usage of the area has become very well-developed. With occupation beginning in the Palaeo period approximately 11,000 years ago, the greater vicinity of the study area comprises a complex chronology of Indigenous and Euro-Canadian histories. Section 1.2.1 summarizes the region's settlement history, whereas Section 1.2.2 documents the study area's past and present land uses. Multiple previous archaeological reports containing relevant background information were

obtained during the research component of the study. These reports are summarized in Section 1.3.3, and the references (including title, author and PIF number) appear in Section 8.0.

1.2.1 Settlement History

1.2.1.1 Pre-Contact

The Pre-Contact history of the region is lengthy and rich, and a variety of Indigenous groups inhabited the landscape. Archaeologists generally divide this vibrant history into three main periods: Palaeo, Archaic and Woodland. Each of these periods comprise a range of discrete subperiods characterized by identifiable trends in material culture and settlement patterns, which are used to interpret past lifeways. The principal characteristics of these sub-periods are summarized in Table 1.

Table 1: Pre-Contact Settlement History (Wright 1972; Ellis and Ferris 1990; Warrick 2000; Munson and Jamieson 2013)

(Wright 1972; Ellis and Ferris 1990; Warrick 2000; Munson and Jamieson 2013)					
Sub-Period	Timeframe	Characteristics			
Early Palaeo	9000–8400 BC	Gainey, Barnes and Crowfield traditions; Small bands; Mobile hunters and gatherers; Utilization of seasonal resources and large territories; Fluted projectiles			
Late Palaeo	8400–7500 BC	Holcombe, Hi-Lo and Lanceolate biface traditions; Continuing mobility; Campsite/Way-Station sites; Smaller territories are utilized; Non-fluted projectiles			
Early Archaic	7500–6000 BC	Side-notched, Corner-notched (Nettling, Thebes) and Bifurcate traditions; Growing diversity of stone tool types; Heavy woodworking tools appear (e.g., ground stone axes and chisels)			
Middle Archaic	6000–2500 BC	Stemmed (Kirk, Stanly/Neville), Brewerton side- and corner-notched traditions; Reliance on local resources; Populations increasing; More ritual activities; Fully ground and polished tools; Net-sinkers common; Earliest copper tools			
Late Archaic	2500–900 BC	Narrow Point (Lamoka), Broad Point (Genesee) and Small Point (Crawford Knoll) traditions; Less mobility; Use of fish-weirs; True cemeteries appear; Stone pipes emerge; Long-distance trade (marine shells and galena)			
Early Woodland	900–400 BC	Meadowood tradition; Crude cord-roughened ceramics emerge; Meadowood cache blades and side-notched points; Bands of up to 35 people			
Middle Woodland	400 BC-AD 600	Point Peninsula tradition; Vinette 2 ceramics appear; Small camp sites and seasonal village sites; Influences from northern Ontario and Hopewell area to the south; Hopewellian influence can be seen in continued use of burial mounds			
Middle/Late Woodland Transition	AD 600–900	Gradual transition between Point Peninsula and later traditions; Princess Point tradition emerges elsewhere (i.e., in the vicinity of the Grand and Credit Rivers)			
Late Woodland (Early)	AD 900–1300	Glen Meyer tradition; Settled village-life based on agriculture; Small villages (0.4 ha) with 75–200 people and 4–5 longhouses; Semi-permanent settlements			
Late Woodland (Middle)	AD 1300–1400	Uren and Middleport traditions; Classic longhouses emerge; Larger villages (1.2 ha) with up to 600 people; More permanent settlements (30 years)			
Late Woodland (Late)	AD 1400–1600	Huron-Petun tradition; Globular-shaped ceramic vessels, ceramic pipes, bone/antler awls and beads, ground stone celts and adzes, chipped stone tools, and even rare copper objects; Large villages (often with palisades), temporary hunting and fishing camps, cabin sites and small hamlets; Territorial contraction in early 16 th century; Fur trade begins ca. 1580; European trade goods appear			

Although Iroquoian-speaking populations tended to leave a much more obvious mark on the archaeological record and are therefore emphasized in the Late Woodland entries above, it must be understood that Algonquian-speaking populations also represented a significant presence in southern Ontario. Due to the sustainability of their lifeways, archaeological evidence directly associated with the Anishinaabeg remains elusive, particularly when compared to sites associated with the more sedentary agriculturalists. Many artifact scatters in southern Ontario were likely camps, chipping stations or processing areas associated with the more mobile Anishinaabeg, utilized during their travels along the local drainage basins while making use of seasonal resources. This part of southern Ontario represents the ancestral territory of various Indigenous groups, each with their own land use and settlement pattern tendencies.

1.2.1.2 Post-Contact

The arrival of European explorers and traders at the beginning of the 17th century triggered widespread shifts in Indigenous lifeways and set the stage for the ensuing Euro-Canadian settlement process. Documentation for this period is abundant, ranging from the first sketches of Upper Canada and the written accounts of early explorers to detailed township maps and lengthy histories. The Post-Contact period can be effectively discussed in terms of major historical events, and the principal characteristics associated with these events are summarized in Table 2.

Table 2: Post-Contact Settlement History (Smith 1846; Coyne 1895; Lajeunesse 1960; Ellis and Ferris 1990; Surtees 1994; Wilson's Publishing Co. 2000; AO 2015)

Cu. 2000, AO 2013)					
Historical Event	Timeframe	Characteristics			
Early Exploration	Early 17 th century	Brûlé explores southern Ontario in 1610; Champlain travels through in 1613 and 1615/1616, encountering a variety of Indigenous groups (including both Iroquoian-speakers and Algonquian-speakers); European goods begin to replace traditional tools			
Increased Contact and Conflict	Mid- to late 17 th century	Conflicts between various First Nations during the Beaver Wars result in numerous population shifts; European explorers continue to document the area, and many Indigenous groups trade directly with the French and English; 'The Great Peace of Montreal' treaty established between roughly 39 different First Nations and New France in 1701			
Fur Trade Development	Early to mid- 18 th century	Growth and spread of the fur trade; Peace between the French and English with the Treaty of Utrecht in 1713; Ethnogenesis of the Métis; Hostilities between French and British lead to the Seven Years' War in 1754; French surrender in 1760			
British Control	Mid- to late 18 th century	Royal Proclamation of 1763 recognizes the title of the First Nations to the land; Numerous treaties subsequently arranged by the Crown; First land cession under the new protocols is the Seneca surrender of the west side of the Niagara River in 1764; The Niagara Purchase (Treaty 381) in 1781 included this area			
Loyalist Influx	Late 18th century	United Empire Loyalist influx during and after the American Revolutionary War (1775–1783); British develop interior communication routes and acquire additional lands; <i>Constitutional Act</i> of 1791 creates Upper and Lower Canada			
County Development	Late 18 th to early 19 th century	Area initially adjacent to York County's 'West Riding'; Became part of York County's 'West Riding' in 1798; Provisional agreement for the purchase of the southern portion (Treaty 13A) completed in 1805; Confirmed during the Head of the Lake Purchase (Treaty 14) in 1806; Northern portion acquired as part of the Ajetance Purchase (Treaty 19) in 1818; Peel County established after the abolition of the district system in 1849			

Historical Event	Timeframe	Characteristics
Township Formation	Early 19 th century	Chinguacousy primarily comprised lands obtained in 1818 and was settled around the same time; Surveyed by R. Bristol in 1819, divided into west and east halves on either side of Hurontario Street (Centre Road); Majority of first settlers from New Brunswick, the United States and parts of Upper Canada;
Township Development	Mid-19 th to early 20 th century	Combined population of Toronto Gore and Chinguacousy was only 412 by 1821 Population reached 3,965 by 1842; 30,342 ha taken up by 1846, with 10,629 ha under cultivation; 7 saw mills and 1 grist mill in operation at that time; Traversed by the Grand Trunk Railway (1856), the Hamilton & North Western Railway (1877), the Credit Valley Railway (1878/79) and the Toronto Suburban Railway (1917); Brampton was the principal settlement; Other communities at Cheltenham, Salmonville, Victoria, Campbell's Cross, Kilmanagh, Sand Hill, Mayfield, Edmonton, Alloa, Norval Station, Westervelt's Corners, Woodhill, Springbrook and Huttonville

1.2.2 Past and Present Land Use

1.2.2.1 *Overview*

During Pre-Contact and Early Contact times, the vicinity of the study area would have comprised a mixture of coniferous trees, deciduous trees and open areas. Indigenous communities would have managed the landscape to some degree. During the early 19th century, Euro-Canadian settlers arrived in the area and began to clear the forests for agricultural and settlement purposes. The study area was located south of the historic community of Mayfield. The land use at the time of assessment can be classified as transportation (the roadways and associated infrastructure) and natural lands (the undeveloped areas).

1.2.2.2 Mapping and Imagery Analysis

In order to gain a general understanding of the study area's past land uses, one patent plan, two historic settlement maps, one topographic map and two aerial images were examined during the research component of the study. Specifically, the following resources were consulted:

- The Chinguacousy Township Patent Plan (No Date) (AO 2015);
- G.R Tremaine's *Tremaine's Map of the County of Peel, Canada West* (1859) (OHCMP 2019);
- Walker & Miles *Illustrated Historical Atlas of the County of Peel, Ont.* (1877) (McGill University 2001);
- A topographic map from 1909 (OCUL 2020); and
- Aerial images from 1954 and 2006 (Google Earth 2020; University of Toronto 2020).

The limits of the study area are shown on georeferenced versions of the consulted historical resources in Map 2–Map 7.

The *Chinguacousy Township* Patent Plan, initiated on a copy of an original survey plan and updated with patent information until the records were transferred to the Archives of Ontario, indicates that Lot 15, Concession 3 ECR was patented to the Canada Company and Lot 16, Concession 3 ECR to Thady (Thaddeus) Ingoldsby (Map 2). Interestingly, Heart Lake is not depicted.

Tremaines' Map of the County of Peel, Canada West (1859) identifies Thomas Ingoldsby as an early occupant of Lot 15 and M. Ingoldsby as an early occupant of Lot 16 (Map 3). No structures are illustrated within the study area. Heart Lake, two tributaries and a kettle lake are depicted in the surrounding landscape, as is Heart Lake Road and Countryside Drive. Countryside Drive is illustrated as continuing past Heart Lake Road and through Heart Lake, though this reflects an unopened road allowance instead of a continuation of the roadway. The Illustrated Historical Atlas of the County of Peel, Ont. (1877) demonstrates that Thomas Ingoldsby continued to occupy Lot 15 as well as Lot 16; formerly occupied by M. Ingoldsby (Map 4). No structures are present within the study area, however, at least six structures are depicted in the surrounding area, including the Ingoldsby farmstead and orchards to the east.

The topographic map from 1909 shows that the study area consisted of a mixture of transportation corridors, cleared land to the northwest and deciduous woodlot to the southeast (Map 5). No structures are present within the study area; however, a bridge abuts the southeastern limit. A variety of brick/stone (red) and wood (black) homes are shown within adjacent lands. Heart Lake and its associated wetlands, tributary and forested areas are clearly depicted. The aerial image from 1954 depicts the study area in a similar vein to the topographic map (Map 6). Imagery from 2006 depicts extensive disturbance in the central part of the study area associated with the widening and reconstruction of Countryside Drive (Map 7).

1.3 Archaeological Context

The Stage 1 assessment (property inspection) was conducted on October 1, 2020 under PIF #P007-1154-2020. The limits of the study area were confirmed using georeferenced aerial imagery showing artificial and natural formations in relation to the subject lands.

The archaeological context of any given study area must be informed by 1) the condition of the property as found (Section 1.3.1), 2) a summary of registered or known archaeological sites located within a minimum 1 km radius (Section 1.3.2) and 3) descriptions of previous archaeological fieldwork carried out within the limits of, or immediately adjacent to the property (Section 1.3.3).

1.3.1 Condition of the Property

The study area lies within the Great Lakes—St. Lawrence forest region, which is a transitional zone between the southern deciduous forest and the northern boreal forest. This forest extends along the St. Lawrence River across central Ontario to Lake Huron and west of Lake Superior along the border with Minnesota, and its southern portion extends into the more populated areas of Ontario. This forest is dominated by hardwoods, featuring species such as maple, oak, yellow birch, white and red pine. Coniferous trees such as white pine, red pine, hemlock and white cedar commonly mix with deciduous broad-leaved species, such as yellow birch, sugar and red maples, basswood and red oak (MNRF 2020).

In terms of local physiography, the subject lands fall within the South Slope. This region includes lands along the southern slope of the Oak Ridges Moraine as well as lands south of the Peel Plain (including the Trafalgar Moraine and a strip of fluted till plain). The surface is morainic in the area west of Maple, comprising ground moraine of limited relief (Chapman and Putnam 1984:172–173).

The Brampton esker is located southwest of the study area and is designated as a regional earth science area of natural and scientific interest (ANSI). The esker provides a regional terrestrial and hydrological linkage to the Provincial Greenbelt and Oak Ridges Moraine natural systems. The esker is a significant hydrological feature and supports both provincially-significant wetlands and approximately eight lakes, including Heart Lake within the Heart Lake Conservation Area. The Heart Lake Provincially Significant Wetland complex is one of the largest remaining wetland complexes on the Peel South Slope and contains 40 wetland communities located primarily along both sides of Heart Lake Road.

According to the Ontario Soil Survey for Peel County, the study area consists of Oneida clay loam in the north and centre and organic muck in the south. Oneida clay loam generally comprises dark greyish brown clay loam over well developed horizons, and is characterized by few stones, a smooth to moderately sloping topography and good surface drainage. Muck soils consist of black well-decomposed organic material of varying depths over sand, clay or marl. They are stone-free and are characterized by depressional topography and very poor surface drainage (Hoffman and Richards 1953:41–42).

The subject lands fall within the Etobicoke and Mimico Creek drainage basin, which is under the jurisdiction of the Toronto and Region Conservation Authority (TRCA 2020). Specifically, the study area is traversed by two wetlands associated with the Heart Lake Wetland Complex and a tributary of Spring Creek and is located 339 m northwest of Heart Lake.

At the time of assessment, the study area comprised the roadway platforms, shoulders, ditches, culverts and sidewalks associated with Heart Lake Road and Countryside Drive, as well as adjacent natural areas. Field conditions were ideal during the investigation, with high ground surface visibility. No unusual physical features were encountered that affected the results of the Stage 1 assessment.

1.3.2 Registered or Known Archaeological Sites

The Ontario Archaeological Sites Database and the Ontario Public Register of Archaeological Reports were consulted to determine whether any registered or known archaeological resources occur within a 1 km radius of the study area. The available search facility returned a total of 26 registered sites located within at least a 1 km radius (the facility returns sites in a rectangular area, rather than a radius, potentially resulting in returns beyond the specified distance). In terms of other known resources (e.g., Isolated Non-Diagnostic Find Spots, Leads or unreported deposits), three unregistered sites were identified within a 1 km radius. The sites are summarized in Table 3.

Table 3: Registered or Known Archaeological Sites

Borden No. / Identifier	Site Name	Time Period	Affinity	Site Type	Distance from Study Area
AkGw-2	Heart Lake	Pre-Contact	Indigenous	Camp/campsite	300 m-1 km
AkGw-13	655339 Ontario	Post-Contact	Euro-Canadian	Homestead	300 m-1 km
AkGw-14	Allison	Other	Indigenous	Unknown	> 1 km
AkGw-15	Clearbrook	Post-Contact	Euro-Canadian	Homestead	> 1 km
AkGw-49	Armbro	Post-Contact	Euro-Canadian	Homestead	> 1 km
AkGw-231	Sunnydale Site	Pre-Contact	Indigenous	Scatter	> 1 km

Borden No. / Identifier	Site Name	Time Period	Affinity	Site Type	Distance from Study Area
AkGw-309	Stopover 2	Pre-Contact	Indigenous	Unknown	> 1 km
AkGw-310	Stopover 3	Post-Contact, Pre-Contact	Indigenous, Euro-Canadian	Unknown	> 1 km
AkGw-311	Stopover	Pre-Contact	Indigenous	Unknown	> 1 km
AkGw-312	Stopover 4	Post-Contact, Pre-Contact	Indigenous, Euro-Canadian	Unknown	> 1 km
AkGw-329	Sprucedale Site	Post-Contact	Euro-Canadian	Farmstead, homestead	> 1 km
AkGw-384	Sandringham Site	Post-Contact	Euro-Canadian	Homestead	> 1 km
AkGw-399	Countryside Drive H1	Post-Contact	Euro-Canadian	Homestead	> 1 km
AkGw-400	Countryside Drive H2	Post-Contact	Euro-Canadian	Homestead	> 1 km
AkGw-410	Ingoldsby	Post-Contact	Euro-Canadian	Homestead	50 m-300 m
AkGw-411	Lakeheart	Archaic, Middle	Indigenous	Campsite	300 m-1 km
AkGw-412	Gitigaan Mashkiki	Archaic, Paleo- Indian	Indigenous	Camp/campsite	300 m-1 km
AkGw-413	Ibrox	Pre-Contact	Indigenous	Camp/campsite	300 m-1 km
AkGw-414	-	Pre-Contact	Indigenous	Findspot	300 m-1 km
AkGw-416	Adams H1	Post-Contact	Euro-Canadian	Unknown	> 1 km
AkGw-422	Gray Homestead Site	Post-Contact	Euro-Canadian	Homestead	> 1 km
AkGw-462	Heart Lake 1	Archaic, Late	Indigenous	Findspot	300 m-1 km
AkGw-500	Heart Lake 2	Pre-Contact	Indigenous	Unknown	300 m-1 km
AkGw-513	H1	Unknown	Unknown	Unknown	> 1 km
AkGw-531	19PL-280 P2	Unknown	Unknown	Unknown	> 1 km
AlGp-72	Newcastle Site 1	Post-Contact	Euro-Canadian	Homestead	> 1 km
Unregistered	IF #1 (AA 2010)	Pre-Contact	Indigenous	Findspot	50 m-300 m
Unregistered	IF #2 (AA 2010)	Pre-Contact	Indigenous	Findspot	300 m–1 km
Unregistered	IF #3 (AA 2010)	Pre-Contact	Indigenous	Findspot	300 m-1 km

None of these previously identified sites are located within or immediately adjacent to the subject lands; accordingly, they have no potential to traverse the study area. AkGw-410 and unregistered IF #1 do fall within 300 m, however, and must be considered as relevant features of archaeological potential. The remaining sites represent distant archaeological resources.

1.3.3 Previous Archaeological Work

Reports documenting assessments conducted within the subject lands and assessments that resulted in the discovery of sites within adjacent lands were sought during the research component of the study. In order to ensure that all relevant past work was identified, an investigation was launched to identify reports involving assessments within 50 m of the study area. The investigation determined that there are three available reports documenting previous archaeological fieldwork within the specified distance. The relevant results and recommendations are summarized below as required by Section 7.5.8 Standards 4–5 of the 2011 *S&Gs*.

1.3.3.1 Countryside Drive Widening and Reconstruction (Stage 1)

A Stage 1 assessment was conducted for the Countryside Drive Road Widening and Reconstruction project in August 2004 under Licence #P029-100 (AW 2004). The assessed area overlaps the entirety of the subject lands. To facilitate discussion, the ± 13 km corridor was separated into five segments: a) Highway 50 to Gore Road, b) Gore Road to McVean Drive, c) McVean Drive to

Goreway Drive, d) Goreway Drive to Airport Road and e) Airport Road to Heart Lake Road. The subject lands fall within the Airport Road to Heart Lake Road segment. This segment was documented as comprising a mixture of cultivated fields, herbaceous cover, residential frontage with disturbed rural driveways, shallow drainage ditches, narrow shoulders and low-lying wet areas. Areas of archaeological potential and areas of no archaeological potential were identified. It was recommended that a Stage 2 assessment be conducted for all areas beyond the ditched and low-lying wet areas (AW 2004:12). No specific field methods were recommended at the time.

1.3.3.2 Countryside Villages (Stage 1)

In September 2007, a Stage 1 assessment was conducted for the Countryside Villages (Springdale North Secondary Plan Area 48) project under CIF #P163-016-2007 (ASI 2007). The assessed area overlaps the northern portion of the subject lands on the north side of Countryside Drive. To facilitate discussion, the Secondary Plan Area was separated into four sections: 1) Heart Lake Road to Dixie Road, 2) Dixie Road to Bramalea Road, 3) Bramalea Road to Torbram Road and 4) Torbram Road to the west branch of the Humber River. The subject lands are located within the Heart Lake Road to Dixie Road portion. This section was documented as comprising a mixture of residential, transportation and agricultural lands alongside natural woodlots, areas of slope and low-lying wet areas. Areas archaeological potential and areas of no archaeological potential were identified. It was recommended that a Stage 2 assessment be conducted for all areas of archaeological potential (ASI 2007:11). The assessed portion of the subject lands was determined to be disturbed and not recommended for Stage 2 assessment. The overlapping area of previous assessment is therefore of no further archaeological concern.

1.3.3.3 Emery Investments Property (Stage 1–2)

In December 2009, Stage 1 and 2 assessments were completed for the Emery Investments property under CIF #P013-522-2009 (AA 2010). The assessed area abuts the northwestern edge of the subject lands. The Stage 1 assessment identified a mixture of areas of archeological potential (the agricultural field) and areas of no archaeological potential (a low-lying wet area). The Stage 2 assessment resulted in the identification of five sites: AkGw-410, AkGw-411 and IF#1-3. AkGw-410 consisted of a mid-19th century Euro-Canadian homestead, AkGw-411 comprised a Middle Archaic Indigenous campsite and the remaining sites represented Indigenous findspots. The Ingoldsby site (AkGw-410) and the Lakeheart site (AkGw-411) were found to be of further CHVI and were recommended for Stage 3 site-specific assessment. The remaining sites were not recommended for any additional assessment (AA 2010:7).

2.0 STAGE 1 BACKGROUND STUDY

2.1 Background

The Stage 1 assessment involved background research to document the geography, history, previous archaeological fieldwork and current land condition of the study area. This desktop examination included research from archival sources, archaeological publications and online databases. It also included the analysis of a variety of historic maps and aerial imagery. The results of the research conducted for the background study are summarized below.

With occupation beginning approximately 11,000 years ago, the greater vicinity of the study area comprises a complex chronology of Pre-Contact and Post-Contact histories (Section 1.2). Artifacts associated with Palaeo, Archaic, Woodland and Early Contact traditions are well-attested in the City of Brampton, and Euro-Canadian archaeological sites dating to pre-1900 and post-1900 contexts are likewise common. The presence of 29 previously identified sites in the surrounding area demonstrates the desirability of this locality for early settlement (Section 1.3.2). The investigation confirmed that none of these sites extend into the subject lands. Background research identified two areas of previous assessment within the study area (Section 1.3.3).

The natural environment of the study area would have been attractive to both Indigenous and Euro-Canadian populations as a result of proximity to Heart Lake and the Heart Lake Wetland Complex. The Oneida clay loam soils would have been ideal for agriculture and pastureland, and the diverse local vegetation would also have encouraged settlement throughout Ontario's lengthy history. Euro-Canadian populations would have been particularly drawn to Heart Lake Road and Countryside Drive, both of which were historically-surveyed thoroughfares.

In summary, the background study included an up-to-date listing of sites from the Ontario Archaeological Sites Database (within at least a 1 km radius), the consideration of previous local archaeological fieldwork (within at least a 50 m radius), the analysis of historic maps (at the most detailed scale available) and the study of aerial imagery. ARA therefore confirms that the standards for background research set out in Section 1.1 of the 2011 *S&Gs* were met.

2.2 Field Methods (Property Inspection)

In order to gain first-hand knowledge of the geography, topography and current condition of the study area, a property inspection was conducted on October 1, 2020. Environmental conditions were ideal during the inspection, with partly overcast skies, bright lighting and a temperature of 12 °C. ARA therefore confirms that fieldwork was carried out under weather and lighting conditions that met the requirements set out in Section 1.2 Standard 2 of the 2011 *S&Gs*.

The study area was subjected to random spot-checking in accordance with the requirements set out in Section 1.2 of the 2011 S&Gs. Specifically, the inspection began in the northwest on the eastern side of Heart Lake Road and progressed in a generally clockwise direction. The inspection confirmed that all surficial features of archaeological potential (e.g., the historically-surveyed roadways, etc.) were present where they were previously identified and did not result in the identification of any additional features of archaeological potential not visible on mapping (e.g., relic water channels, patches of well-drained soils, etc.).

The inspection determined that parts of the study area were disturbed by past roadworks. Two permanently wet areas were also encountered and documented during the assessment. No other natural features (e.g., sloped lands, overgrown vegetation, heavier soils than expected, etc.) or significant built features (e.g., heritage structures, landscapes, plaques, monuments, cemeteries, etc.) that would affect assessment strategies were identified.

2.3 Analysis and Conclusions

In addition to relevant historical sources and the results of past archaeological assessments, the archaeological potential of a property can be assessed using its soils, hydrology and landforms as considerations. Section 1.3.1 of the 2011 S&Gs recognizes the following features or characteristics as indicators of archaeological potential: previously identified sites, water sources (past and present), elevated topography, pockets of well-drained sandy soil, distinctive land formations, resource areas, areas of Euro-Canadian settlement, early transportation routes, listed or designated properties, historic landmarks or sites, and areas that local histories or informants have identified with possible sites, events, activities or occupations.

The Stage 1 assessment resulted in the identification of several features of archaeological potential in the vicinity of the study area (Map 8; SD Map 1). The closest and most relevant indicators of archaeological potential (i.e., those that would directly affect survey interval requirements) include two previously identified sites (AkGw-410 and IF#1), one primary water source (a tributary of Spring Creek), seven secondary water sources (parts of the Heart Lake Wetland Complex), one physiographic landform (the Brampton Esker), two historic roadways (Heart Lake Road and Countryside Drive), and multiple historic structure localities (19th-century houses). Background research did not identify any features indicating that the study area has potential for deeply buried archaeological resources.

Although proximity to a feature of archaeological potential is a significant factor in the potential modelling process, current land conditions must also be considered. Section 1.3.2 of the 2011 S&Gs emphasizes that 1) quarrying, 2) major landscaping involving grading below topsoil, 3) building footprints and 4) sewage/infrastructure development can result in the removal of archaeological potential, and Section 2.1 states that 1) permanently wet areas, 2) exposed bedrock and 3) steep slopes (> 20°) can also be considered as having no archaeological potential. Areas previously assessed and not recommended for further work also require no further assessment.

One previously assessed area was identified within the project lands, which was determined to be disturbed and did not warrant additional assessment. ARA's visual inspection, coupled with the analysis of historical sources and digital environmental data, resulted in the identification of several areas of no archaeological potential within the remaining lands. Specifically, deep land alterations have resulted in the removal of archaeological potential from the roadway platforms, shoulders and ditches associated with Heart Lake Road and Countryside Drive and related sidewalks and intersection infrastructure (Image 1–Image 6). A steep berm was also present running along the south side of Heart Lake Road. These areas had clearly been impacted by past earth-moving/construction activities, resulting in the disturbance of the original soils to a significant depth and severe damage to the integrity of any archaeological resources.

One area of previously assessed lands was photo-documented (Image 7) and two permanently wet areas were also identified (Image 8). The remainder of the study area has potential for Indigenous and Euro-Canadian archaeological materials or requires test pit survey to confirm the presence/extent of any subsurface disturbances. The area of archaeological potential includes the wooded area southeast of Countryside Drive (Image 9–Image 10).

In summary, the Stage 1 assessment determined that the study area comprised a mixture of areas of archaeological potential, areas of no archaeological potential and previously assessed lands of no further concern. The potential modelling results are presented in Map 9. The project lands ('study area') are depicted as a layer in this map.

3.0 **RECOMMENDATIONS**

The Stage 1 assessment determined that the study area comprised a mixture of areas of archaeological potential, areas of no archaeological potential and previously assessed lands of no further concern. It is recommended that all identified areas of archaeological potential be subject to a Stage 2 property assessment in accordance with Section 2.1 of the 2011 S&Gs.

The wooded area must be assessed using the test pit survey method. A survey interval of 5 m will be required due to the proximity of the lands to the identified features of archaeological potential. Each test pit must be excavated into at least the first 5 cm of subsoil, and the resultant pits must be examined for stratigraphy, potential features and/or evidence of fill. The soil from each test pit must be screened through mesh with an aperture of no greater than 6 mm and examined for archaeological materials. If archaeological materials are encountered, all PTPs must be documented and intensification may be required.

The identified areas of no archaeological potential and previously assessed lands of no further concern do not require any additional assessment. Given that there are still outstanding archaeological concerns within the project lands, no ground alterations or development of any kind may occur until the Stage 2 assessment is complete, a recommendation that the lands require no further archaeological assessment is made, and the associated report is entered into the Ontario Public Register of Archaeological Reports.

5.0 ADVICE ON COMPLIANCE WITH LEGISLATION

Section 7.5.9 of the 2011 S&Gs requires that the following information be provided for the benefit of the proponent and approval authority in the land use planning and development process:

- This report is submitted to the Minister of Heritage, Sport, Tourism and Culture Industries as a condition of licensing in accordance with Part VI of the *Ontario Heritage Act*, R.S.O. 1990, c 0.18. The report is reviewed to ensure that it complies with the standards and guidelines that are issued by the Minister, and that the archaeological fieldwork and report recommendations ensure the conservation, protection and preservation of the cultural heritage of Ontario. When all matters relating to archaeological sites within the project area of a development proposal have been addressed to the satisfaction of the MHSTCI, a letter will be issued by the ministry stating that there are no further concerns with regard to alterations to archaeological sites by the proposed development.
- It is an offence under Sections 48 and 69 of the *Ontario Heritage Act* for any party other than a licensed archaeologist to make any alteration to a known archaeological site or to remove any artifact or other physical evidence of past human use or activity from the site, until such time as a licensed archaeologist has completed archaeological fieldwork on the site, submitted a report to the Minister stating that the site has no further cultural heritage value or interest, and the report has been filed in the Ontario Public Register of Archaeology Reports referred to in Section 65.1 of the *Ontario Heritage Act*.
- Should previously undocumented archaeological resources be discovered, they may be a new archaeological site and therefore subject to Section 48 (1) of the *Ontario Heritage Act*. The proponent or person discovering the archaeological resources must cease alteration of the site immediately and engage a licensed consultant archaeologist to carry out archaeological fieldwork, in compliance with Section 48 (1) of the *Ontario Heritage Act*.
- The *Funeral, Burial and Cremation Services Act*, 2002, S.O. 2002, c.33 requires that any person discovering human remains must notify the police or coroner and the Registrar at the Ministry of Government and Consumer Services.

6.0 IMAGES

Image 1: Disturbed Lands (October 1, 2020; Facing Southeast)

Image 2: Disturbed Lands (October 1, 2020; Facing Southeast)

Image 3: Disturbed Lands (October 1, 2020; Facing Southwest)

Image 4: Disturbed Lands (October 1, 2020; Facing Northeast)

Image 5: Disturbed Lands (October 1, 2020; Facing Northwest)

Image 6: Disturbed Lands (October 1, 2020; Facing Northwest)

Image 7: Previously Assessed Lands (October 1, 2020; Facing Northwest)

Image 8: Permanently Wet Lands (October 1, 2020; Facing Northeast)

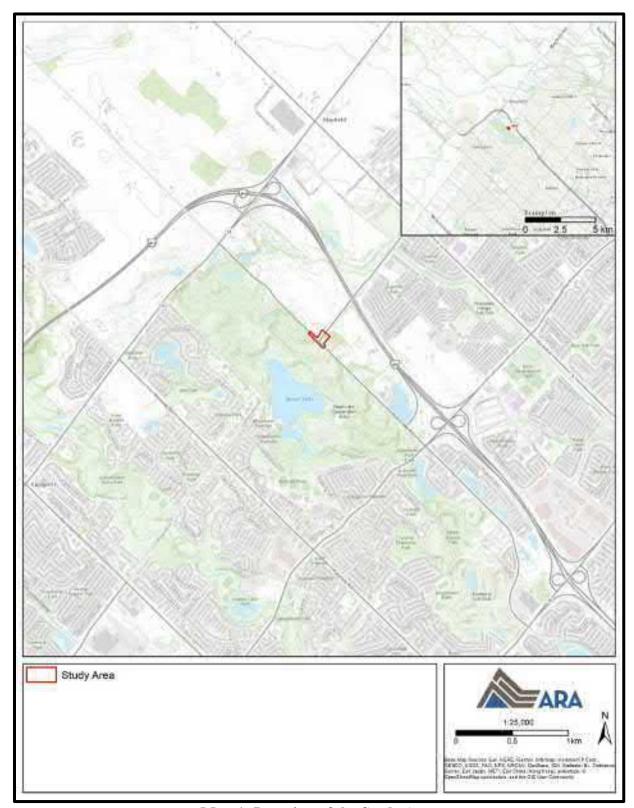


Image 9: Area of Potential (October 1, 2020; Facing Southeast)

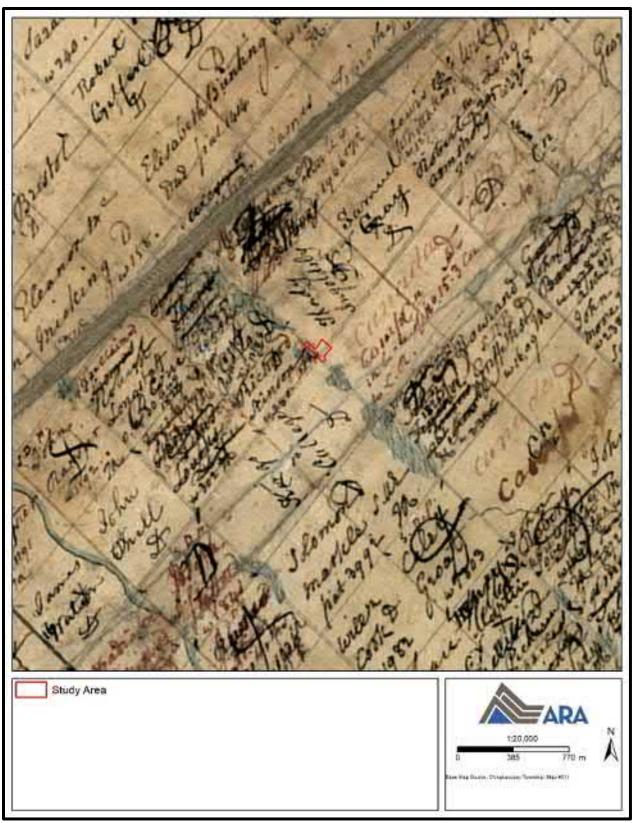
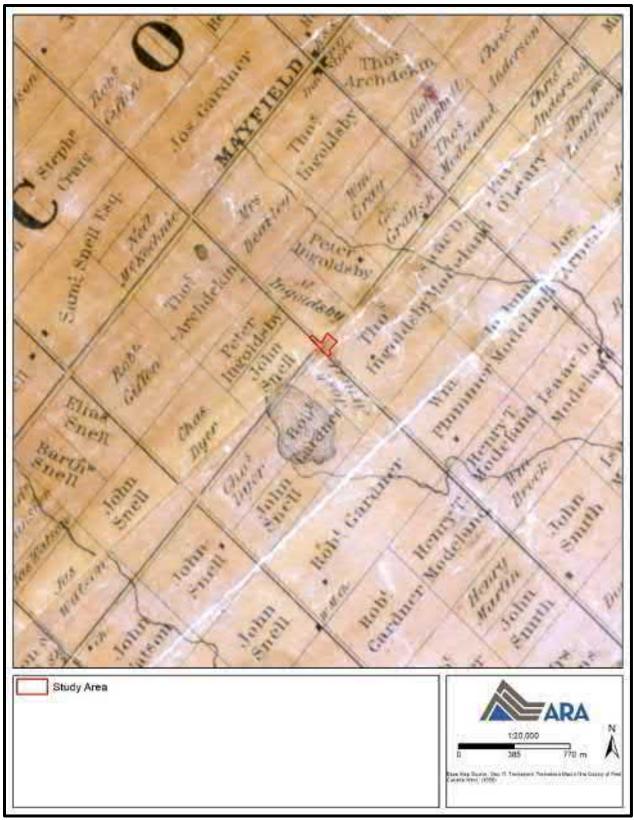
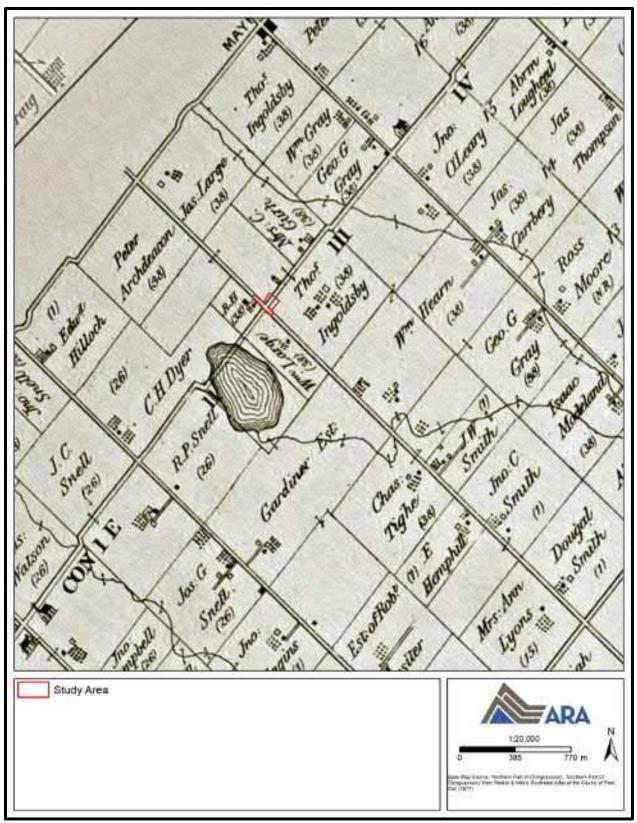
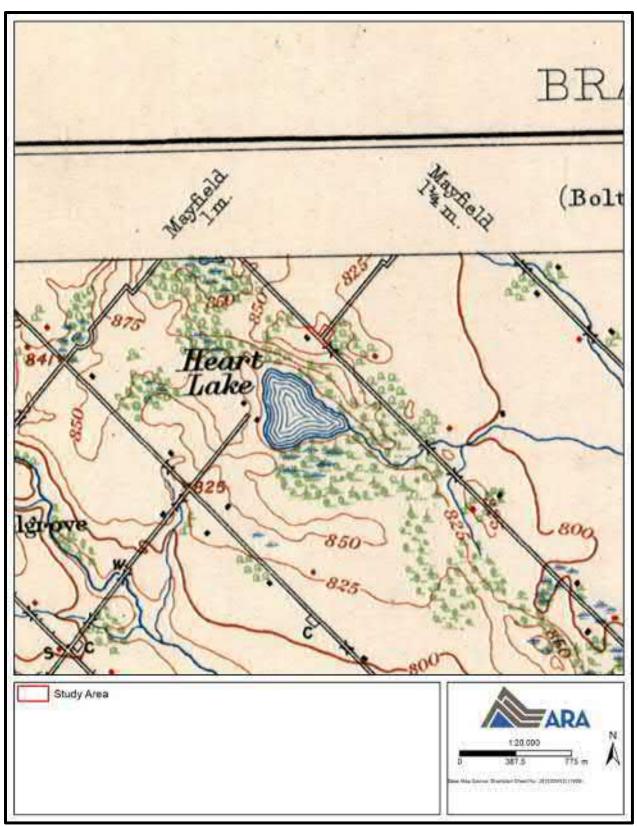


Image 10: Area of Potential (October 1, 2020; Facing East)


7.0 MAPS


Map 1: Location of the Study Area (Produced under licence using ArcGIS® software by Esri, © Esri)


Map 2: Chinguacousy Township Patent Plan (No Date) (Produced under licence using ArcGIS® software by Esri, © Esri; AO 2015)

Map 3: G.R. Tremaine's *Tremaine's Map of the County of Peel, Canada West* (1859) (Produced under licence using ArcGIS® software by Esri, © Esri; OHCMP 2019)

Map 4: Walker & Miles' *Illustrated Historical Atlas of the County of Peel, Ont.* (1877) (Produced under licence using ArcGIS® software by Esri, © Esri; McGill University 2001)

Map 5: Topographic Map (1909) (Produced under licence using ArcGIS® software by Esri, © Esri, OCUL 2020)

Map 6: Aerial Image (1954) (Produced under licence using ArcGIS® software by Esri, © Esri; University of Toronto 2020)

Map 7: Aerial Image (2006) (Produced under licence using ArcGIS® software by Esri, © Esri; Google Earth 2020)

Map 8: Features of Potential (Produced under licence using ArcGIS® software by Esri, © Esri)

Map 9: Potential Modelling and Recommendations (Produced under licence using ArcGIS® software by Esri, © Esri)

8.0 BIBLIOGRAPHY AND SOURCES

Archaeological Assessments Ltd. (AA)

2010 The Stage 1–2 Archaeological Assessment of the Emery Investments Property, Part of Lot 16, Concession 3 E.H.S., City of Brampton, Regional Municipality of Peel. CIF #P013-522-2009. AA.

Archaeological Services Inc. (ASI)

2007 Stage 1 Archaeological Assessment of Countryside Villages, City of Brampton Secondary Plan Area 48 (Countryside Villages), Lots 16 and 17, Concession 3 to 6 EHS, Former Township of Chinguacousy, County of Peel, City of Brampton, Regional Municipality of Peel, Ontario. CIF #P163-016-2007. ASI.

Archeoworks Inc. (AW)

2004 Stage 1 Archaeological Assessment for the Widening & Reconstruction of Countryside Drive: From Heart Lake Road to Highway 50, City of Brampton, Reginal Municipality of Peel, Ontario. Licence #P029-100. AW.

Archives of Ontario (AO)

2015 Archives of Ontario: Accessing our Collections. Accessed online at: http://www.archives.gov.on.ca/en/access/our_collection.aspx.

Chapman, L.J. and D.F. Putnam

1984 *The Physiography of Southern Ontario, 3rd Edition*. Toronto: Ontario Geological Survey, Special Volume 2.

Coyne, J. H.

1895 The Country of the Neutrals (As Far as Comprised in the County of Elgin): From Champlain to Talbot. St. Thomas: Times Print.

Ellis, C.J. and N. Ferris (eds.)

1990 *The Archaeology of Southern Ontario to A.D. 1650.* Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc.

Hoffman, D.W. and N.R. Richards

1953 *Soil Survey of Peel County*. Report No. 18 of the Ontario Soil Survey. Guelph: Research Branch, Department of Agriculture and the Ontario Agriculture College.

Lajeunesse, E.J.

1960 The Windsor Border Region: Canada's Southernmost Frontier. Toronto: The Champlain Society.

McGill University

2001 *The Canadian County Atlas Digital Project*. Accessed online at: http://digital.library.mcgill.ca/countyatlas/default.htm.

Ministry of Natural Resources and Forestry (MNRF)

2020 Forest Regions. Accessed online at: https://www.ontario.ca/page/forest-regions.

Munson, M.K. and S.M. Jamieson (eds.)

2013 Before Ontario: The Archaeology of a Province. Kingston: McGill-Queen's University Press.

Ontario Council of University Libraries (OCUL)

2020 *Historical Topographic Map Digitization Project*. Access online at: https://ocul.on.ca/topomaps/.

Ontario Historical County Maps Project (OHCMP)

2019 Ontario Historical County Maps Project. Accessed online at: http://maps.library.utoronto.ca/hgis/countymaps/maps.html.

Smith, W.H.

1846 Smith's Canadian Gazetteer: Comprising Statistical and General Information Respecting all Parts of the Upper Province, or Canada West. Toronto: H. & W. Rowsell.

Surtees, R.J.

1994 Land Cessions, 1763–1830. In *Aboriginal Ontario: Historical Perspectives on the First Nations*, edited by E.S. Rogers and D.B. Smith, pp. 92–121. Toronto: Dundurn Press.

Toronto Region Conservation Authority (TRCA)

2020 Watersheds. Accessed online at: http://www.trca.on.ca/the-living-city/watersheds/.

University of Toronto

2019 Map & Data Library. Accessed online at: https://mdl.library.utoronto.ca/.

Warrick, G.

2000 The Precontact Iroquoian Occupation of Southern Ontario. *Journal of World Prehistory* 14(4):415–456.

Wilson's Publishing Co.

2000 *Illustrated Historical Atlas of the County of Peel, Ont.* Reprint of 1877 Edition (Toronto: Walker & Miles). Campbellford: Wilson's Publishing Co.

Wright, J.V.

1972 Ontario Prehistory: An Eleven-Thousand-Year Archaeological Outline. Archaeological Survey of Canada, National Museum of Man. Ottawa: National Museums of Canada.

DRAFT

Stage 1 Archaeological Assessment
Heart Lake Road and Countryside Drive Intersection
Municipal Class Environmental Assessment
City of Brampton
Regional Municipality of Peel
Part of Lots 15–16, Concession 2–3 East of Centre Road
Geographic Township of Chinguacousy
Former Peel County, Ontario

Prepared for MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9 Tel: (519) 743-6500

Licensed under
P.J. Racher
MHSTCI Licence #P007
PIF #P007-1154-2020
ARA File #2020-0171

27/10/2020

Supplementary Documentation

TA	RI	Æ	OF	CO	N	CEN	JTS

1.0	SUPPLEMENTARY DOCUMENTATION	1
1.1	Detailed Site Location Information	1
2.0	SD MAPS	2
	LIST OF SD MAPS	
SD M	ap 1: Features of Potential with Site Information	2

1.0 SUPPLEMENTARY DOCUMENTATION

1.1 Detailed Site Location Information

In keeping with Section 7.6.1 of the 2011 *Standards and Guidelines for Consultant Archaeologists*, detailed site location information was not included within the project report. The previously identified archaeological sites falling within 300 m of the study area are shown in SD Map 1.

2.0 SD MAPS

SD Map 1: Features of Potential with Site Information (Produced under licence using ArcGIS® software by Esri, © Esri)

Appendix E

Cultural Heritage Assessment Report,
Archeological Research
Associates
December 2022

Cultural Heritage Assessment Report
Heart Lake Road and Countryside Drive Intersection
City of Brampton
Regional Municipality of Peel
Lots 15-16, Concessions 3 East of Centre Road
Geographic Township of Chinguacousy
Former Peel County

Prepared for MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9 Tel: (519) 743-6500

By
Archaeological Research Associates Ltd.
219-900 Guelph Street
Kitchener, ON N2H 5Z6
Tel: (519) 804-2291 Fax: (519) 286-0493
www.arch-research.com

HR-203-2020 Project # 2020-0172

17/12/2020 Original Report

EXECUTIVE SUMMARY

Under a contract awarded in August 2020, Archaeological Research Associates Ltd. (ARA) carried out a Cultural Heritage Assessment Report (CHAR), for the proposed Heart Lake Road and Countryside Drive Intersection Improvement project in the City of Brampton, Regional Municipality of Peel, Ontario. The assessment was carried out as part of a Schedule 'B' Municipal Class EA in accordance with the *Environmental Assessment Act*. The intersection improvements are part of an overall operational and safety improvement plan for the Heart Lake Road corridor.

The purpose of this assessment is to identify and evaluate the cultural heritage resources within the project location that may be impacted by the proposed Heart Lake Road and Countryside Drive Intersection Improvement project. This assessment was conducted in accordance with the aims of the *Environmental Assessment Act*, R.S.O. 1990, *Provincial Policy Statement* (2014) and the *Ontario Heritage Act*, R.S.O. 1990, c. O.18, and the *City of Brampton Official Plan* (Consolidated September 2020).

Heart Lake Road and Countryside Drive are presently considered Minor Arterial Roads as outlined in Schedule B of the City of Brampton Official Plan. Currently Heart Lake Road is a two-lane road with a rural cross section (i.e. partly paved shoulders and open ditches) which intersects with Countryside Drive which has an urban cross-section (i.e. five-lane road, curbs, sidewalks, streetlights).

The Cultural Heritage Assessment Report approach included:

- Background research concerning the project and historical context of the project location;
- Consultation with City of Brampton staff regarding heritage matters in the project location;
- Identification of any designated or recognized properties within the limits of the project location;
- On-site inspection and creation of an inventory of all properties with potential Built Heritage Resources and Cultural Heritage Landscapes within the project location;
- A description of the location and nature of potential cultural heritage resources;
- Evaluation of each potential cultural heritage resource against the criteria set out in Ontario Regulation 9/06, and 10/06, where applicable, for determining cultural heritage value or interest;
- Evaluation of potential project impacts; and
- Provision of suggested strategies for the future conservation of identified cultural heritage resources.

As a result of consultation and field survey, the following Built Heritage Resources were identified: 10881 Heart Lake Road (BHR1) and the Heart Lake Road Corridor (CHL1).

Detailed designs or plans for the intersection improvements were not available at the time this report was written; however, it is not anticipated that the heritage attribute BHR1 will be directly impacted. CHL-1 is located within the project location and may be impacted by the proposed intersection improvements. There may also be some indirect impacts to the identified resources

during construction activities. Some of these indirect impacts may, in fact, prove to be positive as efforts can be undertaken to interpret cultural heritage resources (i.e., with plaques or public art).

As a result of this Cultural Heritage Assessment Report, the following mitigation strategies are recommended:

- That intersection improvements and any construction staging areas should avoid the use of land which is part of BHR1 at 10881 Heart Lake Road;
- That should project-related activities be expected to impact the BHR1, a qualified heritage consultant should be contracted to complete a property specific Heritage Impact Assessment and provide detailed mitigation options to address potential impacts of the proposed design on the resources;
- That the design alternatives and planned intersection improvements should consider the heritage attributes of CHL 1, specifically the rural cross section of the road, including the width of the road, two lanes of traffic, and ditching; wood utility poles along the roadside; natural setting of the roadscape, and linear corridor views along Heart Lake Road;
- That following the development of the preferred design alternative a Heritage Impact Assessment should be prepared for the Heart Lake Corridor (CHL 1), a potential significant cultural heritage landscape, to evaluate the impacts and suggest mitigation measures. This study should be undertaken by a qualified heritage consultant;
- That public consultation may result in additional potential cultural heritage resources being identified. These potential cultural heritage resources should be reviewed by a qualified heritage consultant to: 1) determine their cultural heritage value or interest, 2) evaluate potential project impacts, and 3) suggest strategies for future conservation of any identified cultural heritage resources;
- That should the intersection improvement activities or the project location expand beyond the scope examined in this report, a qualified heritage consultant should be retained to determine the potential impacts and suggest mitigation measures; and,
- That should intersection and road improvements create seating areas and/or transit stops, this may provide an opportunity to interpret some of the identified cultural heritage resources (i.e., with plaques, public art).

TABLE OF CONTENTS	
EXECUTIVE SUMMARY	I
LIST OF MAPS	IV
LIST OF TABLES	IV
LIST OF APPENDICES	IV
GLOSSARY OF ABBREVIATIONS	IV
PERSONNEL	\mathbf{V}
1.0 PROJECT CONTEXT	1
2.0 LEGISLATION AND POLICY REVIEW	3
2.1 Federal Guidelines	3
2.2 Provincial Policies and Guidelines	3
2.2.1 Environmental Assessment Act and Guideline	3
2.2.2 Planning Act	3
2.2.3 The Provincial Policy Statement (2020)	3
2.2.4 Ontario Heritage Act	4
2.3 Municipal Policies	5
2.3.1 Region of Peel	5
2.3.2 City of Brampton Official Plan	6
2.4 Legislation Summary	8
3.0 KEY CONCEPTS	8
4.0 HISTORICAL CONTEXT	10
4.1 Historical Context	10
4.2 Settlement History	11
4.2.1 Pre-Contact	11
4.2.2 Post-Contact	12
4.2.3 Heart Lake Area History	14
4.3 Project Location History	14
4.3.1 Mapping and Imagery Analysis	14
5.0 CONSULTATION AND HERITAGE CONTEXT	22
5.1 Lake Conservation Area Master Plan	23
6.0 FIELD SURVEY	23
7.0 HERITAGE ASSESSMENT	24
8.0 DEVELOPMENT PLAN	28
9.0 ANALYSIS OF POTENTIAL IMPACTS	29
10.0 MITIGATION MEASURES AND RECOMMENDATIONS	30
11.0 BIBLIOGRAPHY AND SOURCES	32
BUILT HERITAGE RESOURCE NO. 1	36
CULTURAL HERITAGE RESOURCE NO. 1	40

LIST OF MAPS	
Map 1: Project Location in the City of Brampton	2
Map 2: Chinguacousy Township Patent Plan (No Date)	16
Map 3: G.R. Tremaine's Tremaine's Map of the County of Peel, Canada West (1859)	17
Map 4: Walker & Miles' Illustrated Historical Atlas of the County of Peel, Ont. (1877)	18
Map 5: Topographic Map (1909)	19
Map 6: Aerial Image (1954)	20
Map 7: Aerial Image (2006)	21
Map 6: BHR Assessment Results Map	25
Map 7: CHL Assessment Results Map	26
LIST OF TABLES	
Table 1: Pre-Contact Settlement History	11
Table 2: Post-Contact Settlement History	12
Table 3: BHR and CHL with CHVI	27
Table 4: BHR and CHL Value Statements and Heritage Attributes	27
LIST OF APPENDICES	
Appendix A: Built Heritage Resources and Cultural Heritage Landscapes	36
Appendix A. Built Heritage Resources and Cultural Heritage Landscapes Appendix B: Team Member Curriculum Vitae	51
GLOSSARY OF ABBREVIATIONS	
ARA – Archaeological Research Associates Ltd.	
BHR – Built Heritage Resource	
CHAR – Cultural Heritage Assessment Report	
CHL – Cultural Heritage Landscape	
CHVI – Cultural Heritage Value or Interest	
EA – Environmental Assessment	
HIA – Heritage Impact Assessment HSMBC – Historic Sites and Monuments Board of Canada	
MCEA – Municipal Class Environmental Assessment	

OHA – Ontario Heritage Act

OHT – Ontario Heritage Trust

MHSTCI – Ministry of Heritage, Sport, Tourism and Culture Industries

MMAH – Ministry of Municipal Affairs and Housing

OP – Official Plan

O. Reg. – Ontario Regulation

PIC – Public Information Centre

PPS – Provincial Policy Statement

TRCA – Toronto Region Conservation Authority

PERSONNEL

Project Director: P.J. Racher, MA, CAHP

Heritage Operations Manager: K. Jonas Galvin, MA, RPP, MCIP, CAHP

Project Manager: A. Barnes MA, CAHP

Field survey: A. Barnes

Historical Research: S. Clarke

Photography: A. Barnes

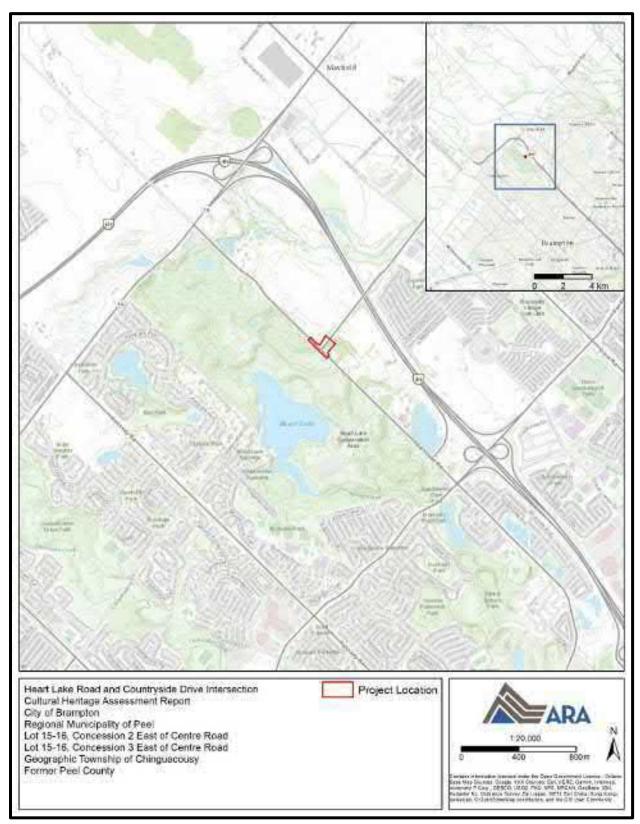
Cartographer: A. Bailey (GIS), K. Brightwell (GIS),

Technical Writers: A. Barnes, K. Jonas Galvin, P. Young, MA, CAHP,

Editor: J. McDermid, BA

Two-page Curriculum Vitae (CV) for key team members that demonstrate the qualifications and expertise necessary to perform cultural heritage work in Ontario are provide in Appendix B.

1.0 PROJECT CONTEXT


Under a contract awarded in August 2020, Archaeological Research Associates Ltd. (ARA) carried out a Cultural Heritage Assessment Report (CHAR), for the proposed Heart Lake Road and Countryside Drive Intersection Improvement project in the City of Brampton, Regional Municipality of Peel, Ontario. The assessment was carried out as part of a Schedule 'B' Municipal Class EA in accordance with the *Environmental Assessment Act*. The intersection improvements are part of an overall operational and safety improvement plan for the Heart Lake Road corridor.

The project location consists of an irregularly shaped parcel of land with a total area of 1.21 ha (see Map 1). This parcel is traversed by the current intersection and is generally bounded by agricultural lands to the north, natural areas to the east and the Heart Lake Conservation Area to the south and west. In legal terms, the project falls on part of Lots 15–16, Concession 2–3 ECR in the Geographic Township of Chinguacousy, former Peel County.

Heart Lake Road and Countryside Drive are presently considered Minor Arterial Roads as outlined in Schedule B of the *City of Brampton Official Plan*. Currently Heart Lake Road is a two-lane road with a rural cross section (i.e., partly paved shoulders and open ditches) which intersects with Countryside Drive which has an urban cross-section (i.e., five-lane road, curbs, sidewalks and streetlights).

The purpose of this assessment is to identify and evaluate cultural heritage resources within and adjacent to the project location that may be impacted by the proposed Heart Lake Road and Countryside Drive Intersection Improvement project. This assessment was conducted in accordance with the aims of the *Environmental Assessment Act*, R.S.O. 1990, *Provincial Policy Statement* (2020) and the *Ontario Heritage Act*, R.S.O. 1990, c. O.18, *Guideline for Preparing the Cultural Heritage Resource Component of Environmental Assessments* (MHSTCI 1992), *Ontario Heritage Tool Kit series* (MHSTCI 2006a), the *Region of Peel Official Plan* (2018) and *City of Brampton Official Plan* (Consolidated September 2020).

All notes, photographs and records pertaining to the heritage assessment are currently housed in ARA's office located at 900 Guelph Street – Unit 219, Kitchener, Ontario. Subsequent long-term storage will occur at the same location.

Map 1: Project Location in the City of Brampton (Produced by ARA under licence using ArcGIS® software by Esri, © Esri)

2.0 LEGISLATION AND POLICY REVIEW

The framework for this assessment report is provided by federal guidelines, provincial environmental and planning legislation and policies as well as regional and local municipal Official Plans and guidelines.

2.1 Federal Guidelines

At the national level, *The Standards and Guidelines for Conservation of Historic Places in Canada* (Parks Canada 2010) provides guidance for the preservation, rehabilitation and restoration of historic places, including cultural heritage landscapes (CHLs) and built heritage resources (BHRs). Such guidance includes the planning and implementation of heritage conservation activities.

2.2 Provincial Policies and Guidelines

2.2.1 Environmental Assessment Act and Guideline

Within the *Environmental Assessment Act*, the environment includes "any building, structure, machine or other device or thing made by humans." An Environmental Assessment (EA) is a study that evaluates both the potential positive and/or negative effects of a project on the environment. This assessment is conducted as part of a streamlined EA process known as a Municipal Class EA (MCEA), which applies to routine projects grouped into classes that range from A (minor undertakings) to C (construction of new large facilities). The MCEA applies to municipal infrastructure undertakings including roads, water and wastewater projects.

The Guideline for Preparing the Cultural Heritage Resource Component of Environmental Assessments indicates a need to describe the "affected environment" that is "a spatially defined area within which land will be altered as a result of the proponent's development" (MHSTCI 1992:3). As such, ARA completes in-depth research and evaluation of any potential cultural heritage resource within the project area. ARA's business practice also considers the project location and any adjacent properties. This ensures that every BHR and CHL that may be subject to potential indirect project impacts is identified.

2.2.2 Planning Act

Section 2 of the Ontario *Planning Act* indicates that a council of a Municipality have regard for matters of provincial interest such as: "(d) the conservation of features of significant architectural, cultural, historical, archaeological or scientific interest" (Government of Ontario 2018). Section 3 of the *Planning Act* directs a municipal Council's decisions to be consistent with the *Provincial Policy Statement* (PPS 2020, MMAH 2020).

2.2.3 The Provincial Policy Statement (2020)

The *Provincial Policy Statement* (PPS 2020) contains a combined statement of the Province's land use planning policies. It provides the provincial government's policies on a range of land use planning issues including cultural heritage outlined. As outlined in Section 2.0 on Wise Use of and Management of Resources: "Ontario's long-term prosperity, environmental health, and social well-

being depend on conserving biodiversity, protecting the health of the Great Lakes, and protecting natural heritage, water, agricultural, mineral and cultural heritage and archaeological resources for their economic, environmental and social benefits" (MMAH 2020:24). The PPS 2020 (MMAH 2020:31) promotes the conservation of cultural heritage resources through detailed polices in Section 2.6, such as "2.6.1 Significant built heritage resources and significant cultural heritage landscapes shall be conserved" and "2.6.3 Planning authorities shall not permit development and site alteration on adjacent lands to protected heritage property except where the proposed development and site alteration has been evaluated and it has been demonstrated that the heritage attributes of the protected heritage property will be conserved."

2.2.4 Ontario Heritage Act

The Ontario Heritage Act, R.S.O. 1990, c.018 (OHA) is the guiding piece of provincial legislation for the conservation of significant cultural heritage resources in Ontario. The OHA gives provincial and municipalities governments the authority and power to conserve Ontario's heritage. The Act has policies which address individual properties (Part IV), heritage districts (Part V), and allows municipalities to create a register of non-designated properties which may have cultural heritage value or interest (Section 27).

In order to objectively identify cultural heritage resources, O. Reg. 9/06 made under the *OHA* sets out three principal criteria with nine sub-criteria for determining cultural heritage value or interest (CHVI) (MHSTCI 2006b:20–27). The criteria set out in the regulation were developed to identify and evaluate properties for designation under the *OHA*. Best practices in evaluating properties that are not yet protected employ O. Reg. 9/06 to determine if they have CHVI. O. Reg 9/06 is also applied to consider the built and natural features and the property as a whole. The O. Reg. 9/06 criteria include: design or physical value, historical or associative value and contextual value.

- 1. The property has design value or physical value because it,
 - i. is a rare, unique, representative or early example of a style, type, expression, material or construction method,
 - ii. displays a high degree of craftsmanship or artistic merit, or
 - iii. demonstrates a high degree of technical or scientific achievement.
- 2. The property has historical value or associative value because it,
 - i. has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community,
 - ii. yields, or has the potential to yield, information that contributes to an understanding of a community or culture, or
 - iii. demonstrates or reflects the work or ideas of an architect, artist, builder, designer or theorist who is significant to a community.
- 3. The property has contextual value because it,
 - i. is important in defining, maintaining or supporting the character of an area,
 - ii. is physically, functionally, visually or historically linked to its surroundings, or
 - iii. is a landmark. O. Reg. 9/06, s. 1 (2).

The *OHA* provides three key tools for the conservation of built heritage resources (BHRs) and cultural heritage landscapes (CHLs). It allows for protection as:

- 1. A single property (i.e., farmstead, park, garden, estate, cemetery), a municipality can designate BHRs and CHLs as individual properties under Part IV of the *OHA*.
- 2. Multiple properties or a specific grouping of properties may be considered a CHL, as such, a municipality can designate the area as a Heritage Conservation District (HCD) under Part V of the *OHA*.
- 3. Lastly, a municipality has the authority to add an individual or grouping of non-*OHA* designated property(ies) of heritage value or interest on their Municipal Heritage Register.

An *OHA* designation provides the strongest heritage protection available for conserving cultural heritage resources. It allows a municipality to deny demolition permits, to guide change through development review of protected property(ies) and adjacent protected property(ies) and to control property alterations through a heritage permit system.

2.2.5 Summary of Provincial Policies

The PPS addresses cultural heritage resources, including cultural heritage landscapes. The PPS notes that significant heritage resources "shall be conserved". This cultural heritage assessment will evaluate the potential cultural heritage resources located within the area to be affected by the Heart Lake Road and Countryside Drive Intersection Improvement project.

2.3 Municipal Policies

2.3.1 Region of Peel

One of the main goals of *Region of Peel Official Plan* is: "To create healthy and sustainable regional communities for those living and working in Peel which is characterized by physical, mental, economic and social well being; minimized crime, hunger and homelessness; a recognition and preservation of the region's natural and cultural heritage" (Region of Peel 2018:6). The importance of cultural heritage in the Region of Peel is emphasized by the numerous policies the OP has addressing cultural heritage.

Section 3.6 of the OP identifies policies related specifically to cultural heritage in Peel Region. Subsection 3.6.1 provides the objectives including:

- 1. To identify, preserve and promote cultural heritage resources, including the material, cultural, archaeological and built heritage of the region, for present and future generations.
- 2. To promote awareness and appreciation, and encourage public and private stewardship of Peel's heritage
- 3. To encourage cooperation among the area municipalities, when a matter having inter-municipal cultural heritage significance is involved.
- 4. To support the heritage policies and programs of the area municipalities (2018:89).

The Peel Regional Council has outlined multiple policies that encourage and, in some cases, direct area municipalities to appropriate manage their cultural heritage resources. Policy 3.6.2.1 (2018:89) states that Regional Council will "Direct the area municipalities to include in their official plans policies for the definition, identification, conservation and protection of cultural heritage resources in Peel, in cooperation with the Region, the conservation authorities and aboriginal groups, and to provide direction for their conservation and preservation, as required." Additionally, there are policies that direct the Region's actions as outlined in Policy 3.6.2.4 (2018:90) stating: "Require and support cultural heritage resource impacts assessments, where appropriate for infrastructure projects, including Region of Peel projects". There also is a need to address development adjacent to cultural heritage properties (i.e. "protected" properties), such that area municipalities are directed to only allow development and site alteration on adjacent lands "where the proposed property has been evaluation and it has been demonstrated that the heritage attributes of the protected heritage property will be conserved (Region of Peel 2018:90).

2.3.2 City of Brampton Official Plan

With respect to cultural heritage, goals of the *City of Brampton Official Plan* (OP) are to: "conserve the cultural heritage resources of the City for the enjoyment of existing and future generations" and to "Preserve, restore and rehabilitate structures, buildings or sites deemed to have significant historic, archaeological, architectural or cultural significance and, preserve cultural heritage landscapes; including significant public views" (2020a:4.10-2).

Section 2.1 Physical and Environmental Consideration notes:

Two major conservation areas (Claireville and Heart Lake), together with additional lands owned by the Toronto and Region Conservation Authority are significant permanent open space resources. Also contributing to open space resources are the City's park system and the natural heritage features and areas acquired and secured through the development approvals process (2020a:2-3)

Section 4.10.1.4 of the OP lays out the criteria for assess heritage significance. It states:

Criteria for assessing the heritage significance of cultural heritage resources shall be developed. Heritage significance refers to the aesthetic, historic, scientific, cultural, social or spiritual importance or significance of a resource for past, present or future generations. The significance of a cultural heritage resource is embodied in its heritage attributes and other character defining elements including: materials, forms, location, spatial configurations, uses and cultural associations or meanings. Assessment criteria may include one or more of the following core values:

- Aesthetic, Design or Physical Value;
- *Historical or Associative Value; and/or,*
- *Contextual Value.* (2020a:4.10-3)

Section 4.10.1.6 states:

The City will give immediate consideration to the designation of any heritage resource under the Ontario Heritage Act if that resource is threatened with demolition, significant alterations or other potentially adverse impacts (2020a:4.10-3).

Section 4.10.2 outlines policies regarding Cultural Heritage Landscapes. The policies include:

- 4.10.2.1 The City shall identify and maintain an inventory of cultural heritage landscapes as part of the City's Cultural Heritage Register to ensure that they are accorded with the same attention and protection as the other types of cultural heritage resources.
- 4.10.2.2 Significant cultural heritage landscapes shall be designated under either Part IV or Part V of the Ontario Heritage Act, or established as Areas of Cultural Heritage Character as appropriate.
- 4.10.2.3 Owing to the spatial characteristics of some cultural heritage landscapes that they may span across several geographical and political jurisdictions, the City shall cooperate with neighbouring municipalities, other levels of government, conservation authorities and the private sector in managing and conserving these resources. (2020a:4.10-6)

Section 4.10.9 outlines implementation and decision-making processes. Policies 4.10.9.2 reads:

The City shall use the power and tools provided by the enabling legislation, policies and programs, particularly the Ontario Heritage Act, the Planning Act, the Environmental Assessment Act and the Municipal Act in implementing and enforcing the policies of this section. These shall include but not be limited to the following:

- (i)The power to stop demolition and alteration of designated heritage properties and resources provided under the Ontario Heritage Act and as set out in Section 4.10.1 of this policy;
- (ii)Requiring the preparation of a Heritage Impact Assessment for development proposals and other land use planning proposals that may potentially affect a designated or significant heritage resource or Heritage Conservation District;
- (vii)Identifying, documenting and designating cultural heritage resources as appropriate in the secondary and block plans and including measures to protect and enhance any significant heritage resources identified as part of the approval conditions; and, (2020a:4.10-13)

The policies quote here are a sample of the broad range of policies for the conservation of cultural heritage resources contained in the *City of Brampton Official Plan*.

2.3.3 Summary of Municipal Policies

These Official Plan policies call for a careful analysis of the CHVI and attributes of identified resources and landscapes, coupled with an analysis of project impacts and an outline of potential mitigation measures to support the preservation, restoration and utilization of heritage resources.

2.4 Legislation Summary

Through careful analysis of the heritage values and attributes of an identified resource, coupled with an analysis of project impacts and an outline of potential mitigation measures, the aims of the *Standards and Guidelines for the Conservation of Historic Places in Canada*, the provincial policies and guides as well as the Regional and Municipal Official Plans can be met.

3.0 KEY CONCEPTS

The following concepts require clear definition in advance of the methodological overview and proper understanding is fundamental for any discussion pertaining to cultural heritage resources:

- Cultural Heritage Value or Interest (CHVI), also referred to as Heritage Value, is identified if a property meets one of the criteria outlined in O. Reg. 9/06 namely historic or associate value, design or physical value and/or contextual value. Provincial significance is defined under *Ontario Heritage Act (OHA) O. Reg.* 10/06.
- **Built Heritage Resource** (BHR) can be defined in the *PPS* as: "a building, structure, monument, installation or any manufactured or constructed part or remnant that contributes to a property's cultural heritage value or interest as identified by a community, including Indigenous community. Built heritage resources are located on property that has been designated under Parts IV or V of the *Ontario Heritage Act*, or that may be included on local, provincial and/or federal and/or international registers" (MMAH 2020:41).
- Cultural Heritage Landscape (CHL) is defined in the *PPS* as: "a defined geographical area that may have been modified by human activity and is identified as having cultural heritage value or interest by a community, including an Aboriginal community. The area may involve features such as structures, spaces, archaeological sites or natural elements that are valued together for their interrelationship, meaning or association. Examples may include, but are not limited to, heritage conservation districts designated under the *Ontario Heritage Act*; villages, parks, gardens, battlefields, mainstreets and neighbourhoods, cemeteries, trailways, viewsheds, natural areas and industrial complexes of heritage significance; and areas recognized by federal or international designation authorities (e.g., a National Historic Site or District designation, or a UNESCO World Heritage Site)" (MMAH 2020:42).

It is recognized that the heritage value of a CHL is often derived from its association with historical themes that characterize the development of human settlement in an area (see Scheinman 2006 for discussion of typical themes).

The Standards and Guidelines for the Conservation of Historic Places define a CHL as "any geographical area that has been modified, influenced or given special cultural meaning by people, and that has been formally recognized for its heritage value" (Parks Canada 2010:113). It identifies the three categories of cultural landscapes which are also contained within the UNESCO (2019) Operational Guidelines for the Implementation of the World Heritage Convention: designed; organically evolved (vernacular); and associative. The Standards and Guidelines further outlines specific guidelines for cultural heritage landscapes, including 11 subsections on: "evidence of land use; evidence of traditional practices; land patterns; spatial organization; visual relationships; circulation; ecological features; vegetation; landforms; water features; and built features" (Parks Canada 2010:50). The Ministry of Heritage, Sport, Tourism and Culture Industries (MHSTCI) Information Sheet #2 Cultural Heritage Landscapes (2006d:1-2) continues these definitions:

- Designed Cultural Landscapes These are areas that are clearly defined and created intentionally by human design. They may include garden and parkland landscapes constructed for aesthetic reasons and may be associated with religious or monumental buildings.
- Evolved Cultural Landscapes This type of landscape is often the result of a social, economic, administrative and/or religious motivation that has continued to develop into its present form due to associations with, or in response to, its natural environment. There are two sub-categories of this CHL type:
 - Relic Landscape One in which an evolutionary process came to an end but its significant distinguishing features are still visible.
 - Continuing Landscape One that retains associations with traditional practices but which retains an active social role in the current community while continuing to evolve and exhibit material evidence of this ongoing evolution.

Associative Cultural Landscapes – These landscapes have religious, artistic, or cultural associations with nature rather than with material cultural evidence, which may be insignificant or absent.

- Conserved means "the identification, protection, management and use of built heritage resources, cultural heritage landscapes and archaeological resources in a manner that ensures their cultural heritage value or interest is retained. This may be achieved by the implementation of recommendations set out in a conservation plan, archaeological assessment, and/or heritage impact assessment that has been approved, accepted or adopted by relevant planning authority and/or decision-makers. Mitigative measures and/or alternative development approaches can be included in these plans and assessments" (MMAH 2020:41).
- **Heritage Attributes** are defined as: "the principal features or elements that contribute to a protected heritage property's cultural heritage value or interest, and may include the property's built, constructed, or manufactured elements, as well as natural landforms, vegetation, water features, and its visual setting (e.g. significant views or vistas to or from a protected heritage property)." (MMAH 2020:44-45).

- Protected heritage property is defined as "property designated under Parts IV, V or VI of the Ontario Heritage Act; property subject to a heritage conservation easement under Parts II or IV of the Ontario Heritage Act; property identified by the Province and prescribed public bodies as provincial heritage property under the Standards and Guidelines for Conservation of Provincial Heritage Properties; property protected under federal legislation, and UNESCO World Heritage Sites" (MMAH 2020:49).
- **Significant** in reference to cultural heritage is defined as: "resources that have been determined to have cultural heritage value or interest. Processes and criteria for determining cultural heritage value or interest are established by the Province under the authority of the Ontario Heritage Act" (MMAH 2020:51).

The Region of Peel provides definitions of terms that are relevant to their cultural heritage policies. Many reinforce the Provinces terminology; however, one is distinctive:

• Cultural Heritage Landscapes are "any discrete aggregation of features altered through human activity which has been identified as being important to a community. They can provide the contextual and spatial information necessary to preserve, interpret or reinforce the understanding of important historical settings and changes to past patterns of land use. Cultural landscape include any heritage area perceived as an ensemble of culturally derived features such as neighborhood, townscapes, farmscape, or waterscape that illustrate noteworthy relationships between people and their surround environment" (Region of Peel 2018:121).

City of Brampton's Official Plan also contains distinctive terms related to their cultural heritage policies. Several are:

- Adjacent lands means "lands that are contiguous to a specific natural heritage feature or area where it is likely that development or site alteration would have a negative impact on the feature, or area...(City of Brampton 2020:5-3).
- **Significant** for cultural heritage is defined as: "in regard to cultural heritage and archaeology, resources that are valued for the important contribution they make to our understanding of the history of a place, an event, or a people (2020a:5-23).

4.0 HISTORICAL CONTEXT

Background information is obtained from aerial photographs, historical maps (i.e., illustrated atlases), archival sources (i.e., historical publications and records), published secondary sources (online and print) and local historical organizations.

4.1 Historical Context

The City of Brampton and Region of Peel have a long history of settlement including pre-contact and post-contact Indigenous campsites and villages due to its favourable farmland and productive river and lakeside lands. As the potential cultural heritage resource located within the project location are tied to this history prior to the arrival of colonial settlers as well as the initial settlement and growth of Euro-Canadian communities in the City of Brampton, this historical context section spans the Pre-Contact Indigenous occupation history through Euro-Canadian settlement history to present. The early history of the project location can be effectively discussed in terms of major

historical events. The principal characteristics associated with these events are summarized in Table 1 and Table 2.

4.2 Settlement History

4.2.1 Pre-Contact

The Pre-Contact history of the region is lengthy and rich, and a variety of Indigenous groups inhabited the landscape. Archaeologists generally divide this vibrant history into three main periods: Palaeo, Archaic, and Woodland. Each of these periods comprise a range of discrete subperiods characterized by identifiable trends in material culture and settlement patterns, which are used to interpret past lifeways. The principal characteristics of these sub-periods are summarized in Table 1.

Table 1: Pre-Contact Settlement History (Wright 1972; Ellis and Ferris 1990; Warrick 2000; Munson and Jamieson 2013)

(Wright 1972; Ellis and Ferris 1990; Warrick 2000; Munson and Jamieson 2013)			
Sub-Period	Timeframe	Characteristics	
Early Palaeo	9000–8400 BC	Gainey, Barnes and Crowfield traditions; Small bands; Mobile hunters and gatherers; Utilization of seasonal resources and large territories; Fluted projectiles	
Late Palaeo	8400–7500 BC	Holcombe, Hi-Lo and Lanceolate biface traditions; Continuing mobility; Campsite/Way-Station sites; Smaller territories are utilized; Non-fluted projectiles	
Early Archaic	7500–6000 BC	Side-notched, Corner-notched (Nettling, Thebes) and Bifurcate traditions; Growing diversity of stone tool types; Heavy woodworking tools appear (e.g., ground stone axes and chisels)	
Middle Archaic	6000–2500 BC	Stemmed (Kirk, Stanly/Neville), Brewerton side- and corner- notched traditions; Reliance on local resources; Populations increasing; More ritual activities; Fully ground and polished tools; Net-sinkers common; Earliest copper tools	
Late Archaic	2500–900 BC	Narrow Point (Lamoka), Broad Point (Genesee) and Small Point (Crawford Knoll) traditions; Less mobility; Use of fish-weirs; True cemeteries appear; Stone pipes emerge; Long-distance trade (marine shells and galena)	
Early Woodland	900–400 BC	Meadowood tradition; Crude cord-roughened ceramics emerge; Meadowood cache blades and side-notched points; Bands of up to 35 people	
Middle Woodland	400 BC–AD 600	Point Peninsula tradition; Vinette 2 ceramics appear; Small camp sites and seasonal village sites; Influences from northern Ontario and Hopewell area to the south; Hopewellian influence can be seen in continued use of burial mounds	
Middle/Late Woodland Transition	AD 600–900	Gradual transition between Point Peninsula and later traditions; Princess Point tradition emerges elsewhere (i.e., in the vicinity of the Grand and Credit Rivers)	
Late Woodland (Early)	AD 900–1300	Glen Meyer tradition; Settled village-life based on agriculture; Small villages (0.4 ha) with 75–200 people and 4–5 longhouses; Semi-permanent settlements	

Sub-Period	Timeframe	Characteristics
Late Woodland (Middle)	AD 1300– 1400	Uren and Middleport traditions; Classic longhouses emerge; Larger villages (1.2 ha) with up to 600 people; More permanent settlements (30 years)
Late Woodland (Late)	AD 1400– 1600	Huron-Petun tradition; Globular-shaped ceramic vessels, ceramic pipes, bone/antler awls and beads, ground stone celts and adzes, chipped stone tools, and even rare copper objects; Large villages (often with palisades), temporary hunting and fishing camps, cabin sites and small hamlets; Territorial contraction in early 16 th century; Fur trade begins ca. 1580; European trade goods appear

Although Iroquoian-speaking populations tended to leave a much more obvious mark on the archaeological record and are therefore emphasized in the Late Woodland entries above, it must be understood that Algonquian-speaking populations also represented a significant presence in southern Ontario. Due to the sustainability of their lifeways, archaeological evidence directly associated with the Anishinaabeg remains elusive, particularly when compared to sites associated with the more sedentary agriculturalists. Many artifact scatters in southern Ontario were likely camps, chipping stations or processing areas associated with the more mobile Anishinaabeg, utilized during their travels along the local drainage basins while making use of seasonal resources. This part of southern Ontario represents the ancestral territory of various Indigenous groups, each with their own land use and settlement pattern tendencies.

4.2.2 Post-Contact

The arrival of European explorers and traders at the beginning of the 17th century triggered widespread shifts in Indigenous lifeways and set the stage for the ensuing Euro-Canadian settlement process. Documentation for this period is abundant, ranging from the first sketches of Upper Canada and the written accounts of early explorers to detailed township maps and lengthy histories. The Post-Contact period can be effectively discussed in terms of major historical events, and the principal characteristics associated with these events are summarized in Table 2.

Table 2: Post-Contact Settlement History (Smith 1846; Coyne 1895; Lajeunesse 1960; Ellis and Ferris 1990; Surtees 1994; Wilson's Publishing Co. 2000; AO 2015)

Historical Event	Timeframe	Characteristics	
	Brûlé explores southern Ontario in 1610; Champlain travels		
	Early 17 th	through in 1613 and 1615/1616, encountering a variety of	
Early Exploration		Indigenous groups (including both Iroquoian-speakers and	
	century	Algonquian-speakers); European goods begin to replace	
		traditional tools	

Historical Event	Timeframe	Characteristics
Increased Contact and Conflict	Mid- to late 17 th century	Conflicts between various First Nations during the Beaver Wars result in numerous population shifts; European explorers continue to document the area, and many Indigenous groups trade directly with the French and English; 'The Great Peace of Montreal' treaty established between roughly 39 different First Nations and New France in 1701
Fur Trade Development	Early to mid- 18 th century	Growth and spread of the fur trade; Peace between the French and English with the Treaty of Utrecht in 1713; Ethnogenesis of the Métis; Hostilities between French and British lead to the Seven Years' War in 1754; French surrender in 1760
British Control	Mid- to late 18 th century	Royal Proclamation of 1763 recognizes the title of the First Nations to the land; Numerous treaties subsequently arranged by the Crown; First land cession under the new protocols is the Seneca surrender of the west side of the Niagara River in 1764; The Niagara Purchase (Treaty 381) in 1781 included this area
Loyalist Influx	Late 18 th century	United Empire Loyalist influx during and after the American Revolutionary War (1775–1783); British develop interior communication routes and acquire additional lands; Constitutional Act of 1791 creates Upper and Lower Canada
County Development	Late 18 th to early 19 th century	Area initially adjacent to York County's 'West Riding'; Became part of York County's 'West Riding' in 1798; Provisional agreement for the purchase of the southern portion (Treaty 13A) completed in 1805; Confirmed during the Head of the Lake Purchase (Treaty 14) in 1806; Northern portion acquired as part of the Ajetance Purchase (Treaty 19) in 1818; Peel County established after the abolition of the district system in 1849
Township Formation	Early 19 th century	Chinguacousy primarily comprised lands obtained in 1818 and was settled around the same time; Surveyed by R. Bristol in 1819, divided into west and east halves on either side of Hurontario Street (Centre Road); Majority of first settlers from New Brunswick, the United States and parts of Upper Canada; Combined population of Toronto Gore and Chinguacousy was only 412 by 1821
Township Development	Mid-19 th to early 20 th century	Population reached 3,965 by 1842; 30,342 ha taken up by 1846, with 10,629 ha under cultivation; 7 saw mills and 1 grist mill in operation at that time; Traversed by the Grand Trunk Railway (1856), the Hamilton & North Western Railway (1877), the Credit Valley Railway (1878/79) and the Toronto Suburban Railway (1917); Brampton was the principal settlement; Other communities at Cheltenham, Salmonville, Victoria, Campbell's Cross, Kilmanagh, Sand Hill, Mayfield, Edmonton, Alloa, Norval Station, Westervelt's Corners, Woodhill, Springbrook and Huttonville

4.2.3 Heart Lake Area History

Heart Lake is a heart-shaped kettle lake that was created by a block of ice that was trapped under a melting glacier approximately 10,000 years ago. The lake itself is 16.5 ha (40.8 ac) and is situated within wetlands that now comprise the Heart Lake Conservation Area (Stantec 2019:5.1–5.3). Historically, the surrounding area was exploited by settlers for farming purposes, though today the principle use is suburban development. In 1957, the Heart Lake Conservation Area was established on lands purchased from A.E. Taylor by the Metropolitan Toronto and Region Conservation Authority (TRCA) in 1956 (TRCA n.d.:14). Heart Lake Road parallels the east side of the conservation area, which was formerly known as Concession Road 2 in the Township of Chinguacousy.

4.3 Project Location History

4.3.1 Mapping and Imagery Analysis

In order to gain a general understanding of the project location, one patent plan, two historic settlement maps, one topographic map and two aerial images were examined during the research component of the study. Specifically, the following resources were consulted:

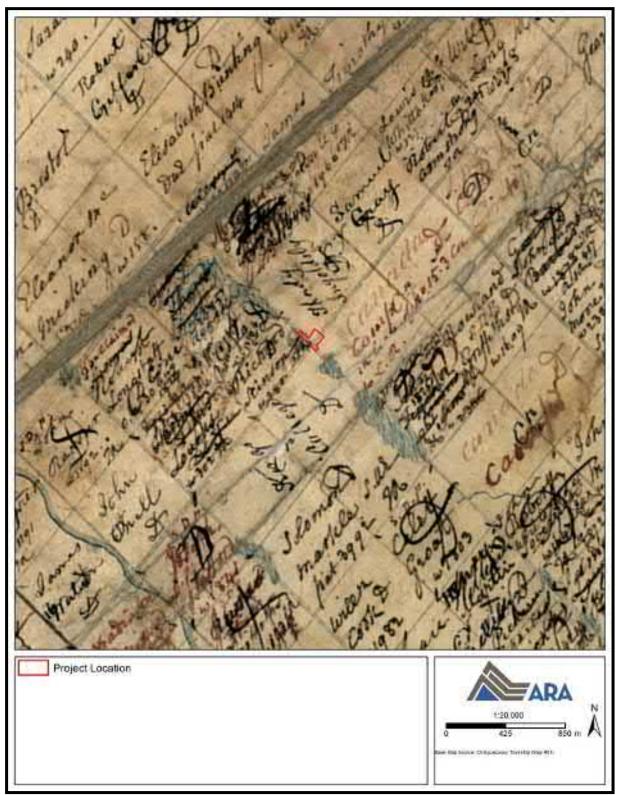
- The Chinguacousy Township Patent Plan (No Date) (AO 2015);
- G.R Tremaine's *Tremaine's Map of the County of Peel, Canada West* (1859) (OHCMP 2019);
- Walker & Miles *Illustrated Historical Atlas of the County of Peel, Ont.* (1877) (McGill University 2001);
- A topographic map from 1909 (OCUL 2020); and
- Aerial images from 1954 and 2006 (Google Earth 2020; University of Toronto 2020).

The limits of the project location are shown on georeferenced versions of the consulted historical resources in Map 2–Map 7.

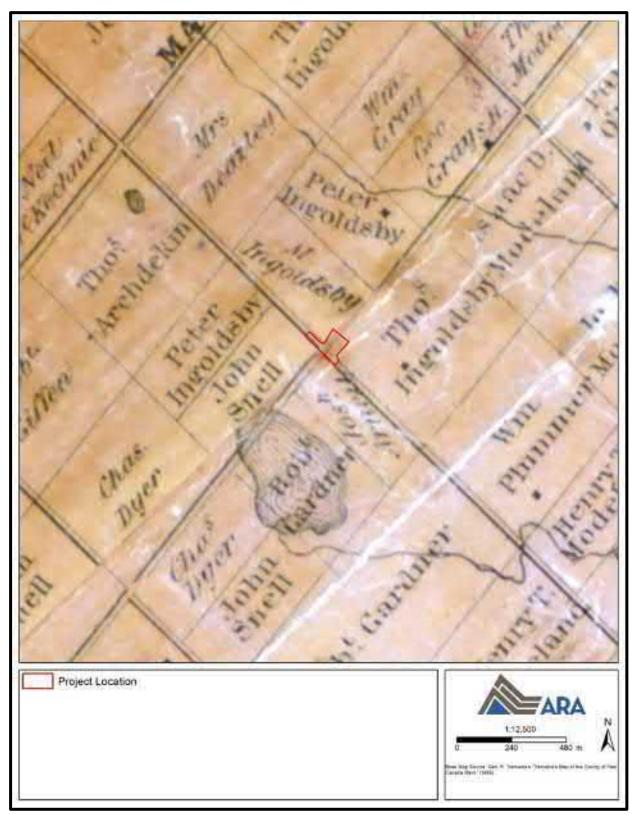
The *Chinguacousy Township* Patent Plan, initiated on a copy of an original survey plan and updated with patent information until the records were transferred to the Archives of Ontario, indicates that Lot 15, Concession 3 ECR was patented to the Canada Company and Lot 16, Concession 3 ECR to Thady (Thaddeus) Ingoldsby (see Map 2). Interestingly, Heart Lake is not depicted.

Tremaines' Map of the County of Peel, Canada West (1859) identifies Thomas Ingoldsby as an early occupant of Lot 15 and M. Ingoldsby as an early occupant of Lot 16 (see Map 3). The buildings associated with the Ingoldsby property are not located within the project location. As early settlers to the Chinguacousy Township, the Ingoldsby family, including Thomas and his son, played an important contribution to the civic growth and early development of the area. Thomas Ingoldsby,

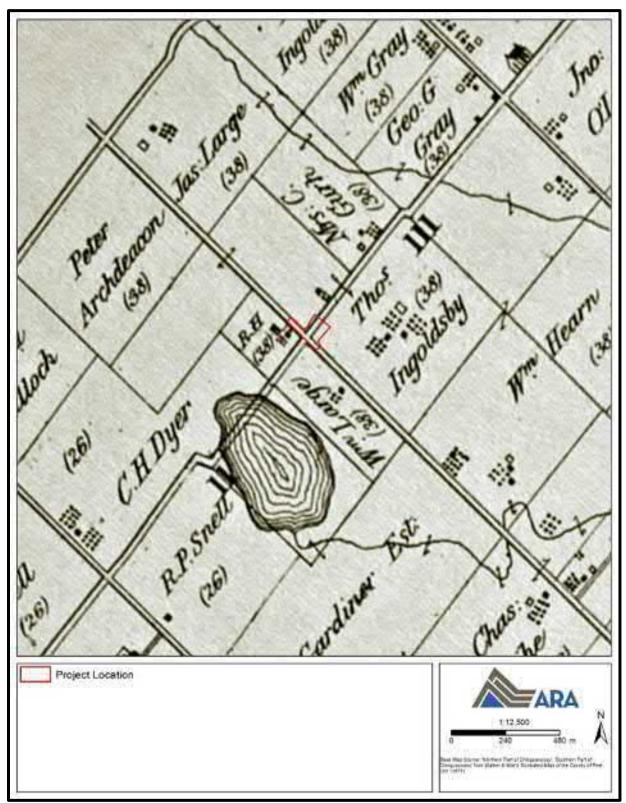
was, at one time, the owner of an inn in Mayfield. He served the township as a path master, a school board Trustee and a Justice of the Peace. Son Thomas J.


Ingoldsby took over the farm in 1889. He served as a school board trustee, a councillor on the Chinguacousy Township Counsel, deputy Reeve and Reeve (1901-1093[1903]). Thomas Ingoldsby III took over the family farm in 1915 after his father's retirement (ERA 2010:7)

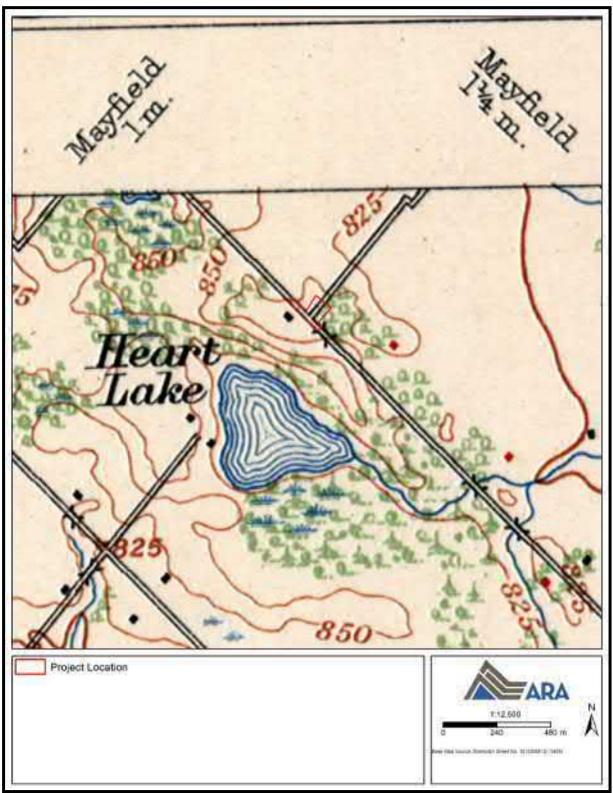
Heart Lake, two tributaries and a kettle lake are depicted in the surrounding landscape, as is Heart Lake Road and Countryside Drive. Countryside Drive is illustrated as continuing past Heart Lake Road and through Heart Lake, though this reflects an unopened road allowance instead of a continuation of the roadway.


The *Illustrated Historical Atlas of the County of Peel, Ont.* (1877) demonstrates that Thomas Ingoldsby continued to occupy Lot 15 as well as Lot 16; formerly occupied by M. Ingoldsby (see Map 4). No structures are present within the project location, however, at least six structures are depicted in the surrounding area, including the Ingoldsby farmstead and orchards to the east. Census documentation confirms that Thomas, his wife Anne and their twelve children, had a well-established farm with two houses, a barn and an orchard by this time.

The topographic map from 1909 shows that the project location consisted of a mixture of transportation corridors, cleared farming lands to the north and deciduous woodlot to the southeast (see Map 5). No structures are present within the project location; however, a bridge abuts the southeastern limit. The Ingoldsby brick farmhouse (red square) is present and there is also a wood (black) homes are shown within adjacent lands. Heart Lake and its associated wetlands, tributary and forested areas are clearly depicted.


The aerial image from 1954 depicts the project location in a similar vein to the topographic map, with the Ingoldsby's farm and associated complex of buildings visible including the long driveway which provides access to Heart Lake Road (see Map 6). The aerial shows the buildings are surrounded by a row of mature trees which are further surrounded by open agricultural fields. The property continues to be owned by the Ingoldsby family at this time. The Ingoldsby family were "one of only 106 Peel County properties owned by direct decedents of the same family since 1867" and commemorated in 1967 as an Ontario Century Farm" (ERA 2010:8). Since the 1909 topographical map, subsequent images and aerials show the presence of the woodlot on Ingoldsby property at the south-east corner of the project location. The imagery from 2006 depicts the widening and reconstruction of Countryside Drive (see Map 7). The imagery shows the woodlot on the south-east side of Countryside drive and it appears the north side of the Countryside drive continues to be used for agricultural purposes.

Map 2: Chinguacousy Township Patent Plan (No Date) (Produced under licence using ArcGIS® software by Esri, © Esri; AO 2015)



Map 3: G.R. Tremaine's *Tremaine's Map of the County of Peel, Canada West* (1859) (Produced under licence using ArcGIS® software by Esri, © Esri; OHCMP 2019)

Map 4: Walker & Miles' Illustrated Historical Atlas of the County of Peel, Ont. (1877)

(Produced under licence using ArcGIS® software by Esri, © Esri; McGill University 2001)

Map 5: Topographic Map (1909) (Produced under licence using ArcGIS® software by Esri, © Esri, OCUL 2020)

Map 6: Aerial Image (1954) (Produced under licence using ArcGIS® software by Esri, © Esri; University of Toronto 2020)

Map 7: Aerial Image (2006) (Produced under licence using ArcGIS® software by Esri, © Esri; Google Earth 2020)

5.0 CONSULTATION AND HERITAGE CONTEXT

BHRs and CHLs are broadly referred to as cultural heritage resources. A variety of types of recognition exist to commemorate and/or protect cultural heritage resources in Ontario.

The Minister of Canadian Heritage, on the advice of the Historic Sites and Monuments Board of Canada (HSMBC), makes recommendations to declare a site, event or person of national significance. The National Historic Sites program commemorates important sites that had a nationally significant effect on, or illustrates a nationally important aspect of, the history of Canada. A National Historic Event is a recognized event that evokes a moment, episode, movement or experience in the history of Canada. National Historic People are people who are recognized as those who through their words or actions, have made a unique and enduring contribution to the history of Canada. There exists Parks Canada's online *Directory of Federal Heritage Designations* which captures these national commemorations. This directory also lists Heritage Railway Stations, Federal Heritage Buildings and Heritage Lighthouses. The *Federal Canadian Heritage Database* was searched, and no plaques or properties were noted within or adjacent to the project location. It is important to note that these federal commemoration programs do not offer protection from alteration or destruction.

The Ontario Heritage Trust (OHT) operates the Provincial Plaque Program that has over 1,250 provincial plaques recognizing key people, places and events that shaped the province. Additionally, properties owned by the province may be recognized as a "provincial heritage property" (MHSTCI 2010). The OHT plaque database were searched and none of the properties within or adjacent to the project location are commemorated with an OHT plaque. A cultural heritage resource may also be protected through an OHT or municipal easement.

MHSTCI's current list of Heritage Conservation Districts was consulted. No designated districts were identified in or adjacent to the project location (MHSTCI 2019). The list of properties designated by the MHSTCI under Section 34.5 of the OHA was consulted. No properties in or adjacent to the project location are listed.

Many municipal heritage committees and historical societies provide plaques for local places of interest. "One role of municipal heritage groups (i.e., municipal heritage committees, historical societies) is to educate and inform the community on local heritage and several ways this could occur could include: producing descriptive guides and newsletters or by installing commemorative plaques" (MHSTCI 2007:8).

At project commencement, ARA contacted the City of Brampton to inquire about: 1) protected properties within or adjacent to the project location, 2) properties with other types of recognition in or adjacent to the project location, 3) previous studies relevant to the current study, and 4) other heritage concerns regarding the project location.

ARA staff contacted the City of Brampton via email on October 2, 2020. A response was received from the City's Heritage Planner, indicating that the Heart Lake Road corridor, from Sandalwood Parkway to Mayfield Road, is considered a CHL, however it has not been formally recognize or identified on the Heritage Register, and that the property at 10881 Heart Lake Road used to contain

a farmhouse (lost due to fire) outbuildings (collapsed circa 2001) and a silo (demolished circa 2010) continues to be listed on the register. Lastly, it was also noted that the class identification system used to prioritize heritage resources is not something that current heritage staff employ and does not need to be referenced in the assessment.

5.1 Lake Conservation Area Master Plan

The *Heart Lake Conservation Area Master Plan* was created in 2009 with the goal "to protect, conserve and restore the valuable ecological features and functions of the site, while guiding the current and potential future public uses of the area" (HLCA Master Plan, 2009:5).

Section 4.3 Cultural Heritage Resources recommendations include:

- Ensure that the TRCA's Archaeological Resource Management Unit conducts archaeological assessments of any locations where ground level disturbances are planned, such as for trail routes, parking lots, picnic shelters and washroom facilities.
- Protect and conserve all archaeological sites (known and unknown) within HLCA. This is important given their rarity and the direct connection that they provide to the past.
- Pursue all opportunities to preserve and interpret heritage sites for public education. For example, interpretive signage could be provided at old drinking water wells to explain the significance of these structures as a part of the range of water sources local people have used. TRCA should contact staff at the Region of Peel and the City of Brampton to further TRCA's understanding of these heritage sites.
- Research the history of HLCA and incorporate it into regeneration activities.
- Determine if there was an Aboriginal community in the HLCA area by conducting a frozen finger analysis of Teapot Lake. If the data indicates that such a community existed, incorporate this information into interpretive signage at HLCA.
- Create a Medicine Wheel garden at HLCA to celebrate past and current Aboriginal use of the area.
- Make the HLCA Background Report available to researchers and members of the public to raise awareness and appreciation of the history of humankind in this area. n Encourage the City of Brampton Heritage Board to continue to update and add to their existing inventories.

The recommendations outlined in the Master Plan generally pertain to archaeological resources. Archaeological assessment is outside of the scope of this CHAR and addressed in a separate process. Nonetheless they have been considered throughout this assessment.

6.0 FIELD SURVEY

The field survey component of an assessment involves the collection of primary data through systematic photographic documentation of all potential cultural heritage resources within the project location, as identified through historical research and consultation. Generally, potential cultural heritage resources are identified by applying a 40-year rolling timeline. This timeline is considered an industry best practice (i.e., MTO 2008). A date of 40 years does not automatically

attribute CHVI to a resource; rather, that it should be flagged as a potential resource and evaluated for CHVI.

Additional cultural heritage resources may also be identified during the survey itself. Photographs capturing all properties with potential BHRs and CHLs are taken, as are general views of the surrounding landscape. The field survey also assists in confirming the location of each potential cultural heritage resource and helps to determine the relationship between resources. Given that such surveys are limited to areas of public access (i.e., roadways, intersections, non-private lands, etc.), there is always the possibility that obscured cultural heritage resources may be missed or that heritage attributes may be refined upon closer inspection.

A field survey was conducted in October 2020 in order to photograph and document the project location, and to record any local features that could enhance ARA's understanding of their setting in the landscape and contribute to the cultural heritage evaluation process. The field survey was conducted from publicly accessible, non-private lands.

7.0 HERITAGE ASSESSMENT

The project location consists of the intersection of Heart Lake Road and Countryside Drive. The project location includes the road, the right of way and a small portion of the adjacent property parcels.

As a result of consultation, existing heritage assessment and field survey, the following BHR and CHL were identified as having potential CHVI: 10881 Heart Lake Road and the Heart Lake Road Corridor.

A summary of the results of the evaluation of the BHR and CHL against the criteria set out in O. Reg. 9/06 can be found in Table 3 and Table 4 and the information sheets with background information, and the evaluations of each heritage resource can be found in Appendix A. The assessment determined that BHR1 and CHL1 met one or more O. Reg. 9/06 criteria.

Map 8: BHR Assessment Results Map (Produced by ARA under licence using ArcGIS® software by Esri, © Esri)

Map 9: CHL Assessment Results Map (Produced by ARA under licence using ArcGIS® software by Esri, © Esri)

Table 3: BHR and CHL with CHVI

Type and Number	Address/Name	Adjacent/ Participating	CHVI (Y/N)	Criteria Met
BHR1	10881 Heart Lake Road	Adjacent	Yes	Historic/associative value.
	Heart Lake Road Corridor	Adjacent and		Historical/associative
CHL1	(Sandalwood Parkway to Mayfield	Participating	Yes	value and
	Road)			Contextual Value

Table 4: BHR and CHL Value Statements and Heritage Attributes

Table 4: BHR and CHL Value Statements and Heritage Attributes				
Type/Number	Address/Name	Value Statement(s)	Heritage Attributes	
BHR1	10881 Heart Lake Road	The primary built heritage resources are no longer extant. Nonetheless the City of Brampton has retained the proprety on the Municipal Heritage Registered as a listed property. 10881 Heart Lake Road is listed on the Municipal Heritage Register due to its historical association with the Ingoldsby family. The Ingoldsby family began farming in the area in 1828 and owned the lands associated with 10881 Heart Lake Road for over 150 years. The Ingoldsby family were early settler in Chinguacousy Township and family members served in civic capacities in the early for many years.	In 2010 the Planning Design and Development department report which discussed the CHVI of the silo noted that at that time that the property still retained the: - Tree lines surrounding the original structures - Laneway from Heart Lake Road into the property	
CHL1	Heart Lake Corridor	Heart Lake Road is a two-lane, rural road set in a significant natural setting that has strong historical associative value and contextual heritage value. Its historical value is related to its associations with early road building techniques in the City of Brampton and the TRCA through its connection to the Heart Lake Road Conservation Area. Heart Lake Road and its surrounding land has also yielded, and has potential to further yield, information regarding Indigenous land use and culture due to the archaeological potential of the area and high number of archaeological sites dating to the Archaic period.	The heritage attributes listed are taken directly from Stantec Report described in Section 6.3: •Rural cross section of the road, including the width of the road, two lanes of traffic, and ditching (where present); •Bend in the road to avoid TRCA wetland, approximately 500 m southeast of Mayfield Road; •Intermittent presence of split rail and post-and-rail fencing along the roadside; •Wood utility poles along the roadside; •Natural topography of adjacent lands, including the remaining sections of the Brampton Buried Esker; •Potential, and known, archaeological sites; •Likely historical association with corduroy road construction techniques; •Historical association with the Heart Lake Conservation Area and TRCA;	

Type/Number	Address/Name	Value Statement(s)	Heritage Attributes
			•Linear corridor views along Heart Lake
			Road, bordered by significant natural
			areas; and
			•Natural setting of the roadscape,
			including forests, wetlands, and kettle
			lakes on the west side of the road and
			wetlands, agricultural fields, and kettle
			lakes on the east side of the road.

^{*}Heritage attributes may include, but are not limited to, those listed in this table.

8.0 DEVELOPMENT PLAN

According to the Request for Proposal for Environmental Assessment Study for Heart Lake Road and Countryside Drive Intersection:

Countryside Drive has been improved based on previous TMP and Environmental Assessment recommendations, however, Heart Lake Road was not previously identified as a candidate for improvement in the [Transportation Master Plan] TMP.

The City has identified the need for intersection improvements at Heart Lake Road and Countryside Drive, as part of the overall operational and safety improvements for the Heart Lake Road Corridor" (City of Brampton 2020b: 48).

The existing conditions of the intersection are described as follows:

Heart Lake Road is a north-south minor arterial road, under the jurisdiction of the City, and consists of a 2-lane rural cross-section with a posted speed of 60km/h and a right-of-way (ROW) of 20-30 meters. Countryside Drive is an east-west minor arterial road, also under the jurisdiction of the City, and consists of a 4-lane urban cross-section with a posted speed limit of 60-70km/hr and a right-of-way (ROW) of 30 meters. The existing traffic measures in place at the intersection is a stop control sign on Countryside Drive for vehicles traveling westbound and there is no stop control measure in place for vehicles traveling north-south on Heart Lake Road. (City of Brampton 2020b:50).

The factors that have influenced this EA are described by the City of Brampton in the RFP as follows:

- 1) Opportunity to improve the safety and operations of the intersection;
- 2) Provide traffic calming to support future traffic calming recommendations along Heart Lake Road and to help reduce wildlife mortality along Heart Lake Road;
- 3) Potential to impact the natural environment adjacent to Heart Lake Road;
- 4) Conservation of the cultural heritage landscape
- 5) Approve and proposed adjacent land use; and

6) Long-range transportation planning to meet the demand of increasing population and growth (2020b: 51)

9.0 ANALYSIS OF POTENTIAL IMPACTS

The intersection improvements have the potential to affect cultural heritage resources. MHSTCI InfoSheet #5: Heritage Impact Assessments and Conservation Plans (MHSTCI 2006e:3). provides a list of potential negative impacts for evaluating against any proposed development impacts can be classified as either direct or indirect.

Direct impacts (those that physically affect the heritage resources themselves) include, but are not limited to: initial project staging, excavation/levelling operations, construction of access roads and renovations or repairs over the life of the project. These direct impacts may destroy some or all significant heritage attributes or may alter soils and drainage patterns and adversely impact unknown archaeological resources.

Indirect impacts include, but are not limited to: alterations that are not compatible with the historic fabric and appearance of the area, the creation of shadows that alter the appearance of an identified heritage attribute, the isolation of a heritage attribute from its surrounding environment, the obstruction of significant views and vistas, change in land use such as rezoning allowing for a reduction in open spaces and other less-tangible impacts. There may be positive environmental and cultural effects as a result of an EA undertaking.

An Environmental Assessment Act project has the potential for creating the above negative impacts; however, there may be positive effects as a result of an undertaking. For example, more recent infrastructure may be removed to restore the original views to cultural heritage resources or streetscape improvements might be made.

This project entails intersection improvements and road improvements; as such, there are no detailed designs available that would aid in the identification of project impacts. As a result, potential impacts and mitigation options related to the project will be discussed at a high level.

The heritage value of BHR1 will not be directly or indirectly impacted by the proposed project. BHR1 is adjacent to the project location and no improvement activities are planned for the property parcel. Further, the heritage attributes identified by the City of Brampton are located a distance away from the intersection.

The heritage value and associated attributes of CHL1, may be directly and indirectly impacted by the proposed project. Depending on the nature and extent of the intersection improvements, the rural cross section of the road, including the width of the road, two lanes of traffic, and ditching (where present) may be directly impacted. Further, some wood utility poles along the roadside and the Natural setting of the roadscape, specifically vegetation may be removed during intersection improvements. Linear corridor views along Heart Lake Road, bordered by significant natural areas may also be impacted.

There are no split rail and post-and-rail fencing along the roadside within the project location, and the Bend in the road to avoid TRCA wetland, approximately 500 m southeast of Mayfield Road is located a distance away from the intersection, therefore no direct impacts are anticipated to these heritage attributes.

The heritage attributes of natural topography of adjacent lands, including the remaining sections of the Brampton Buried Esker; likely historical association with corduroy road construction techniques and historical association with the Heart Lake Conservation Area and TRCA will not be impacted by the planned improvements.

The impacts to potential, and known, archaeological sites are being addressed through the archaeological assessment process.

10.0 MITIGATION MEASURES AND RECOMMENDATIONS

The project location consists of an irregularly-shaped parcel of land with a total area of 1.21 ha (Map 1). This parcel is traversed by the current intersection and is generally bounded by agricultural lands to the north, natural areas to the east and the Heart Lake Conservation Area to the south and west.

Heart Lake Road is a two-lane road with a rural cross section (i.e. partly paved shoulders and open ditches) which intersects with Countryside Drive which has an urban cross-section (i.e. five-lane road, curbs, sidewalks, streetlights). The following BHR and CHL were identified within and adjacent to the project location: 10881 Heart Lake Road (BHR1) and Heart Lake Road Corridor (CHL 1).

Detailed designs or plans for the intersection improvements were not available at the time this report was written, however it is not anticipated that the heritage attributes of BHR will not be directly impacted by any intersection improvements. A portion of the Heart Lake Road Corridor (CHL 1) falls within the project location and may be impacted by the proposed intersection improvements. Depending on the nature and extent of the intersection improvements, the rural cross section of the road, including the width of the road, two lanes of traffic, and ditching (where present) may be directly impacted. Further, some wood utility poles along the roadside and the Natural setting of the roadscape, specifically vegetation may be removed during intersection improvements. Linear corridor views along Heart Lake Road, bordered by significant natural areas may also be impacted.

As potential impacts have been identified mitigation measures must be recommended. The MHSTCI *InfoSheet #5: Heritage Impact Assessments and Conservation Plans* (2006d:3) lists specific methods to minimize negative impacts. Several mitigative measures include reducing impacts through alternative development approaches; isolating development from cultural heritage resources and limiting the height and density of development.

As a result of this Cultural Heritage Assessment Report, the following mitigation strategies are recommended:

- That intersection improvements and any construction staging areas should avoid the use of land which is part of BHR1 at 10881 Heart Lake Road;
- That should project-related activities be expected to impact the BHR1, a qualified heritage consultant should be contracted to complete property specific HIA and provide detailed mitigation options to address the proposed design on the resources.
- That the design alternatives and planned intersection improvements should consider the heritage attributes of CHL 1, specifically the rural cross section of the road, including the width of the road, two lanes of traffic, and ditching; wood utility poles along the roadside; natural setting of the roadscape, and linear corridor views along Heart Lake Road;
- That following the development of the preferred design alternative a Heritage Impact Assessment (HIA) should be prepared for the Heart Lake Corridor (CHL 1), a potential significant cultural heritage landscape, to evaluate the impacts and suggest mitigation measures. This study should be undertaken by a qualified heritage consultant.
- That public consultation may result in additional potential cultural heritage resources being identified. These potential cultural heritage resources should be reviewed by a qualified heritage consultant to: 1) determine their cultural heritage value or interest, 2) evaluate potential project impacts, and 3) suggest strategies for future conservation of any identified cultural heritage resources.
- That should the intersection improvement activities or the project location expand beyond the scope examined in this report, a qualified heritage consultant should be retained to determine the potential impacts and suggest mitigation measures.
- That should intersection and road improvements create seating areas and/or transit stops, this may provide an opportunity to interpret some of the identified cultural heritage resources (i.e., with plaques, public art).
- That this Cultural Heritage Assessment Report should be provided to staff/planners at the City of Brampton
- That a Stage 1 archaeological assessment is currently being undertaken to address the identified archaeological potential associated with the project location. It is encouraged that the results be shared with the TRCA as suggested in the Heart Lake Conservation Area Master Plan, so that they might better understand the archeological history of the area.

11.0 BIBLIOGRAPHY AND SOURCES

Archives of Ontario (AO)

2015 Archives of Ontario: Accessing our Collections. Accessed online at: http://www.archives.gov.on.ca/en/access/our_collection.aspx.

Chapman, L.J. and D.F. Putnam

1984 *The Physiography of Southern Ontario, 3rd Edition.* Toronto: Ontario Geological Survey, Special Volume 2.

City of Brampton

- 2020a 2006 City of Brampton Official Plan: September 2020 Office Consolidation. Accessed online at https://www.brampton.ca/EN/City-Hall/Official-Plan/Documents/Sept2020 Consolidated OP 2006.pdf.
- 2020b Environmental Assessment Study for Heart Lake Road and Countryside Drive Intersection.

Coyne, J. H.

1895 The Country of the Neutrals (As Far as Comprised in the County of Elgin): From Champlain to Talbot. St. Thomas: Times Print.

Ellis, C.J. and N. Ferris (eds.)

1990 *The Archaeology of Southern Ontario to A.D. 1650.* Occasional Publication of the London Chapter, OAS Number 5. London: Ontario Archaeological Society Inc.

ERA Architects Inc.

2010 Heritage Resource Impact Assessment: 10881 Heart Lake Road Sandringham Place.

Government of Ontario

- 2006 Ontario Regulation 9/06 made under the Ontario Heritage Act. Accessed online at: www.e-laws.gov.on.ca/html/regs/english/elaws_regs_060009_e.htm.
- 2009 Ontario Heritage Act, R.S.O. 1990, c. O.18. Accessed online at: www.e-laws.gov.on.ca/ <a href="https://https:
- 2010 Environmental Assessment Act, R.S.O. 1990, c. 16. Sched 7, s.1. Accessed online at: www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_90e18_e.htm.
- 2018 *Planning Act, R.S.O. 1990, Chapter P.13.* Accessed online at https://www.ontario.ca/laws/statute/90p13/v29
- 2020 Parks Canada Directory of Federal Heritage Designations. Accessed online at: <a href="https://www.pc.gc.ca/apps/dfhd/results-resultats_eng.aspx?p=1&m=10&q=&desCheck=NHS&desCheck=EVENT&desCheck=PERSON&desCheck=HRS&desCheck=FHBRO&desCheck=HL&c=Brampton&ctl00%24Main%24PageSearch1%24ddlProvince=&dey=&ctl00%24Main%24PageSearch1%24ddlCustodian=

Heart Lake Conservation Area Advisory Committee Conservation Land Planning Group, TRCA 2009 Heart Lake Conservation Area Master Plan. Accessed Online at: http://www.trca.on.ca/dotAsset/148584.pdf

Lajeunesse, E.J.

1960 *The Windsor Border Region: Canada's Southernmost Frontier*. Toronto: The Champlain Society.

McGill University

2001 *The Canadian County Atlas Digital Project*. Accessed online at: http://digital.library.mcgill.ca/countyatlas/default.htm.

Ministry of Heritage, Sport, Tourism and Culture Industries (MHSTCI)

- 1992 Guideline for Preparing the Cultural Heritage Resource Component of Environmental Assessments.
- 2006a Ontario Heritage Toolkit Series. Toronto: Ministry of Culture.
- 2006b Heritage Property Evaluation: A Guide to Listing, Researching and Evaluating Cultural Heritage Property in Ontario Communities. Ontario Heritage Tool Kit Series. Toronto: Ministry of Culture.
- 2006c InfoSheet #1: Built Heritage Resources. Ontario Heritage Tool Kit Series. Toronto: Ministry of Culture.
- 2006d InfoSheet #2: Cultural Heritage Landscapes. Ontario Heritage Toolkit Series. Toronto: Ministry of Culture.
- 2006e InfoSheet #5: Heritage Impact Assessments and Conservation Plans. Ontario Heritage Tool Kit Series. Toronto: Ministry of Culture..
- 2010 Standards & Guidelines for Conservation of Provincial Heritage Properties.
- 2019 List of Heritage Conservation Districts. Accessed online at: www.mtc.gov.on.ca/en/heritage/heritage_conserving_list.shtml.

Ministry of Municipal Affairs and Housing (MMAH)

2020 Provincial Policy Statement. Toronto: Ministry of Municipal Affairs and Housing.

Ministry of Transportation

2008 Ontario Heritage Bridge Guidelines for Provincially Owned Bridges. Interim. St. Catharines: Ministry of Transportation.

Munson, M.K. and S.M. Jamieson (eds.)

2013 Before Ontario: The Archaeology of a Province. Kingston: McGill-Queen's University Press.

Ontario Council of University Libraries (OCUL)

2020 *Historical Topographic Map Digitization Project*. Access online at: https://ocul.on.ca/topomaps/.

Ontario Heritage Trust (OHT)

2019 Ontario Heritage Plaque Guide. Accessed online at: www.heritagetrust.on.ca/en/index.php/online-plaque-guide.

Ontario Historical County Maps Project (OHCMP)

2019 *Ontario Historical County Maps Project*. Accessed online at: http://maps.library.utoronto.ca/hgis/countymaps/maps.html.

Parks Canada

2020 *Directory of Federal Heritage Designations*. Accessed online at: https://www.pc.gc.ca/apps/dfhd/search-recherche_eng.aspx.

2010 Standards and Guidelines for the Conservation of Historic Places in Canada 2nd Edition. Accessed online at: www.historicplaces.ca/media/18072/81468-parks-s+g-eng-web2.pdf.

Region of Peel

2018 Region of Peel Official Plan: Office Consolidation December 2018. Accessed online at: https://www.peelregion.ca/planning/officialplan/pdfs/ropdec18/ROPConsolidationDec20 18_TextSchedules_Final_TEXT.pdf

Scheinman, A.

2006 *Cultural Heritage Landscapes in Waterloo Region*. Draft manuscript commissioned by the Region of Waterloo.

Smith, W.H.

1846 Smith's Canadian Gazetteer: Comprising Statistical and General Information Respecting all Parts of the Upper Province, or Canada West. Toronto: H. & W. Rowsell.

Stantec Inc. (Stantec)

2019 Function and Design Review of the Heart Lake Road Corridor. Stantec.

Surtees, R.J.

1994 Land Cessions, 1763–1830. In *Aboriginal Ontario: Historical Perspectives on the First Nations*, edited by E.S. Rogers and D.B. Smith, pp. 92–121. Toronto: Dundurn Press.

Toronto Region Conservation Authority (TRCA)

2020 Watersheds. Accessed online at: http://www.trca.on.ca/the-living-city/watersheds/.

UNESCO

Guidelines on the Inscription of Specific Types of Properties on the World Heritage List.

Operational Guidelines for the Inscription of Specific Types of Properties on the World Heritage List, Annex 3. Accessed online at: https://whc.unesco.org/en/guidelines/

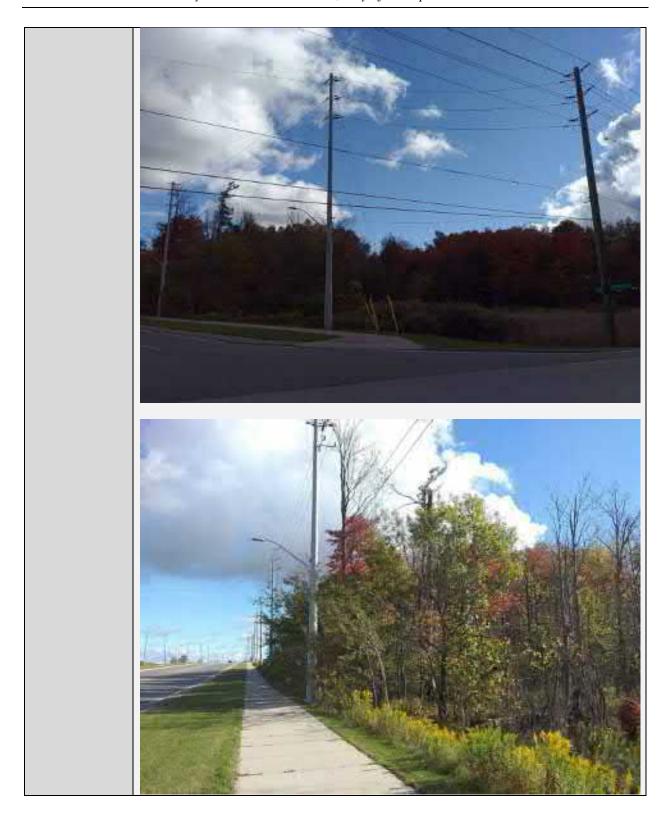
University of Toronto

2019 Map & Data Library. Accessed online at: https://mdl.library.utoronto.ca/.

Warrick, G.

The Precontact Iroquoian Occupation of Southern Ontario. *Journal of World Prehistory* 14(4):415–456.

Wilson's Publishing Co.


2000 *Illustrated Historical Atlas of the County of Peel, Ont.* Reprint of 1877 Edition (Toronto: Walker & Miles). Campbellford: Wilson's Publishing Co.

Wright, J.V.

1972 *Ontario Prehistory: An Eleven-Thousand-Year Archaeological Outline*. Archaeological Survey of Canada, National Museum of Man. Ottawa: National Museums of Canada.

Appendix A: Built Heritage Resources and Cultural Heritage Landscapes BUILT HERITAGE RESOURCE NO. 1

	DESCRIPTION OF PROPERTY		
Street Address	10881 Heart Lake Road		
Name	n/a		
Recognition	Listed on Municipal Heritage Register		
Location	City of Brampton		
Type of Property	Vacant (former agricultural)		
Date(s)	Farmhouse (lost due to fire) Outbuildings (collapsed circa 2001) Silo (demolished circa 2010)		
	10881 Heart Lake Road is a large rectangular property bounded by Heart Lake Road (west), Countryside Drive (north) and Hwy 410 (east). The property contains a woodlot in the northwest corner, while large open areas containing mature trees occupy the remaining parcel. The property at 10881 Heart Lake Road was originally part of a larger farm complex and historically associated with the Ingoldsby family. The Ingoldsby family were early settlers and began farming in the area in 1828. Members of the Ingoldsby family owned the property for over 150 years. The property consisted of a group of buildings including the original		
Description	farmhouse and outbuildings when it was added to the Municipal Heritage Register and listed under Section 27 of the OHA. Unfortunately, after it was listed, the farmhouse was lost to a fire and barn and outbuildings eventually collapsed. By 2010 the only remaining built structure associated with the property was a silo. As part of a Block plan for a proposed subdivision (Sandringham Place), a Heritage Resource Impact Assessment was completed by ERA in April 2010 to examine the CHVI of the silo. The report concluded that the "silo located at 10881 Heart Lake Road has lost its farm context, is in poor condition, exhibits limited heritage value, does not meet the criteria for heritage designation under the Ontario Heritage Act" (1). In response to ERA's report, on June 15, 2010, the Staff comment form (L3-1) noted the following heritage consideration and mitigative measures:		
Photograph	"Due to diminished cultural heritage value associated with the silo and other considerations, demolition of structure should be supported with certain conditions of mitigation. Mitigation to include: Occumentation (complete) Appropriate commemoration of the historical land uses of the property (e.g. naming of municipal assets such as parkettes and storm ponds) Production of historical interpretive plaque on a suitable public space within the subdivision Archaeological assessment as part of the subdivision planning due diligence; Proposed retention of tree lines and other remaining contextual features if deemed feasible under review of proposed plan of subdivision." (2010:4) All the built heritage resources associated with 10881 Heart Lake Road are no longer extant. The driveway into the property towards the original farmstead and the trees which originally surrounded the buildings, remain visible from aerial photographs. Both natural features are not located within, or directly adjacent to the project location. The cultural heritage value or interest associated with 10881 Heart Lake Road is expressed in its historical and/or associative value with the Ingoldsby family.		
Photograph			

EVALUATION OF PROPERTY			
Criteria	Description	✓	Value Statement(s)
Design or Physical Value	Is a rare, unique, representative or early example of a style, type, expression, material or construction method		The original farmhouse, barn, outbuilding/s and silo are no longer extant. The property is not rare, unique, representative or early example of a style, type, expression, material or construction method.
	Displays a high degree of craftsmanship or artistic value		The farmhouse, barn, outbuilding/s and silo are no longer extant. The property does not display a high degree of craftsmanship or artistic value.
	Displays a high degree of technical or scientific achievement		The farmhouse, barn, outbuilding/s and silo are no longer extant. The property does not display a high degree of technical or scientific achievement.
Historical or Associative Value	Has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community	✓	The property is directly associated with the Ingoldsby family. The Ingoldsby family were early settlers and began farming in the area in 1828. Members of the Ingoldsby family played a prominent role in the early local civic matters. The Ingoldsby family owned the property for over 150 years.
	Yields or has the potential to yield information that contributes to the understanding of a community or culture	√	The property has the potential to yield information that contributes to an understanding of the Indigenous culture and community.

	Demonstrates or reflects the work or ideas of an architect, builder, artist, designer or theorist who is significant to a community	The farmhouse, outbuilding, and silo are no longer extant. The property does not demonstrate or reflect the work or ideas of an architect, builder, artist, designed or theorist who is significant to a community.
Contextual Value	Is important in defining, maintaining or supporting the character of an area	The property reinforces the rural character of the surrounding area, however, it is not important in defining, maintaining or supporting the character of the area.
	Is physically, functionally, visually or historically linked to its surroundings	The property is no longer physically, functionally, visually, or historically linked to its surroundings. Historically, the Ingoldsby family owned and farmed a larger portion of land located in the surrounding area. The property does not appear to be used for any agricultural pursuits.
	Is a landmark	The property is not a landmark.

RESULTS OF HERITAGE ASSESSMENT		
CHVI Evaluation	Has CHVI	
Heritage Attributes	In 2010 the Planning Design and Development department report which discussed the CHVI of the silo noted that at that time the property still retained the:	
Tierrage rittributes	 Tree lines surrounding the original structures Laneway from Heart Lake Road into the property 	

CULTURAL HERITAGE RESOURCE NO. 1

	DESCRIPTION OF PROPERTY		
Boundary	Heart Lake Road from Sandalwood Parkway to Mayfield Road		
Name	Heart Lake Road Corridor		
Dagaguitian	No official heritage recognition. Considered by City of Brampton as a Cultural		
Recognition	Heritage Landscape.		
Location	Heart Lake Road from Sandalwood Parkway to Mayfield Road		
Type of Landscape	Rural Road		
	In November 2019, Stantec completed the Function and Design Review of Heart Lake Corridor report. The report was commissioned by City of Brampton in a response to wildlife mortality and traffic concerns. Withing the report it was noted that, "in 2014, the Brampton Heritage Board received a delegation from the		
	public seeing the possible recognition of Heart Lake Road as a cultural heritage landscape. The recognition was not defined at the time and the City of Brampton is seeking additional clarification regarding what recognition options are available." (2019:5.1)		
	The report examined several elements including, transportation, ecology, environmental, and cultural heritage and provided several road designs or design alternative to address wildlife and traffic concerns in the short and long term.		
Description	Section 5 of the report addresses cultural heritage and includes a detailed site history which discusses the physiography, 19 th and 20 th century historical development along with a description of the site and photographic documentation. Section 5.1.5 contains the heritage evaluation of the Heart Lake Road corridor according to O. Reg. 9/06. The evaluation concluded that the Heart Lake corridor met five of the nine criteria (2.i., 2.ii, 3.i, 3.ii, 3.iii) outlined in O. Reg 9/06. The heritage value resides in the historical/associative value and contextual value.		
	The report found that Heart Lake Drive did not meet the criteria related to Design and Physical value. The rational is provided in Section 5.1.5.3, it reads:		
	"Heart Lake Road does not illustrate or exemplify a style, type, expression, material or construction method. It is highly likely that this road was once a corduroy road. However, road improvements completed in the mid-20th century and in 1987 have removed evidence of this early road construction technique. The present physical conditions of Heart Lake Road, including two lanes of traffic, gravel shoulder, and ditching, are typical of other rural roads in the City of Brampton. Therefore, Heart Lake Road does not meet criterion 1.i of O. Reg. 9/06.		
	Heart Lake Road does not display a high degree of craftsmanship or artistic merit. The road has standard paving and shoulders and does not have details that are greater than normal quality or are that are implemented at an intensity above an industry standard. Therefore, Heart Lake Road does not meet criterion 1.ii of O. Reg. 9/06.		

Heart Lake Road does not display a high degree of technical or scientific achievement. The existing conditions of the road evolved through time from an unimproved concession road in the 19th and early-mid 20th century to an improved road in the mid-20th century. It is likely that road improvements to Heart Lake Road were completed in response to the opening of the HLCA in 1957 since increased traffic along this section of the road was anticipated. The existing conditions of Heart Lake Road reflect the road improvements carried out in the mid-20th century. The construction methods used to improve the road do not display a high degree of technical expertise, adaptation of materials, forms, or spatial arrangements, or a breakthrough in design or construction techniques. Therefore, Heart Lake Road does not meet criterion 1.iii of O. Reg. 9/06." (2019:5.9)

Regarding historic and associative value, Section 5.1.5.4 provides a rationale for how Heart Lake Road does not meet criteria 2.i but does meets criteria 2.ii, 2.iii. It reads:

Heart Lake Road is historically associated with the theme of early road building in the Town of Chinguacousy and has direct associations with the Heart Lake Conservation Area and the TRCA. Regarding Euro-Canadian history, there were three successive attempts to settle the Heart Lake Road area. The first attempts were made by John Pettit Jr, George Coon, and Thomas Graham in 1819. All three landowners were unable to settle the land and returned their grants since the land was too swampy to settle, which made farming difficult if not impossible (City of Brampton 2014: 7-8). Richard Stinson successfully settled Concession 2E, east quarter of Lot 16 between 1823 and 1827. King's College (subsequently the University of Toronto) was granted a Crown patent for 200 acres in 1828. King's College subsequently subdivided the lot and sold it off during the mid-19th century. The swampy nature of Heart Lake Road, and the difficulties experienced by early settlers, support the claim that Heart Lake Road was originally constructed as a corduroy road. 19th century corduroy roads consisted of laying young trees (cut in similar size) side by side across a road to create a passable surface. This construction technique was reserved for areas with soft, swampy ground that could not be drained. While no direct evidence (i.e. archival photos, maps, or travelers accounts) exists to definitively prove that Heart Lake Road was a corduroy road, it is highly likely that this road construction technique was used here due to the undulating topography and historically documented swampy conditions.

In addition to the historical theme of early road building, Heart Lake Road is directly associated with the TRCA. The Heart Lake Conservation Area was formed in 1956 and was opened to the public in 1957. Mid-century improvements to Heart Lake Road were likely complete in response to the opening of the conservation area. Presently, Heart Lake Conservation Area is one of the largest natural green space areas in the City of Brampton. In relation to the Study Area, the entire west side of the Heart Lake Road between Sandalwood Parkway and Mayfield Road is owned and operated by the TRCA. Therefore, Heart Lake Road meets criterion 2.i of O. Reg. 9/06 due to the likelihood that Heart Lake Road is historically associated with

the theme of early road construction, specifically corduroy roads, in the Township of Chinguacousy and the direct historical association with the TRCA.

Heart Lake Road has the potential to yield, information that contributes to an understanding of a community or culture. As identified in the draft listing report prepared by the City of Brampton, Heart Lake Road and its surrounding lands have archaeological potential and known archaeological sites related to the Paleo-Indian Period (10000-7000 BC), Archaic Period (7000-1000 BC), Initial Woodland Period (1000 BC to AD 700), and Late Woodland Period (AD 700-1651) are well documented in the area. Specifically, a high number of Indigenous campsites from the Archaic Period were discovered in the area by the TRCA during 2007 excavations of the Heart Lake Road Conservation Area, which has resulted in the area being dubbed "The Stopover Site" (2014). Therefore, Heart Lake Road meets criterion 2.ii of O. Reg. 9/06 due to the potential to yield archaeological information that will contribute to an understanding of Indigenous history in the area.

Heart Lake Road was an unimproved concession road until the mid-20th century when it was improved, likely in response to the opening of the Heart Lake Road Conservation Area in 1957. The road was subsequently rebuilt and paved in 1987 (City of Brampton 2014:11). Heart Lake Road evolved through time and does not reflect the work or ideas of a builder or theorist. Therefore, Heart Lake Road does not meet criterion 2.iii of O. Reg. 9/06. (2019:5.10).

Regarding contextual value, Section 5.1.5.5. highlights how Heart Lake Road meet criteria 3.i, 3.ii, 3.iii. It reads:

Heart Lake Road, between Sandalwood Parkway and Mayfield Road is important in maintaining and supporting the character of the surrounding landscape. Although improved and updated, Heart Lake Road still maintains its rural road cross section with two lanes of traffic, gravel shoulders, and ditches. As a rural road, Heart Lake Road supports and maintains the significant natural areas on the east and west sides of the road, which are now rare in the City of Brampton. Specifically, the Heart Lake Road Conservation Area, located on the west side of Heart Lake Road, is an Environmentally Significant Area (ESA), Provincially Significant Wetland (PSW), and Area of Natural and Scientific Interest (ANSI). Heart Lake Conservation Area contains six provincially rare vegetative community types, the remaining portions of Brampton Buried Esker, and 26 species of threatened bird species, including the Barn Swallow and Trumpeter Swans. The Eastern Snapping Turtle and Eastern Milksnake are found at the Heart Lake Conservation Area; both are provincially and nationally designated species of Special Concern. Over 48% of the conservation area is covered with forest, which is rare since most forests within Peel Region were cleared for agricultural purposes during the 19th century (City of Brampton 2014:11). The rural setting of Heart Lake Road, including the TRCA lands on the west side of the road and mix of agricultural lands and forested kettle lakes on the east side of the road support and maintain the significant natural heritage value present along the road between Sandalwood Parkway and Mayfield Road. The continuing rural and relatively undeveloped setting of the road is unique in the City of Brampton, which has become increasingly urbanized. Accordingly, Heart Lake Road meets criterion 3.i of O. Reg. 9/06.

Heart Lake Road is functionally, visually, and historically linked to its surroundings. The road is functionally and historically linked to its surrounding context since it has been used as a rural road since the road was opened in 1819. With the exception of the physical condition of the road, which was improved in the mid-20th century and again in 1987, the surrounding context of Heart Lake Road has remained remarkably intact. Specifically, the forested lands on the west side of the road and the agricultural lands, kettle lakes, and wetlands on the east side of the road are rare within the City of Brampton. In addition, Heart Lake Road is visually linked to its surroundings. The rural character of the road, the conservation area on the west, and open rural/agricultural land on the east together create a unique roadscape that is primarily defined by its naturalized, undeveloped character. Accordingly, Heart Lake Road meets criterion 3.ii of O. Reg. 9/06.

Heart Lake Road acts as a landmark within the City of Brampton. The section of Heart Lake Road between Sandalwood Parkway and Mayfield is visually distinctive from surrounding roads. Heart Lake Road is bordered by development to the east, south, and west. Highway 410 borders Heart Lake Road to the north. Despite the surrounding development, Heart Lake Road retains its rural cross section and offers views to the adjacent natural heritage resources, including forests, kettle lakes, wetlands, and agricultural fields. The natural setting of Heart Lake Road is distinctive and is notable to those travelling along this section of the road. Heart Lake Road is a popular route for cyclists and the conservation area is a popular destination with more than five million visitors since it opened in 1957 (City of Brampton 2018). Therefore, Heart Lake Road meets criterion 3.iii of O. Reg. 9/06. (2019:5.10-5.11)

A summary of the results of the evaluation Heart Lake Road corridor against the criteria set out in O. Reg. 9/06 determined that the Heart Lake Road met five of the nine criteria. The following Statement of Significance for the Heart Lake Road Cultural Heritage Landscape was prepared as by Stantec:

STATEMENT OF CULTURAL HERITAGE SIGNIFICANCE

Heart Lake Road is a two-lane, rural road set in a significant natural setting that has strong historical associative value and contextual heritage value. Its historical value is related to its associations with early road building techniques in the City of Brampton and the TRCA through its connection to the Heart Lake Road Conservation Area. Heart Lake Road and its surrounding land has also yielded, and has potential to further yield, information regarding Indigenous land use and culture due to the

archaeological potential of the area and high number of archaeological sites dating to the Archaic period.

Historically, there were three successive attempts to settle the Heart Lake Road area. The first attempts were made by John Pettit Jr, George Coon, and Thomas Graham in 1819. All three landowners were unable to settle the land and returned their grants since the land was too swampy to settle, which made farming difficult if not impossible (City of Brampton 2014: 7-8). Richard Stinson successfully settled Concession 2E, east quarter of Lot 16 between 1823 and 1827. King's College (subsequently the University of Toronto) was granted a Crown patent for 200 acres in 1828. King's College subsequently subdivided the lot and sold it off during the mid-19th century. The swampy nature of Heart Lake Road, and the difficulties experienced by early settlers, support the claim that Heart Lake Road was originally constructed as a corduroy road. 19th century corduroy roads consisted of laying young trees (cut in similar size) side by side across a road to create a passable surface. This construction technique was reserved for areas with soft, swampy ground that could not be drained. While no direct evidence (i.e. archival photos, maps, or travelers accounts) exists to definitively prove that Heart Lake Road was a corduroy road, it is highly likely that this road construction technique was used here due to the undulating topography and historically documented swampy conditions.

Heart Lake Road has direct, historical associations with the TRCA. The Heart Lake Conservation Area was formed in 1956 and was opened to the public in 1957. Mid-century improvements to Heart Lake Road were likely completed in response to the opening of the conservation area. Presently, Heart Lake Conservation Area is one of the largest natural green space areas in the City of Brampton. The entire west side of the Heart Lake Road between Sandalwood Parkway and Mayfield Road is owned and operated by the TRCA.

Heart Lake Road has the potential to yield information that contributes to an understanding of a community or culture. As identified in the draft listing report prepared by the City of Brampton, Heart Lake Road and its surrounding lands have archaeological potential and known archaeological sites related to the Paleo-Indian Period (10000-7000 BC), Archaic Period (7000-1000 BC), Initial Woodland Period (1000 BC to AD 700), and Late Woodland Period (AD 700-1651) are well documented in the area. Specifically, a high number of Indigenous campsites from the Archaic Period were discovered in the area by the TRCA during 2007 excavations of the Heart Lake Road Conservation Area, which has resulted in the area being dubbed "The Stopover Site" (City of Brampton 2014).

Heart Lake Road has contextual value since it maintains and supports the surrounding natural character of the area, is functionally, visually, and historically linked to its surroundings, and acts as a landmark. Heart Lake Road retains its rural cross section and is surrounded by significant

natural land, including forested land on the west and agricultural land, kettle lakes, and wetland on the east. When considered together with its rare surroundings, Heart Lake Road is a unique roadscape within the City of Brampton.

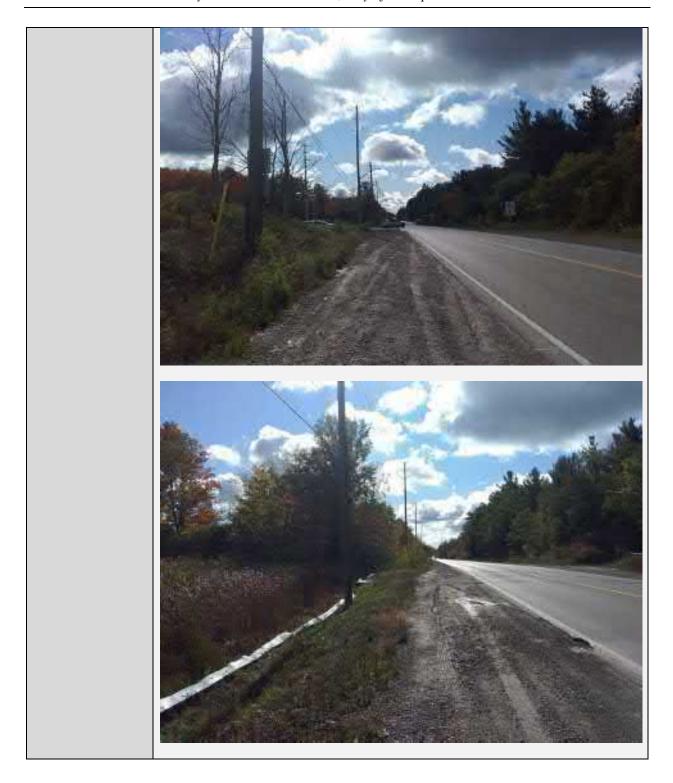
Heart Lake Road, between Sandalwood Parkway and Mayfield Road is important in maintaining and supporting the character of the surrounding landscape. Although improved and updated, Heart Lake Road still maintains its rural

road cross section with two lanes of traffic, gravel shoulders, and ditches. As a rural road,

Heart Lake Road supports and maintains the significant natural areas on the east and west sides of the road, which are now rare in the City of Brampton. Specifically, the Heart Lake Road Conservation Area, located on the west side of Heart Lake Road, is an Environmentally Significant Area (ESA), Provincially Significant Wetland (PSW), and Area of Natural and Scientific Interest (ANSI). Heart Lake Conservation Area contains six provincially rare vegetative community types, the remaining portions of Brampton Buried Esker, and 26 species of threatened bird species, including the Barn Swallow and Trumpeter Swans. The Eastern Snapping Turtle and Eastern Milksnake are found at the Heart Lake Conservation Area; both are provincially and nationally designated species of Special Concern. Over 48% of the conservation area is covered with forest, which is rare since most forests within Peel Region were cleared for agricultural purposes during the 19th century (City of Brampton 2014:11). The rural setting of Heart Lake Road, including the TRCA lands on the west side of the road and mix of agricultural lands and forested land, and kettle lakes on the east side of the road support and maintain the significant natural heritage value present along the road between Sandalwood Parkway and Mayfield Road. The continuing rural and relatively undeveloped setting of the road is unique in the City of Brampton, which has become increasingly urbanized.

Heart Lake Road is functionally, visually, and historically linked to its surroundings. The road is functionally and historically linked to its surrounding context since it has been used as a rural road since the road was opened in 1819. With the exception of the physical condition of the road, which was improved in the mid-20th century and again in 1987, the surrounding context of Heart Lake Road has remained remarkably intact. Specifically, the forested lands on the west side of the road and the agricultural lands, kettle lakes, and wetlands on the east side of the road are rare within the City of Brampton. In addition, Heart Lake Road is visually linked to its surroundings. The rural character of the road, the conservation area on the west, and open rural/agricultural land on the east together create a unique roadscape that is primarily defined by its naturalized, undeveloped character.

Heart Lake Road acts as a landmark within the City of Brampton. The section of Heart Lake Road between Sandalwood Parkway and Mayfield


is visually distinctive from surrounding roads. Heart Lake Road is bordered by development to the east, south, and west. Highway 410 borders Heart Lake Road to the north. Despite the surrounding development, Heart Lake Road retains its rural cross section and offers views to the adjacent natural heritage resources, including forests, kettle lakes, wetlands, and agricultural fields. The natural setting of Heart Lake Road is distinctive and is notable to those travelling along this section of the road. Heart Lake Road is a popular route for cyclists and the conservation area is a popular destination with more than five million visitors since it opened in 1957 (City of Brampton 2018).

HERITAGE ATTRIBUTES

Based on the evaluation of CHVI, the following heritage attributes were identified for Heart Lake Road between Sandalwood Parkway and Mayfield Road:

- Rural cross section of the road, including the width of the road, two lanes of traffic, and ditching (where present);
- Bend in the road to avoid TRCA wetland, approximately 500 m southeast of Mayfield Road;
- Intermittent presence of split rail and post-and-rail fencing along the roadside;
- *Wood utility poles along the roadside;*
- Natural topography of adjacent lands, including the remaining sections of the Brampton Buried Esker;
- Potential, and known, archaeological sites;
- Likely historical association with corduroy road construction techniques;
- Historical association with the Heart Lake Conservation Area and TRCA:
- Linear corridor views along Heart Lake Road, bordered by significant natural areas; and
- Natural setting of the roadscape, including forests, wetlands, and kettle lakes on the west side of the road and wetlands, agricultural fields, and kettle lakes on the east side of the road.

Photographs

	EVALUATION OF 1	PRO	PERTY
Criteria	Description	✓	Value Statement(s)*
Design or Physical Value	Is a rare, unique, representative or early example of a style, type, expression, material or construction method		Heart Lake Road does not illustrate or exemplify a style, type, expression, material or construction method. It is highly likely that this road was once a corduroy road. However, road improvements completed in the mid-20th century and in 1987 have removed evidence of this early road construction technique. The present physical conditions of Heart Lake Road, including two lanes of traffic, gravel shoulder, and ditching, are typical of other rural roads in the City of Brampton.
	Displays a high degree of craftsmanship or artistic value Displays a high degree of technical or		Heart Lake Road does not display a high degree of craftsmanship or artistic merit. Heart Lake Road does not display a high
	scientific achievement		degree of technical or scientific achievement.
	Has direct associations with a theme, event, belief, person, activity, organization or institution that is significant to a community	✓	Heart Lake Road is historically associated with the theme of early road building in the Town of Chinguacousy and has direct associations with the Heart Lake Conservation Area and the TRCA.
Historical or Associative Value	Yields or has the potential to yield information that contributes to the understanding of a community or culture	✓	Heart Lake Road and its surrounding lands have archaeological potential and known archaeological sites. The property has the potential to yield information contributing to the understanding of Indigenous history in the area.
	Demonstrates or reflects the work or ideas of an architect, builder, artist, designer or theorist who is significant to a community		Heart Lake Road has evolved over time and does not reflect the work or idea of an architect, builder, artist, designer or theorist who is significant to a community.
Contextual	Is important in defining, maintaining or supporting the character of an area	√	Heart Lake Road, between Sandalwood Parkway and Mayfield Road is important in maintaining and supporting the character of the surrounding landscape. Although improved and updated, Heart Lake Road still maintains its rural road cross section with two lanes of traffic, gravel shoulders, and ditches. As a rural road, Heart Lake Road supports and maintains the significant natural areas on the east and west sides of the road, which are now rare in the City of Brampton.
Value	Is physically, functionally, visually or historically linked to its surroundings	✓	The road is functionally and historically linked to its surrounding context since it has been used as a rural road since the road was opened in 1819. The rural character of the road, the conservation area on the west, and open rural/agricultural land on the east together create a unique roadscape that is primarily defined by its naturalized, undeveloped character.

	Is a landmark	✓	Heart Lake Road acts as a landmark within the City of Brampton. The section of Heart Lake Road between Sandalwood Parkway and Mayfield is visually distinctive from surrounding roads. The natural setting of Heart Lake Road is distinctive and is notable to those travelling along this section of the road. Heart Lake Road is a popular route for cyclists and the conservation area is a popular destination with more than five million visitors since it opened in 1957
--	---------------	---	---

^{*} The value statement taken directly from Stantec Report Described in Section 6.3

RESULTS OF HERITAGE ASSESSMENT		
CHVI Evaluation	Has CHVI	
Heritage Attributes*	 The heritage attributes listed are taken directly from Stantec Report Described in Section 6.3 Rural cross section of the road, including the width of the road, two lanes of traffic, and ditching (where present); Bend in the road to avoid TRCA wetland, approximately 500 m southeast of Mayfield Road; Intermittent presence of split rail and post-and-rail fencing along the roadside; Wood utility poles along the roadside; Natural topography of adjacent lands, including the remaining sections of the Brampton Buried Esker; Potential, and known, archaeological sites; Likely historical association with corduroy road construction techniques; Historical association with the Heart Lake Conservation Area and TRCA; Linear corridor views along Heart Lake Road, bordered by significant natural areas; and Natural setting of the roadscape, including forests, wetlands, and kettle lakes on the west side of the road and wetlands, agricultural fields, and kettle lakes on the east side of the road. 	

Appendix B: Team Member Curriculum Vitae

Paul J. Racher, MA, CAHP Principal - Management and Senior Review (MSR) Team ARCHAEOLOGICAL RESEARCH ASSOCIATES LTD.

219-900 Guelph Street, Kitchener, ON N2H 5Z6 Phone: (519) 804-2291 x100 Mobile: (519) 835-4427

Fax: (519) 286-0493

Email: paul.racher@araheritage.ca Web: www.arch-research.com

Biography

Paul Racher is a Principal of ARA. He has a BA in Prehistoric Archaeology from WLU and an MA in anthropology from McMaster University. He began his career as a heritage professional in 1986. Over the three decades since, he has overseen the completion of several hundred archaeological and cultural heritage contracts. Paul has years of experience related to linear transportation and rail projects, notably through the ongoing work to complete a Cultural Heritage Inventory for the Region of Waterloo's Stage 2 LRT from Kitchener to Cambridge, Ontario. He holds professional license #P007 with the MTCS. Paul is a former lecturer in Cultural Resource Management at WLU. He is a professional member of the Canadian Association of Heritage Professionals (CAHP) and the former President of the Ontario Archaeological Association (OAS).

Education

1992-1997	PhD Programme, Department of Anthropology, University of Toronto.
	Supervisors: E.B. Banning and B. Schroeder. Withdrawn.
1989-1992	M.A., Department of Anthropology, McMaster University, Hamilton, Ontario.
	Thesis titled: "The Archaeologist's 'Indian': Narrativity and Representation in
	Archaeological Discourse."
1985-1989	Honours B.A., Wilfrid Laurier University, Waterloo, Ontario.
	Major: Prehistoric Archaeology.

Professional Memberships and Accreditations

Current Ministry of Tourism Culture and Sport Professional Licence (#P007).

Professional Member of the Canadian Association of Heritage Professionals

(CAHP), Volunteer on the ethics committee.

Member of the Ontario Archaeological Society (OAS), Volunteer on the

Professional Committee.

Associate of the Heritage Resources Centre, University of Waterloo.

RAQS registered with MTO.

Work Experience

Current Vice-President, Operations, Archaeological Research Associates Ltd.

Responsible for winning contracts, client liaison, project excellence, and setting the policies and priorities for a multi-million dollar heritage consulting firm.

2000-2011	Project Manager/Principal Investigator, Archaeological Research Associates
	Ltd.
	Managed projects for a heritage consulting firm. In 10 field seasons, managed
	hundreds of projects of varying size.
2008-2011	Part-Time Faculty, Wilfrid Laurier University.
	Lecturer for Cultural Resource Management course (AR 336). In charge of all
1007	teaching, coursework, and student evaluations.
1995	Field Archaeologist, University of Toronto.
	Served as a supervisor on a multinational archaeological project in northern Jordan.
1992-1995	Teaching Assistant, University of Toronto.
	Responsible for teaching and organizing weekly tutorials for a number of courses.
1991-1994	Part-Time Faculty, Wilfrid Laurier University.
	Lectured for several courses in anthropology. Held complete responsibility for all
	teaching, coursework, and student evaluations.
1992-1996	Partner in Consulting Company, Cultural Management Associates
	Incorporated.
	Supervised several archaeological contracts in Southern Ontario. Participated in a
	major (now published) archaeological potential modeling project for MTO.
1989-1991	Partner in Consulting Company, Cultural Resource Consultants.
	Managed the financial affairs of a consulting firm whilst supervising the
	completion of several contracts performed for heritage parks in central Ontario.
1988-1991	Principal Investigator/Project Director, Archaeological Research Associates
	Ltd.
	Oversaw the completion of large contracts, wrote reports, and was responsible for
1000	ensuring that contracts were completed within budget.
1988	Assistant Director of Excavations, St. Marie among the Hurons, Midland,
	Ontario.
1986-1987	Duties included crew supervision, mapping, report writing and photography.
1700-170/	Archaeological Crew Person, Archaeological Research Associates Ltd., Waterloo, Ontario.
	Participated in background research, survey, and excavation on a number of
	Archaeological sites across Ontario.
	Archaeological sites across Olitario.

Kayla Jonas Galvin, MA, RPP, MCIP, CAHP Heritage Operations Manager

ARCHAEOLOGICAL RESEARCH ASSOCIATES LTD.

1 King Street West, Stoney Creek, L8G 1G7 Phone: (519) 804-2291 x120 Fax: (519) 286-0493

Email: kayla.jonasgalvin@araheritage.ca Web: www.arch-research.com

Biography

Kayla Jonas Galvin, Archaeological Research Associates Ltd.'s Heritage Operations Manager, has extensive experience evaluating cultural heritage resources and landscapes for private and public-sector clients to fulfil the requirements of provincial and municipal legislation such as the Environmental Assessment Act, the Standards & Guidelines for the Conservation of Provincial Heritage Properties and municipal Official Plans. She served as Team Lead on the Ministry of Tourism, Culture and Sport Historic Places Initiative, which drafted over 850 Statements of Significance and for Heritage Districts Work!, a study of 64 heritage conservation districts in Ontario. Kayla was an editor of Arch, Truss and Beam: The Grand River Watershed Heritage Bridge Inventory and has worked on Municipal Heritage Registers in several municipalities. Kayla has drafted over 150 designation reports and by-laws for the City of Kingston, the City of Burlington, the Town of Newmarket, Municipality of Chatham-Kent, City of Brampton and the Township of Whitchurch-Stouffville. Kayla is the Heritage Team Lead for ARA's roster assignments for Infrastructure Ontario and oversees evaluation of properties according to Standards & Guidelines for the Conservation of Provincial Heritage Properties. Kayla is a Registered Professional Planner (RPP), a Member of the Canadian Institute of Planners (MCIP), is a professional member of the Canadian Association of Heritage Professionals (CAHP) and sits on the board of the Ontario Association of Heritage Professionals.

Education

2016 MA in Planning, University of Waterloo. Thesis Topic: Goderich – A Case Study

of Conserving Cultural Heritage Resources in a Disaster

2003-2008 Honours BES University of Waterloo, Waterloo, Ontario

Joint Major: Environment and Resource Studies and Anthropology

Professional Memberships and Accreditations

Current Registered Professional Planner (RPP)

Member of the Canadian Institute of Planners (MCIP)

Professional Member, Canadian Association of Heritage Professionals (CAHP)

Board Member, Ontario Association of Heritage Professionals

Work Experience

Current Heritage Operations Manager, Archaeological Research Associates Ltd.

Oversees business development for the Heritage Department, coordinates completion of designation by-laws, Heritage Impact Assessments, Built Heritage and Cultural Heritage Landscape Assessments, and Cultural Heritage Resource

Evaluations.

2009-2013 Heritage Planner, Heritage Resources Centre, University of Waterloo Coordinated the completion of various contracts associated with built heritage including responding to grants, RFPs and initiating service proposals.

2008-2009, Project Coordinator-Heritage Conservation District Study, ACO

Coordinated the field research and authored reports for the study of 32 Heritage Conservation Districts in Ontario. Managed the efforts of over 84 volunteers, four staff and municipal planners from 23 communities.

2007-2008 Team Lead, Historic Place Initiative, Ministry of Culture

Liaised with Ministry of Culture Staff, Centre's Director and municipal heritage staff to draft over 850 Statements of Significance for properties to be nominated to the Canadian Register of Historic Places. Managed a team of four people.

Selected Professional Development

- 2019 OPPI and WeirFoulds Client Seminar: Bill 108 More Homes, More Choice, 2019
- 2019 Annual attendance at Ontario Heritage Conference, Goderich, ON (Two-days)
- 2019 Information Session: Proposed Amendments to the OHA, by Ministry of Tourism, Culture and Sport
- 2018 Indigenous Canada Course, University of Alberta
- 2018 Volunteer Dig, Mohawk Institute
- 2018 Indigenizing Planning, three webinar series, Canadian Institute of Planners
- 2018 Cultural Heritage, Archaeology and Planning Symposium
- 2018 Transforming Public Apathy to Revitalize Engagement, Webinar, MetorQuest
- 2018 How to Plan for Communities: Listen to the Them, Webinar, CIP
- 2017 Empowering Indigenous Voices in Impact Assessments, Webinar, International Association for Impact Assessments
- 2017 Cultural Heritage, Archaeology and Planning Symposium
- 2017 Capitalizing on Heritage, National Trust Conference, Ottawa, ON.
- 2016 Cultural Heritage, Archaeology and Planning Symposium
- 2016 Heritage Rising, National Trust Conference, Hamilton
- 2016 Ontario Heritage Conference St. Marys and Stratford, ON.
- Heritage Inventories Workshop, City of Hamilton & ERA Architects
- 2015 Cultural Heritage, Archaeology and Planning Symposium
- 2015 City of Hamilton: Review of Existing Heritage Permit and Heritage Designation Process Workshop.
- 2015 Leadership Training for Managers Course, Dale Carnegie Training

Selected Publications

- 2018 "Conserving Cultural Heritage Landscapes in Waterloo: An Innovative Approach." Ontario Association of Heritage Professionals Newsletter, Winter 2018.
- 2018 "Restoring Pioneer Cemeteries" Ontario Association of Heritage Professionals Newsletter. Spring 2018. In print.
- 2015 "Written in Stone: Cemeteries as Heritage Resources." Municipal World, Sept. 2015.
- 2015 "Bringing History to Life." *Municipal World*, February 2015, pages 11-12.
- 2014 "Inventorying our History." Ontario Planning Journal, January/February 2015.
- 2014 "Assessing the success of Heritage Conservation Districts: Insights from Ontario Canada." with R. Shipley and J. Kovacs. *Cities*.

Amy Barnes, M.A., CAHP Heritage Project Manager

ARCHAEOLOGICAL RESEARCH ASSOCIATES LTD.

1 King Street West, Stoney Creek, ON L8G 1G7 Phone: (226) 338-2339 x122 Fax: (519) 286-0493

Email: <u>amy.barnes@araheritage.ca</u>
Web: www.arch-research.ca

Biography

Amy Barnes, a Project Manager with the Heritage Team, has over ten years of experience evaluating cultural heritage resources and leading community engagement. Amy has extensive experience working with provincial and municipal legislation and guidelines, including the Ontario Heritage Act, Official Plans, the Standards and Guidelines for the Conservation of Historic Places, and the Ontario Heritage Toolkit. Ms. Barnes has completed over fifty heritage related projects including 150+ cultural assessments and has been qualified as an expert witness at the Ontario Superior Court of Justice. Amy has worked in the public and private sector where her duties included project management, public consultation, facilitator, research, database and records management, and report author. Amy has worked with the Town of Oakville, City of Cambridge, City of Kitchener, Niagara-on-the-Lake, City of London, and the City of Kingston on projects which range in size, scale and complexity. Amy Barnes holds an M.A. in Heritage Conservation from the School of Canadian Studies at Carleton University in Ottawa, Ontario. Amy has successfully completed the International Association of Public Participation (IAP2) Foundations in Public Participation, the IAP2 Planning and Techniques for Effective Public Participation, and Indigenous Awareness Training through Indigenous Awareness Canada. Amy is a professional member of the Canadian Association of Heritage Professionals (CAHP) and currently serves as the Vice-Chair of the Cambridge Municipal Heritage Advisory Committee.

Education

2009 MA in Heritage Conservation, School of Canadian Studies, Carleton University,

Ottawa, Ontario.

2006 Honours BA, Carleton University, Ottawa, Ontario

Canadian Studies (Major) and Psychology (Minor).

Professional Memberships and Accreditations

Current Professional Member, Canadian Association of Heritage Professionals (CAHP)

Member, International Network for Traditional Building, Architecture &

Urbanism, Guelph Chapter.

Work Experience

Current Heritage Project Manager, Archaeological Research Associates Ltd.

Coordinates the completion of designation by-laws, Heritage Impact Assessments, Built Heritage and Cultural Heritage Landscape Assessments, and Cultural

Heritage Resource Evaluations.

2020 Principal Heritage Consultant, Amy Barnes Consulting.

2012-2015 Coordinated the completion of various contracts associated with built heritage,

cultural heritage landscapes, including Heritage Impact Assessments, Cultural Heritage Evaluation Reports, Designation Reports and professional consultation.

2019-2020 Manager of Operations- Outreach and Engagement, Yorklands Green Hub.

Coordinated the development of a feasibility study and strategic planning initiatives for the anticipated purchase of a Provincial Property of Provincial Heritage Significance. Coordination of workshops and community events, external outreach and communications and implementing strategic planning initiatives. Liaison with Infrastructure Ontario, Ministry of Heritage, Sport, Tourism and Cultural Industries, non-profits, charities, school boards and community members.

2015-2019 Project Manager and Senior Cultural Heritage Specialist – Letourneau Heritage Consulting Inc.

Coordinated and authored various heritage related contracts. Duties included historic research, heritage impact assessments, cultural heritage assessments and evaluations, and public engagement activities. Served as the firm's Public Engagement Specialist.

2011-2012 Creative Content Developer, Virtual Museums Canada.

Worked as part of an interdisciplinary team to help create an online virtual exhibit for Virtual Museums Canada. Responsible for historical research, record management, creative design, narrative and content development and internal coordination for the Archives and Research Team.

Junior Heritage Planner, Municipality of North Grenville.

Responsible for historic research, public consultation and engagement and community development for heritage related projects. Worked with local heritage committees, Council and planning staff in accordance with the Ontario Heritage Act, Official Plans and other guiding policies.

2009 Heritage Planner Intern, City of Kingston.

Aided in heritage related projects and worked closely with heritage committees, Council, and planning staff.

Selected Professional Development

- 2020 Indigenous Awareness Training and Certification, Indigenous Awareness Canada.
 - Indigenous Awareness Certification
 - Indigenous Peoples and Cultures
 - Indigenous Communication & Consultation
 - Indigenous Employment Outreach, Recruit, and Retain
- 2019 Enviroseries "Creating a Heritage Landmark Park For Guelph at The Former Ontario Reformatory". Yorklands Green Hub..
- 2017 International Association of Public Participation Certification
 - Foundations in Public Participation
 - Planning and Techniques for Effective Public Participation.

Publications

2013 "Landmark Series." Cambridge Times. Selected Issues.

"Alice King Sculthorpe." Acorn Magazine, 2013.

Penny M. Young, MA, CAHP (#P092) Project Manager - Heritage

ARCHAEOLOGICAL RESEARCH ASSOCIATES LTD.

1 King Street West, Stoney Creek, L8G 1G7

Phone: (519) 804-2291 x121 Email: penny.young@araheritage.ca

Web: www.arch-research.com

Biography

Penny Young has 27 years of cultural heritage management experience, 21 years working in government, as a Heritage Planner, Heritage Coordinator, Regional Archaeologist and Archaeological Database Coordinator where she managed and coordinated the impacts to cultural heritage resources including built heritage, archaeological sites and cultural heritage landscapes for compliance with municipal, provincial and federal legislation and policy. She has conducted results-driven and collaborative management of complex cultural heritage resource projects within the public sector involving developing project terms of reference, defining scope of work, preparation of budgets and conducting sites visits to monitor and provide heritage/archaeological and environmental advice and direction. At the Ministry of Transportation Penny revised, updated and developed policy, as part of a team, for the Ontario Heritage Bridge Guidelines for Provincially Owned Bridge Guidelines for Provincially Owned Bridges. She received the MTO Central Region Employee Recognition Award in 2001 and 2002. While at MTO she provided technical advice and input into the development of the MTO Environmental Reference for Highway Design - Section 3.7 Built Heritage and Cultural Heritage Landscapes and the MTO Environmental Guide for Built Heritage and Cultural Heritage Landscapes. She is a professional member of the Canadian Association of Heritage Planners (CAHP) and holds Professional License #P092 from MTCS. She also holds memberships in the Ontario Professional Planners Institute (OPPI) and the Ontario Archaeological Society (OAS).

Education

1990-1993 Master of Arts, Department of Anthropology McMaster University, Hamilton Ontario. Specializing in Mesoamerican and Ontario archaeology.

1983-1987 Honours Bachelor of Arts (English and Anthropology), McMaster University, Hamilton, Ontario.

Professional Memberships and Accreditations

Current Professional Member, Canadian Association of Heritage Professionals (CAHP)

Member of Ontario Archaeological Society

Pre-Candidate Member, Ontario Professional Planners Institute (OPPI) Ministry of Tourism Culture & Sport Professional Licence (#P092)

Work Experience

Current Project Manager - Heritage, Archaeological Research Associates Ltd.

Coordinates ARA project teams and conducts heritage assessment projects including Heritage Impact Assessments, Built Heritage and Cultural Heritage Landscape Assessments, and Cultural Heritage Resource Evaluations. Additional responsibilities include the completion of designation by-laws and heritage

inventories. Liaises with municipal staff, provincial ministries and Indigenous communities to solicit relevant project information and to build relationships.

2008-2016 Heritage Planner, Culture Services Unit, Ministry of Tourism, Culture & Sport (MTCS)

Responsible for advising and providing technical review for management of cultural heritage resources in environmental assessment undertakings and planning projects affecting provincial ministries, municipalities, private sector proponents and Indigenous communities. Advised on municipalities' Official Plan (OP) policies cultural heritage conservation policies. Provided guidance on compliance with the Public Work Class EA, other Class EA legislation and 2010 *Standards and Guidelines for Provincial Heritage Properties*.

Senior Heritage Planner, Planning and Building Department, City of Burlington (temporary assignment)

Project manager of the study for a potential Heritage Conservation District. Provided guidance to a multiple company consultant team and reported to municipal staff and the public. Liaised with Municipal Heritage Committee and municipal heritage property owners approved heritage permits and provided direction on Indigenous engagement, archaeological site assessments and proposed development projects.

Heritage Coordinator, Building, Planning and Design Department, City of Brampton (temporary assignment)

Project lead for new Heritage Conservation District Study. The assignment included directing consultants, managing budgets, organizing a Public Information Session, and reporting to Senior Management and Council. Reviewed development/planning documents for impacts to heritage including OP policies, OP Amendments, Plans of subdivision and Committee of Adjustment applications and Municipal Class EA undertakings.

2010-2011 Senior Heritage Coordinator, Culture Division, City of Mississauga (temporary assignment)

Provided advice to Senior Management and Municipal Council on heritage conservation of built heritage, archaeological sites and cultural heritage landscapes. Liaised with multiple municipal staff including the Clerks' office, Parks and development planners and the public. Supervised and directed project work for junior heritage planner.

1999-2008 Regional Archaeologist, Planning and Environmental Section, Ministry of Transportation (MTO)

Responsibilities included: project management and coordination of MTO archaeology and heritage program, managed multiple consultants, conducted and coordinated field assessments, surveys and excavations, liaised with First Nations' communities and Band Councils, estimated budgets including \$200,000 retainer contracts.

Sarah Clarke, BA Research Manager

ARCHAEOLOGICAL RESEARCH ASSOCIATES LTD.

1 King Street West, Stoney Creek, L8G 1G7

Phone: (519) 755-9983 Email: sarah.clarke@araheritage.ca

Web: www.arch-research.com

Biography

Sarah Clarke is Archaeological Research Associates Ltd.'s Heritage Research Manager. Sarah has over 12 years of experience in Ontario archaeology and 10 years of experience with background research. Her experience includes conducting archival research (both local and remote), artifact cataloguing and processing, and fieldwork at various stages in both the consulting and researchbased realms. As Team Lead of Research, Sarah is responsible for conducting archival research in advance of ARA's archaeological and heritage assessments. In this capacity, she performs Stage 1 archaeological assessment field surveys, conducts preliminary built heritage and cultural heritage landscape investigations and liaises with heritage resource offices and local community resources in order to obtain and process data. Sarah has in-depth experience in conducting historic research following the Ontario Heritage Toolkit series, and the Standards and Guidelines for Provincial Heritage Properties. Sarah holds an Honours B.A. in North American Archaeology, with a Historical/Industrial Option from Wilfrid Laurier University and is currently enrolled in Western University's Intensive Applied Archaeology MA program. She is a member of the Ontario Archaeological Society (OAS), the Society for Industrial Archaeology, the Ontario Genealogical Society (OGS), the Canadian Archaeological Association, and is a Councilappointed citizen volunteer on the Brantford Municipal Heritage Committee. Sarah holds an Rlevel archaeological license with the MTCS (#R446).

Education

Current MA Intensive Applied Archaeology, Western University, London, ON. Proposed

thesis topic: Archaeological Management at the Mohawk Village.

1999–2010 Honours BA, Wilfrid Laurier University, Waterloo, Ontario

Major: North American Archaeology, Historical/Industrial Option

Professional Memberships and Accreditations

Current Member of the Ontario Archaeological Society
Current Member of the Society for Industrial Archaeology

Current Member of the Brant Historical Society
Current Member of the Ontario Genealogical Society

Current Member of the Canadian Archaeological Association
Current Member of the Archives Association of Ontario

Work Experience

Current Team Lead - Research; Team Lead - Archaeology, Archaeological Research

Associates Ltd.

Manage and plan the research needs for archaeological and heritage projects. Research at offsite locations including land registry offices, local libraries and local and provincial archives. Historic analysis for archaeological and heritage projects. Field Director conducting Stage 1 assessments.

2013-2015 Heritage Research Manager; Archaeological Monitoring Coordinator, Archaeological Research Associates Ltd.

Stage 1 archaeological field assessments, research at local and distant archives at both the municipal and provincial levels, coordination of construction monitors for archaeological project locations.

2010-2013 Historic Researcher, Timmins Martelle Heritage Consultants Inc.

Report preparation, local and offsite research (libraries, archives); correspondence with the Ministry of Tourism, Culture, and Sport; report submission to the MTCS and clients; and administrative duties (PIF and Borden form completion and submission, data requests).

2008-2009 Field Technician, Archaeological Assessments Ltd.

Participated in field excavation and artifact processing.

2008-2009 Teaching Assistant, Wilfrid Laurier University.

Responsible for teaching and evaluating first year student lab work.

2007-2008 Field and Lab Technician, Historic Horizons.

Participated in excavations at Dundurn Castle and Auchmar in Hamilton, Ontario. Catalogued artifacts from excavations at Auchmar.

2006-2010 Archaeological Field Technician/Supervisor, Wilfrid Laurier University.

Field school student in 2006, returned as a field school teaching assistant in 2008 and 2010.

Professional Development

2019	Annual attendance at Ontario Heritage Conference, Goderich, ON
2018	Cultural Heritage, Archaeology and Planning Symposium
2018	Grand River Watershed 21 st Annual Heritage Day Workshop & Celebration
2018	Mississaugas of the New Credit First Nation Historical Gathering and Conference
2017	Ontario Genealogical Society Conference
2016	Ontario Archaeological Society Symposium
2015	Introduction to Blacksmithing Workshop, Milton Historical Society
2015	Applied Research License Workshop, MTCS
2014	Applied Research License Workshop, MTCS
2014	Heritage Preservation and Structural Recording in Historical and Industrial
	Archaeology. Four-month course taken at Wilfrid Laurier University, Waterloo,
	ON. Professor: Meagan Brooks.

Presentations

2018	The Early Black History of Brantford. Brant Historical Society, City of Brantford.
2017	Mush Hole Archaeology. Ontario Archaeological Society Symposium, Brantford.
2017	Urban Historical Archaeology: Exploring the Black Community in St. Catharines,
	Ontario. Canadian Archaeological Association Conference, Gatineau, QC.

Volunteer Experience

Current Council-appointed citizen volunteer for the Brantford Municipal Heritage Committee.

Jacqueline McDermid, B.A. Heritage Team—Technical Writer and Researcher ARCHAEOGICAL RESEARCH ASSOCIATES LTD.

1 King Street West, Stoney Creek, L8G 1G7 Phone: (519) 755-9983 Email: jacqueline.mcdermid@araheritage.ca

Web: www.arch-research.com

Biography

Jacqueline McDermid has ten years of technical writing and management experience; Seven years direct heritage experience. She has gained seven years of experience conducting primary and secondary research for archaeological and heritage assessments and drafting reports and evaluating property according to Ontario Regulation 9/06 and 10/06 as part of Municipal Heritage Registers. Jacqueline is expert at copy editing heritage reports including checking grammar, consistency and fact checking, to ensure a high-quality product is delivered to clients. She has experience assisting with the drafting of Heritage Conservation District Studies through the drafting of reports for potential Heritage Conservation Districts in the City of Toronto (Weston HCD) and Township of Bradford West Gwillimbury (Bond Head HCD). Jacqueline has proven project management experience gained by completing projects on time and on budget as well as formal Project Management training. In 2018, under a six-month contract as the Heritage Planner at the Ministry of Transportation, acquired considerable experience conducting technical reviews of consultant heritage reports for Ministry compliance including Cultural Heritage Evaluation Reports, Heritage Impact Assessment, Strategic Conservation Plans, and Cultural Heritage Resource Assessments as well as gained valuable insight on provincial heritage legislation (Ontario Heritage Bridge Guidelines, Ontario MTO Environmental Standards and Practices for Cultural Heritage, MTO Environmental Reference for Highway Design - Heritage, MTCS' Heritage Identification & Evaluation Process as well as the new MHTCI Information Bulletins on Heritage Impact Assessments and Strategic Conservation Plans, and inter-governmental processes. She has extensive Knowledge of heritage and environmental policies including the Planning Act, Provincial Policy Statement, the Ontario Heritage Act, Official Plans, Environmental Assessment Act and Green Energy Act. Working knowledge of the Standards and Guidelines for Consultant Archaeologists (2011), Ministry of Tourism, Culture and Sport.

Education

2000-2007 Honours B.A., Wilfrid Laurier University, Waterloo, Ontario

Major: Near Eastern Archaeology.

Work Experience

2015-Present Technical Writer and Researcher – Heritage, Archaeological Research Associates Ltd., Kitchener, ON

Research and draft designation by-laws, heritage inventories, Heritage Impact Assessments, Built Heritage and Cultural Heritage Landscape Assessments, and Cultural Heritage Resource Evaluations using Ontario Regulation 9/06, 10/06 and the Ontario Heritage Bridge Guidelines.

2018 Environmental Planner – Heritage Ministry of Transportation, Central Region – Six-month contract.

Responsibilities included: project management and coordination of MTO heritage program, managed multiple consultants, conducted and coordinated field assessments and surveys, estimated budgets including \$750,000 retainer contracts. Provided advice on heritage-related MTO policy to Environmental Policy Office (EPO) and the bridge office. Acting Heritage Team Lead – Heritage Archaeological Research Associates 2017-2018 Ltd., Kitchener, ON Managed a team of Heritage Specialists, oversaw the procurement of projects, retainers; managed all Heritage projects, ensured quality of all outgoing products. Technical Writer - Archaeology, Archaeological Research Associates Ltd., 2014-2015 Kitchener, ON Report preparation; correspondence with the Ministry of Tourism, Culture, and Sport; report submission to the Ministry and clients; and administrative duties (PIF and Borden form completion). Lab Assistant, Archaeological Research Associates Ltd., Kitchener, ON 2012-2013 Receive, process and register artifacts. Field Technician, Archaeological Research Associates Ltd., Kitchener, ON 2011-2012 Participated in field excavation and artifact processing. Teaching Assistant, Wilfrid Laurier University, Waterloo, ON 2005-2009 Responsible for teaching and evaluating first, second, third- and fourth-year student lab work, papers and exams. Lab Assistant, Wilfrid Laurier University – Near Eastern Lab, Waterloo, 2005-2007

Professional Development

OPPI and WeirFoulds Client Seminar: Bill 108 – More Homes, More Choice, 2019

Clean, Process, Draw and Research artifacts from various sites in Jordan.

- 2019 Ontario Heritage Conference, Goderich, ON (Two-days)
- 2019 Rural Heritage, Webinar, National Trust for Canada
- 2019 Information Session: Proposed Amendments to the OHA, by Ministry of Tourism, Culture and Sport
- 2019 Indigenous Heritage Places and Perspectives, Webinar, National Trust for Canada
- 2018 Indigenous Canada, University of Alberta
- 2018 Grand River Watershed 21st Annual Heritage Day Workshop and Celebration (One day)
- 2017 Leadership Training for Managers Course, Dale Carnegie Training
- 2015 Introduction to Blacksmithing, One-Day
- Ontario Heritage Trust symposium, topics included: Cultural landscapes, City building, Tangible heritage, How the public engages with heritage, and Conserving intangible heritage
- 2014 Community Heritage Ontario, webinar, Part IV and V of the *Ontario Heritage Act*.

Presentations

2019 **Cemeteries and Burials Research.** Cultural Heritage Planning and Archaeology Symposium, Burlington.

Appendix F

Storm Drainage Analysis Memo MTE Consultants Inc. April 2022

To: City of Brampton

MTE File No.: 47877-100

Date: Revised April 22,2022

Dave Hallman, P.Eng., From: Samir Dhanvantari. P.Eng.

Heart Lake Road **Project Name:**

Reconstruction

MEMORANDUM

Heart Lake Road at Countryside Drive Storm Drainage Analysis

1.0 Introduction

The Function and Design Review of the Heart Lake Road Corridor Study (Stantec, 2019) indicated that a roundabout option was preferred for the configuration of the intersection of Heart Lake Road at Countryside Drive and that the recommended alternative was subject to further study under the Municipal Class Environmental Assessment (Class EA) planning and design process. The Study also stated that the TRCA is to be consulted as part of the future planning and design process.

MTE was retained by the City of Brampton to undertake a Schedule B Class EA for the intersection of Heart Lake Road at Countryside Drive. As part of the design process, the existing conditions and options in the Function and Design Review Study for the intersection were assessed for functionality and storm drainage design.

1.1 Objective

The objective of this memorandum was to analyze the surface runoff under existing conditions and the impacts on surface flow per the following alternatives:

- Option A Signalized Intersection
 - Assume that existing storm conveyance infrastructure will be replaced or rehabilitated;
 - o Re-graded intersection and approaches and new major system flow paths.
- Option B Roundabout
 - Cut into 0.13 ha of developer lands to the north east; and
 - Storm drainage infrastructure improvements including:
 - Reconfiguration of ditches along the east side of Heart Lake Road:
 - Culvert replacement; and
 - New major system flow paths

2.0 Methodology

2.1 Sub-catchment Area Delineations

The development of the drainage sub-catchment areas was based on information provided from the City of Brampton's Open Data platform along with as-built drawings provided by the City of Brampton and Region of Peel. Updated contour information was used to identify the existing high and low points. The existing surface drainage conditions and infrastructure were identified using the above data sources along with observations from Google Earth and a field visit on July 25, 2021 to confirm catchbasin locations and drainage along Countryside Drive. Drawings ST1.2, 2.2 and 3.2 in Appendix C summarize the delineated sub-catchment areas, infrastructure and major system flow paths for Existing Conditions, Proposed Conditions Option A and Proposed Conditions Option B respectively. Overall, the proposed roundabout design slightly increases the intersection drainage area footprint by 0.3 ha as summarized below:

Total Drainage Area Footprint:

Existing: 4.27 ha

Option A (Signalized Intersection): 4.27 ha

Option B (Roundabout): 4.30 ha

Assumptions

Key assumptions in the development of the sub-catchment areas included the following:

- The existing contour information represented the most current data set;
- It was confirmed that the development lands to the north east will have no impact on storm runoff to Countryside Drive or Heart Lake Road
- Runoff along Countryside Drive is captured by the existing storm sewer system and will not spill to the future road development to the southeast;
- Runoff coefficients used are assumed to be applicable up to the 5-year return period event;
- The majority of flows runoff along the Heart Lake Road beyond the intersection at Countryside
 Drive is uncontrolled sheet flow directed to either the ditch to the northwest where flow is conveyed
 to the wetlands via culvert under Countryside Drive and downstream across Heart Lake Road, or
 directly into the wetlands west of Heart Lake Road;
- Assumptions on existing storm sewer invert elevations are based on a minimum surface cover of approximately 1 m;
- The potential impact on the downstream eco-passage considered in the analysis; and
- Future urbanization of Heart Lake Road beyond the proposed limits of construction for the proposed works was not considered in the design.

2.2 Peak Runoff

The City of Brampton Stormwater Design Standard was provided by the City for the methodology to estimate the peak runoff rate for each catchment. The Rational Formula, shown below, was used to estimate existing peak runoff:

Q=0.00278*C*I*A

Where:

- Q=Peak Runoff Rate (m3/s);
- C=Runoff Coefficient;
- I=Average Rainfall Intensity (mm/h) based on a Time of Concentration (T_c) of 10 min, and;
- A=Catchment Area (ha);
- The factor of 0.00278 represents the unit conversion factor (m3*h)/(mm*ha*s).

Rainfall Intensity (I) was based off the following interpolation equation developed from the City's IDF curve in the City of Brampton Standard No. 343:

$$I = A (T_c)^B$$

Runoff coefficients typically account for imperviousness and slope. Table 1 shows typical runoff coefficients in the urban environment sourced from the American Society of Civil Engineers. These runoff coefficients assume that the ground is not frozen and applicable for design storms from the 5-year to 10-year return period.

i abie	1: Summar	y ot Runot	Coefficients

Character of Surface / Land Use	Runoff Coefficient
Road Surface	
Asphalt, Concrete	0.7-0.95
Permeable Pavements	0.15-0.25
Forest and dense wooded areas	0.1-0.25
Parks / Open Space	0.1-0.35
Lawns Sandy Soils	
0%-2% gradient	0.05-0.1
2%-7% gradient	0.1-0.15
>7% gradient	0.1520
Lawns Heavy Soils	
0%-2% gradient	0.13-0.17
2%-7% gradient	0.1822
>7% gradient	0.25-0.35

In the City of Brampton's Standard No. 342 for storm sewer design specifies the urban runoff coefficients to be used for storm design. Based on the City's standard, the composite runoff coefficients for each drainage area are based on the following coefficients from the City standard:

- Road Surface (Paved, concrete) 0.9
- Pervious surface (grassed areas, ditches, wooded areas) 0.25

For the larger return-period events, the following adjustment factors were applied to the Rational Formula per the Region of Peel Storm Design Criteria summarized in Table 2:

Table 2: C Adjustment Factors for Return Period Events

Design Storm Frequency	Adjustment Factor
10-year	1.0
25-year	1.1
50-year	1.2
100-year	1.25

Figure 1 shows the existing storm drainage catchment areas based on the latest topographical information and site information. Figures 2 and 3 shows the proposed storm drainage catchment areas for Options A and B respectively. Peak runoff calculations area tabulated in Appendix A.

2.2 Design

The basis of the design for storm drainage was not to exceed the existing peak runoff and to advance opportunities to offset any increase in the footprint of the intersection using best practices including directing drainage to ditches, enhancing ditches and LID. The existing culvert cross Countryside Drive would also be replaced.

Figure 4 shows the existing storm drainage infrastructure, while Figures 5 and 6 show the proposed drainage infrastructure for Options A and B respectively.

2.2.1 Existing

Figure 1 shows the existing drainage subcatchment areas delineated based on the overland flow paths and drainage infrastructure capturing the overland flow into the minor (storm sewer) system. The City's storm drainage criteria states that the 5-year storm is to be captured and conveyed off the road. Subcatchment areas 1 through 6 drain into the storm sewer system along Countryside Drive and outlet to the southeast ditch at Heart Lake Road via a 450 mm diameter ribbed PVC outlet (Figure 4). Subcatchment areas 7, 10 and 13 area assumed to be captured by the northeast ditch and conveyed through the 600 mm diameter culvert in to the southeast ditch. The remaining subcatchment areas area assumed to be drain to side ditches and into the wetlands.

2.2.1 Option A – Signalized Intersection

As shown in Figure 2, there is no change in the drainage catchment areas between existing conditions and Option A given that the road profile and cross-section are mostly unchanged. The improvements over the existing drainage conditions mainly consist of like for like replacement of existing drainage infrastructure (see Figure 5) with sheet flow along the west side of Heart Lake Road uncontrolled flowing west into the wooded area and wetland per the major system flow paths. The only significant change in the proposed drainage infrastructure for Option A from the existing design is the addition of curb and gutter along Heart Lake Road at the intersection approaches and proposed LID and new outlet along the south side of Countryside Drive (Figure 5). The LID infiltration design and infiltration rates will be calculated at the 60% design.

All of the proposed infrastructure will reside within the proposed right-of-way or as possible to the existing infrastructure alignment to mitigate potential wetland disturbance. Constructability at ditch and outlet locations will be determined pending the outcome of the additional field survey requirement noted in Figure 7.

2.2.2 Option B - Roundabout

For Option B, the storm drainage catchments follow the proposed grading of the intersections with the low points at the east and south sides of the intersection just outside the roundabout lanes per Figure 3. Surface flow to the west side of the intersection is directed south with overflow into the wooded area to the west; mitigation measures can include capturing and directing flows to the ditch to the southeast or diverting part of the flows into an LID feature at the bump-out upstream to address water quality (i.e. road salt conductivity) concerns. The drainage outlets area summarized in Table 3:

Table 3: Option B Proposed Drainage Outlets

Subcatchment Area	Outlet
1, 2, 3, 4 and 5	Proposed twin 300 mm diameter culvert via existing/replaced 300 mm diameter storm sewer along Countryside Drive (potential LID infiltration).
7,9,10,13	Twin 300 mm box culvert via realigned ditch and DCBMH
6, 8 and 11	Surface flow to downstream ditch/wetland with potential LID capture in area 8.

As shown on Figure 6, Option B has significant changes in stormwater management that includes curb and gutter at all approaches, a new culvert cross east of the intersection, proposed stormwater capture using LID along the west side of Heart Lake Road and south side of Countryside Drive, new outlets to the southwest ditch and regrading and enhancement of the existing ditches. The LID infiltration design and infiltration rates will be calculated at the 60% design.

At time of this analysis, it has been determined that the proposed infrastructure will reside either within the proposed right-of-way or within areas outside of the proposed right-of-way previously disturbed as much as possible to minimize disturbance to the wetland areas. The location of the main outlet at the southeast corner of the intersection with be constructed outside the wetland boundary with flows directed to the existing ditch area. Constructability at ditch and outlet locations will be finalized pending the outcome of the additional field survey requirement noted in Figure 7.

The geotechnical report prepared by MTE (December 17, 2020) indicated the presence of groundwater approximately 2 m below ground in the vicinity of the lowest point of the proposed LID on Countryside Drive and dry conditions along the northwest portion of the intersection, however seasonal groundwater fluctuations will need to be monitored to determine the extent that the infiltration trench for LID can be installed while maintaining 1 m separation from the water table. Much of the proposed LID infrastructure is proposed to be installed along Countryside Drive and Heart Lake Road where the road is at a higher elevation than the wetland areas downstream; the proposed locations and design will be determined during detailed design.

The functional design for all Options is summarized per the City of Brampton Standard No. 342 design sheets in Appendix B.

All figures are shown in Appendix C.

3.0 Results

The Rational Method calculation results based on the overall drainage area are discussed below. The Peak Flow calculations for each individual subcatchment area is shown in Appendix A. Flows from each sub-catchment area are directed to different outlets (i.e. sewer, ditch and overflow out of the drainage area) as seen on Figures 1 to 3.

3.1 Peak Flow

The overall peak runoff generated by the sub-catchment areas delineated for the existing and proposed conditions are summarized in Table 4:

Table 4: Overall Peak Runoff Rate Results Based on Total Drainage Area

		Peak runoff Rate (m³/s)			
Return Period	I (mm/h)	C1*	Ex	Option A	Option B
2Yr	79.43	1.00	0.474	0.474	0.479
5Yr	104.99	1.00	0.626	0.626	0.633
10Yr	121.93	1.00	0.727	0.727	0.735
25Yr	143.48	1.10	0.941	0.941	0.951
50Yr	159.52	1.20	1.141	1.141	1.154
100Yr	175.36	1.25	1.307	1.307	1.321

*Adjustment factor added for higher intensity storms per Region of Peel

The rational formula calculations indicate that the peak runoff generated by Option A is unchanged given the nominal changes in the configuration of the impervious and pervious surfaces of the right-of-way from the existing conditions. indicated on Figures 2 and 5. The existing storm sewers along Countryside Drive conveys the 5-year design storm flows and is surcharged under the 100-year peak flows per the design calculations in Appendix B. Under the 100-year event, approximately 0.1 m³/s of peak flow will be conveyed overland with ponding possible at the low-point located at the double-inlet catchbasins. The major system will be further analysed to ensure compliance with the City storm drainage criteria for major roads (one lane free from flooding for emergency vehicles). While the amount surface conveyance indicates that the surface ponding will likely not impede road accessibility under the 100-year event, LID is recommended along Countryside Drive to allow for more infiltration of flows to reduce the impacts of runoff under a major storm event. Impacts to the downstream eco-passage crossing Heart Lake Road are expected to be mostly unchanged compared to existing conditions.

Option B has a minor overall increase in post-development surface runoff by 14 L/s under the 100-year return period with the 300 m² increase in the drainage footprint of the intersection. The major system flow paths in Figure 3 and proposed design per Figure 6 indicate better management of surface flow compared to the existing conditions and Option A with surface grading, curb and gutter, replacement of the current culvert under Countryside Drive and redesign and improvement of the ditches along the northeast and southeast of the intersection. The existing storm sewer along Countryside Drive conveys the 5-year flows into the proposed culvert without surcharging to the road. The 100-year event is conveyed by both the storm sewer and overland into the proposed culvert. Under the 100-year event, approximately 0.1 m³/s of peak flow will be conveyed overland down Countryside Drive to the intersection at Heart Lake Road with ponding possible at the low-point located at the proposed double-inlet catchbasins that outlet to the culvert. The amount of surface conveyance is likely well within the road capacity and will not impede emergency access under a major storm event; however, LID is recommended along Countryside Drive

to allow for more infiltration of flows to reduce the impacts of runoff under a major storm event. Along Heart Lake Road, surface flow is directed southbound into the ditches, however there is an opportunity for additional infiltration at the northwest section of the roundabout using LID to offset the increased drainage area footprint and limit the drainage impacts to the wetland. Impact to the downstream ecopassage is unknown with the projected minor increased runoff but is not expected to be significant with upstream flow mitigation efforts discussed here and in Section 4.

The storm sewer design flows are summarized in Appendix B.

3.2 Flow Velocity

Overall surface flow velocities remain unchanged for Option B from Existing Conditions for the 2-Year through 100-Year return period as shown in Table 4:

	Average Surface Flow Velocity (m/s)			
Return Period	Existing	Option A	Option B	
2-Yr	0.11	0.11	0.11	
5-Yr	0.15	0.15	0.15	
10Yr	0.17	0.17	0.17	
25Yr	0.22	0.22	0.22	
50Yr	0.27	0.27	0.27	
100Yr	0.31	0.31	0.31	

Table 5: Overall Surface Flow Velocity Calculations

The overall flow velocities in Table 5 are based on the entire drainage area and do not represent the individual subcatchment drainage paths. As noted on Figures 1 to 3, drainage is conveyed by a combination of storm sewers, ditch/culvert systems and sheet flow into the ditch systems and woodlands.

For pipe flow, the City's criteria are summarized below:

- Maximum flow velocities 4.5 m/s
- Minimum flow velocities 0.75 m/s

Under Option A, the design flow exceeds the maximum allowable under the 5-year event, however this may be due to the assumptions for sewer invert elevations from which the storm design calculations are based on. The invert elevations of the storm sewer along Countryside Drive were assumed and will need to be surveyed. Additional survey will also be required for the storm sewer and culvert outlets as well as the ditches to verify the design calculations; the area of proposed additional survey is shown in Figure 7.

3.3 Stormwater Quality Control Measures

The only evidence of any form of existing stormwater quality control are perforated outlets along the south side of Heart Lake Road at the east end of the study area for the drainage area upstream and another at the southeast corner of the intersection at Countryside Drive based on the provided as-built data.

TRCA's water balance requirement states that 5 mm of runoff from impervious surfaces must be retained and infiltrated and achieve and enhanced level of treatment (80% TSS) prior to discharge to the wetlands. As previously mentioned, perforated pipe systems are proposed to address both stormwater quantity and quality target. The design will be based on the design of perforated pipe systems Section 4.10 in the Low

Impact Development Stormwater Management Planning and Design Guide (2010) and Section 4 of the Stormwater Planning and Design Manual.

Preliminary calculations for the areas to directed to the perforated pipe system indicated a volume retention/treatment target of 71 cubic meters. The total length of LID measures under a preliminary design was approximately 213 m with a total potential infiltration volume of approximately 285 cubic meters. Preliminary design calculations can be seen in Appendix B.

LID pre-treatment design will include catchbasins located with curb inlets directing road drainage into boulevard areas where catchbasins will be located or a forebay-type configuration before flows enter the catchbasin similar to these used for bioretention cells per the Stormwater Planning and Design Manual.

Guidance will also be taken from the LID Stormwater Management and Planning Guide (CVC, TRCA, 2010) from Section 4.10 on the design for perforated pipe systems. The design would follow the volumetric reduction benefits and pollutant removal capacity for different configurations as well as pretreatment guidance that may include a grass forebay (requiring 25% of the water quality storage volume), gravel diaphragm or other methods to dissipate flow energy prior to flows reaching the inlet of the perforated pipe system. Conductivity monitoring will also guide the final design for pretreatment.

The design calculations also indicate the volume retained/infiltrated will exceed the target volume by an order of magnitude of 3 to 4 times resulting in keeping flow volumes at or below existing peak flows that will mitigate potential impacts on the wildlife corridor downstream.

3.4 Impacts on the Wildlife Corridor

A wildlife corridor exists downstream to the south from the construction limit. As mentioned in the previous section, the anticipated volume retention using LID in conjunction with pre-treatment of flows prior to entering the LID measure was calculated to be sufficient to mitigate the impacts of a 14 L/s increase in flows hat in turn, would mitigate any impacts on the wildlife corridor.

3.5 Erosion and Sediment Control During Construction

Effective sediment control involves addressing those activities that may result in increased erosion and sedimentation in both the planning and the construction stages. Given the sensitive nature of the wetlands and potential impacts on the downstream wildlife corridor, consultation with the TRCA and Region of Peel on the appropriate erosion control requirements and staging during constructions will be completed prior to the submission of the ECA. Examples of erosion and sediment control practices during construction include, but not limited to, the following:

- Storing materials off-site away from sensitive areas,
- Best practices to capture sediments on or off site including:
 - Flow diversions to temporary ponds or tanks and collecting sediments for disposal or reuse; and
 - Temporary silt fencing;

,

4.0 Conclusions and Recommendations

In conclusion, storm drainage in Option A is essentially unchanged from the existing conditions while Option B increases the amount of peak runoff by 14 L/s into the wetlands under the 100-year return period event using a rational approach to the analysis. There appear to be more opportunities to control/mitigate surface flows and protect water quality and flows directed toward the wildlife corridor under Option B then with Option A that maintains the status quo for storm drainage.

Key recommendations are summarized below:

- 1. Hydrogeotechnical review is required to confirm the soil infiltration rate and groundwater levels that will affect the LID approach;
- 2. An erosion and sediment control plan is required to detail mitigation measures during construction to protect the wetlands and wildlife corridor during construction;
- 3. The proposed LID alternatives for water quantity and quality impact mitigation are to be reviewed by the TRCA and modified for functionality. Figures 5 and 6 show potential LID location options to reduce surface runoff for Options A and B respectively. Option B offers a greater opportunity to direct drainage to LID infrastructure to mitigate flow volume and water quality impacts;
- 4. Flow monitoring upstream of the wildlife corridor should be conducted to establish the baseflow; and
- 5. Additional survey is recommended per Figure 7 to identify potential constructability issues, confirm outlet locations and begin detailed design.

Please do not hesitate to contact the undersigned for any questions.

MTE Consultants Inc.

Samir Dhanvantari, P.Eng. Water Resources Engineer sdhanvantari@mte85.com

SXD:zeg

Cc: Dave Hallman, MTE Consultants Inc.

M:\47877\100\Storm Drainage Memo\Submission\2022-04-25\Storm Drainage Memorandum - REV5.docx

APPENDIX A – RATIONAL METHOD PEAK RUNOFF CALCULATIONS

Subcatchment Area Peak Runoff

																				Pea	ak Runoff R	ate (m3/s)								
Aron No	Catch	nment Area (ha)	Propo	ortional Area	a		C Value		Wei	ghted C Val	ue		2-Yr			5-Yr			10-Yr			25-Yr			50-Yr			100-Yr	
Area No.	(Option A O	ption B Ex	0	ption A Op	otion B Ex	C	Option A Op	otion B Ex	(Option A	Option B E	χ (Option A C	ption B E	х	ption A O	ption B E	Х (Option A C	ption B Ex	(Option A O	ptionB Ex	(0	ption A O	ption B Ex	0	ption A O	ption B
1	0.57	0.57	0.57	0.13	0.13	0.13	0.71	0.71	0.71	0.094	0.094	0.093	88.736	8.874	0.089	0.118	0.118	0.118	0.137	0.137	0.137	0.178	0.178	0.178	0.215	0.215	0.215	0.245	0.245	0.245
2	0.41	0.41	0.41	0.10	0.10	0.10	0.58	0.58	0.58	0.055	0.055	0.055	0.052	0.052	0.052	0.069	0.069	0.069	0.080	0.080	0.080	0.104	0.104	0.104	0.126	0.126	0.126	0.144	0.144	0.144
3	0.43	0.43	0.43	0.10	0.10	0.10	0.51	0.51	0.51	0.051	0.051	0.051	0.048	0.048	0.048	0.064	0.064	0.064	0.075	0.075	0.075	0.097	0.097	0.097	0.118	0.118	0.118	0.134	0.134	0.134
4	0.41	0.41	0.41	0.10	0.10	0.10	0.51	0.51	0.51	0.049	0.049	0.049	0.046	0.046	0.046	0.061	0.061	0.061	0.071	0.071	0.071	0.092	0.092	0.092	0.112	0.112	0.112	0.127	0.127	0.127
5	0.36	0.36	0.57	0.08	0.08	0.13	0.58	0.58	0.51	0.048	0.048	0.068	0.046	0.046	0.064	0.061	0.061	0.085	0.071	0.071	0.099	0.091	0.091	0.128	0.111	0.111	0.156	0.126	0.126	0.177
6	0.22	0.22	0.27	0.05	0.05	0.06	0.77	0.77	0.64	0.040	0.040	0.040	0.037	0.037	0.038	0.050	0.050	0.051	0.058	0.058	0.059	0.075	0.075	0.076	0.091	0.091	0.093	0.103	0.103	0.105
7	0.17	0.17	0.12	0.04	0.04	0.03	0.87	0.87	0.90	0.035	0.035	0.025	0.033	0.033	0.024	0.043	0.043	0.032	0.050	0.050	0.037	0.065	0.065	0.048	0.079	0.079	0.058	0.090	0.090	0.066
8	0.19	0.19	0.21	0.04	0.04	0.05	0.87	0.87	0.77	0.039	0.039	0.038	0.036	0.036	0.036	0.048	0.048	0.048	0.056	0.056	0.055	0.073	0.073	0.071	0.088	0.088	0.087	0.100	0.100	0.099
9	0.02	0.02	0.07	0.00	0.00	0.02	0.87	0.87	0.84	0.004	0.004	0.014	0.004	0.004	0.013	0.005	0.005	0.017	0.006	0.006	0.020	0.008	0.008	0.026	0.009	0.009	0.031	0.011	0.011	0.036
10	0.58	0.58	0.51	0.14	0.14	0.12	0.25	0.25	0.25	0.034	0.034	0.030	0.032	0.032	0.028	0.043	0.043	0.037	0.050	0.050	0.044	0.064	0.064	0.056	0.078	0.078	0.068	0.088	0.088	0.078
11	0.34	0.34	0.34	0.08	0.08	0.08	0.25	0.25	0.25	0.020	0.020	0.020	0.019	0.019	0.019	0.025	0.025	0.025	0.029	0.029	0.029	0.038	0.038	0.038	0.046	0.046	0.046	0.052	0.052	0.052
12	0.33	0.33	0.33	0.08	0.08	0.08	0.25	0.25	0.25	0.019	0.019	0.019	0.018	0.018	0.018	0.024	0.024	0.024	0.028	0.028	0.028	0.036	0.036	0.036	0.044	0.044	0.044	0.050	0.050	0.050
13	0.24	0.24	0.06	0.06	0.06	0.01	0.25	0.25	0.25	0.014	0.014	0.003	0.013	0.013	0.003	0.018	0.018	0.004	0.020	0.020	0.005	0.027	0.027	0.007	0.032	0.032	0.008	0.037	0.037	0.009
Total	4.27	4.27	4.30	1	1	1	·			0.502	0.502	0.504	89.121	9.258	0.479	0.630	0.630	0.637	0.732	0.732	0.740	0.948	0.948	0.958	1.149	1.149	1.162	1.307	1.307	1.321

Rainfall Intensity and Peak Runoff Tc (min) 10 Q=0.00278*C1*C*I*A

							Q Total	
Return F	Period	Α	В	R (mm/h)	C1*	Ex	Option A	Option B
2Yr	I=A(Tc)^B	22.1	-0.714	79.43	1.00	0.474	0.474	0.479
5Yr	I=A(Tc)^B	29.9	-0.701	104.99	1.00	0.626	0.626	0.633
10Yr	I=A(Tc)^B	35.1	-0.695	121.93	1.00	0.727	0.727	0.735
25Yr	I=A(Tc)^B	41.6	-0.691	143.48	1.10	0.941	0.941	0.951
50Yr	I=A(Tc)^B	46.5	-0.688	159.52	1.20	1.141	1.141	1.154
100Yr	I=A(Tc)^B	51.3	-0.686	175.36	1.25	1.307	1.307	1.321

^{*}Adjustment factor for higher intensity storms per Region of Peel

APPENDIX B – STORM DESIGN SHEETS

Storm Design Sheet - Heart Lake Road - Existing

Time of Conc. (T _c)	10	min			
Rainfall Intensity (I)	$I=A(T_c)^B$	mm/h			# Region of Peel factor for storms > 5-yr
Return Period	Α	В	I (mm/h)	$C_1^{\#}$	⁺ Proportional Area (m/m)
5Yr	29.9	-0.701	104.99	1.00	Peak Flow - Q=0.00278*C ₁ *C*I*A
100Yr	51.3	-0.686	175.36	1.25	Pipe Flow - $Q_{CAP} = A^*(A/P)^{2/3} * S^{1/2}/n$

Notes

Existing storm sewer and culvert invert elevations assumed based on surface elevation data

Designed: SD Checked:

Street	Area No.	US_MH	US_Inv	DS_MH	DS_Inv (mAD)	A (ha)	A _{CUM} (ha)	Runoff Co	efficient (I	Proportion A	* C)	Composite	A*C	T _c (min)	Rainfall (mr	ntensity n/h)	Peak Flov	v (m³/s)	Peak Flow	_{CUM} (m ³ /s)				Pip	pe				%Ful	II
			(mAD)		(MAD)			Impervi	ous	Perviou	IS	C			I ₅	I ₁₀₀	Q ₅	Q ₁₀₀	Q ₅	Q ₁₀₀	L (m)	Size (mm)	A (m²)	P (m)	S (m/m)	$Q_{CAP} (m^3/s)$	/ ₅ (m/s) V ₂	₁₀₀ (m/s)	5 yr	100 yr
								C A _P	⁺ C	A _p	+																			
Countryside Drive	9																													
	1		255.46		252.27	0.57	0.57	0.9	0.7	0.25	0.3	0.71	0.40185	10	104.99	175.36	0.117	0.196	0.117	0.196	140.2	300	0.07	0.94	0.02	0.788	1.66	2.77	15%	25%
	2		252.27		250.93	0.41	0.98	0.9	0.5	0.25	0.5	0.58	0.23575	10	104.99	175.36	0.069	0.115	0.186	0.311	58.5	300	0.07	0.94	0.02	0.791	2.63	4.40	24%	39%
Storm Sewer	3		250.93		250.15	0.43	1.41	0.9	0.4	0.25	0.6	0.51	0.2193	10	104.99	175.36	0.064	0.107	0.250	0.418	58.4	300	0.07	0.94	0.01	0.604	3.54	5.91	41%	69%
Storm Sewer	4		250.15		249.45	0.41	1.82	0.9	0.4	0.25	0.6	0.51	0.2091	10	104.99	175.36	0.061	0.102	0.311	0.520	53.5	300	0.07	0.94	0.01	0.598	4.40	7.35	52%	87%
	5		249.45		249	0.36	2.18	0.9	0.4	0.25	0.6	0.51	0.1836	10	104.99	175.36	0.054	0.090	0.365	0.609	71.3	300	0.07	0.94	0.01	0.415	5.16	8.62	88%	147%
	6		249		248.75	0.22	1.63	0.9	0.8	0.25	0.2	0.77	0.1694	10	104.99	175.36	0.049	0.083	0.414	0.692	20	300	0.07	0.94	0.01	0.584	5.86	9.79	71%	118%
Overland	12					0.33	0.33	0.9	0	0.25	1	0.25	0.0825	11	104.99	175.36	0.024	0.040	0.024	0.040										
Heart Lake Road																														
Heart Lake Roau	7					0.12	0.12	0.9	0.95	0.25	0.05	0.87	0.1041	10	104.99	175.36	0.030	0.051	0.030	0.051				1						$\overline{}$
Culvert	10					0.12	0.63	0.9	0.55	0.25	1	0.25	0.1275		104.99	175.36	0.037	0.062	0.068	0.113										
Curvert	13	Inlet	249	Inlet	248.5	0.06	0.69	0.9	0	0.25	1	0.25	0.015		104.99	175.36	0.004	0.002	0.000	0.110	43.5	600	0.28	1.88	0.01	3.558	0.25	0.43	2%	3%
O. cordon d	8					0.19	0.19	0.9	0.95	0.25	0.05	0.87	0.16	10	104.99	175.36	0.048	0.080	0.048	0.080	· ·	l.						· ·		
Overland	11					0.34	0.53	0.9	0	0.25	1	0.25	0.09	10	104.99	175.36	0.025	0.041	0.073	0.122										

Time of Conc. (T _c)	10	min			
Rainfall Intensity (I)	$I=A(T_c)^B$	mm/h			# Region of Peel factor for storms > 5-yr
Return Period	Α	В	I (mm/h)	C ₁ #	⁺ Proportional Area (m/m)
5Yr	29.9	-0.701	104.99	1.00	Peak Flow - Q=0.00278*C ₁ *C*I*A
100Yr	51.3	-0.686	175.36	1.25	Pipe Flow - $Q_{CAP} = A^*(A/P)^{2/3} S^{1/2}/n$

Notes

Existing storm sewer and culvert invert elevations assumed based on surface elevation data

* equivalent size

Designed: SD Checked:

Street	Area No.	US_MH	US_Inv	DS_MH	DS_Inv	A (ha)	A _{cum} (ha)	Runoff Coe	efficient (Pr	roportion A	* C) C	omposite	A*C	T _c (min)		Intensity n/h)	Peak Flow	(m ³ /s)	Peak Flow _{CI}	_{JM} (m³/s)				Pip	oe .				%Ful	II
			(mAD)		(mAD)			Impervio	us	Perviou	S	C			I ₅	I ₁₀₀	Q_5	Q ₁₀₀	Q_5	Q ₁₀₀	L (m) Siz	e (mm)*	A (m2)	P (m)	S (m/m)	Ω_{CAP} (m ³ /s) \	V ₅ (m/s) V ₁₀	₁₀ (m/s)	5 yr	100 yr
							($C = A_P$	C	A_{P}^{+}																				
Countryside Drive																														
	1		255.46		252.27	0.57	0.57	0.9	0.7	0.25	0.3	0.71	0.40185	10	104.99	175.36		0.196		0.196	140.2	300	0.07	0.94	0.02	0.788	1.66	2.77	15%	25%
	2		252.27		250.93	0.41	0.98	0.9	0.5	0.25	0.5	0.58	0.23575	10	104.99	175.36	0.069	0.115		0.311	58.5	300	0.07	0.94	0.02	0.791	2.63	4.40	24%	39%
Storm Sewer	3		250.93		250.15	0.43	1.41	0.9	0.4	0.25	0.6	0.51	0.2193	10	104.99	175.36	0.064	0.107	0.250	0.418	58.4	300	0.07	0.94	0.01	0.604	3.54	5.91	41%	69%
Storm Sewer	4		250.15		249.45	0.41	1.82	0.9	0.4	0.25	0.6	0.51	0.2091	10	104.99	175.36	0.061	0.102	0.311	0.520	53.5	300	0.07	0.94	0.01	0.598	4.40	7.35	52%	87%
	5		249.45		249	0.36	2.18	0.9	0.4	0.25	0.6	0.51	0.1836	10	104.99	175.36	0.054	0.090	0.365	0.609	71.3	300	0.07	0.94	0.01	0.415	5.16	8.62	88%	147%
	6		249		248.75	0.22	1.63	0.9	0.8	0.25	0.2	0.77	0.1694	10	104.99	175.36	0.049	0.083	0.414	0.692	20	300	0.07	0.94	0.01	0.584	5.86	9.79	71%	118%
Overland	12					0.33	0.33	0.9	0	0.25	1	0.25	0.0825	11	104.99	175.36	0.024	0.040	0.024	0.040										
Heart Lake Road																						<u> </u>								
	7					0.12	0.12	0.9	0.95	0.25	0.05	0.87	0.1041	10	104.99	175.36	0.030	0.051	0.030	0.051										
Culvert	10					0.51	0.63	0.9	0	0.25	1	0.25	0.1275	10	104.99	175.36	0.037	0.062		0.113										
	13	Twin Inlet	249 T	win Outlet	248.5	0.06	0.69	0.9	0	0.25	1	0.25	0.015	10	104.99	175.36	0.004	0.007	0.072	0.120	43.5	600	0.28	1.88	0.01	3.558	0.25	0.43	1%	2%
Overland	8					0.19 0.34	0.19 0.53	0.9	0.95	0.25 0.25	0.05	0.87 0.25	0.16 0.09	10 10	104.99 104.99	175.36 175.36	0.048 0.025	0.080 0.041	0.048 0.073	0.080 0.122										

Storm Design Sheet - Heart Lake Road - Option B

Time of Conc. (T_c)	10	min				Notes
Rainfall Intensity (I)	$I=A(T_c)^B$	mm/h			# Region of Peel factor for storms > 5-yr	Existing storm sewer and culvert invert elevations
Return Period	Α	В	I (mm/h)	C ₁ #	⁺ Proportional Area (m/m)	assumed based on surface elevation data
5Yr	29.9	-0.701	104.99	1.00	Peak Flow - Q=0.00278*C ₁ *C*I*A	* equivalent size
100Yr	51.3	-0.686	175.36	1.25	Pipe Flow - $Q_{CAP} = A^*(A/P)^{2/3} S^{1/2}/n$	

Designed: SD Checked:

Street	Area No.	IIS MH	US_Inv	DS_MH	DS_Inv	A (ba)	A _{cum} (ha)	Runoff Co	efficient (P	roportion A	* C)	Composite	A*C	T _c (min)		I Intensity m/h)	Peak Flov	v (m³/s)	Peak Flow _c	_{UM} (m³/s)				Pip	ре				%Ful	ı
Sileet	Alea No.	U3_IVII1	(mAD)	D3_IVII I	(mAD)	A (IIa)	A COM (11d)	Impervi	ous	Perviou	S	С	AC	1 _C (111111)	I ₅	I ₁₀₀	Q_5	Q ₁₀₀	Q ₅	Q ₁₀₀	L (m) Si	ze (mm)*	A (m2)	P (m)	S (m/m) (Ω_{CAP} (m ³ /s)	/ ₅ (m/s) V ₁	₀₀ (m/s)	5 yr	100 yr
Heart Lake Road								C A	С	А		•						•												
	1		255.46 252.27		252.27 250.93	0.57 0.41	0.57 0.98	0.9 0.9	0.7	0.25 0.25	0.3 0.5	0.71 0.58	0.40 0.24	1	104.9		0.117 0.069	0.196 0.115	0.117 0.186	0.196 0.311	140.2 58.5	300 300	0.07 0.07	0.94 0.94	0.02 0.02	0.79 0.79	1.66 2.63	2.77 4.40	15% 24%	25% 39%
Storm Sewer	3		250.93 250.15		250.15 250.15 249.45	0.43	1.41 1.82	0.9	0.4	0.25 0.25	0.6	0.51	0.22 0.21	1	104.9	9 175.36	0.064	0.107 0.102	0.250 0.311	0.418 0.520	58.4 53.5	300 300	0.07 0.07	0.94 0.94	0.01 0.01	0.60	3.54	5.91 7.35	41% 52%	69% 87%
	5		249.45		249.45		1.82	0.9	0.4	0.25	0.6	0.51 0.51	0.00	1	104.9	9 175.36	0.061	0.000	0.311	0.520	71.3	375	0.07	1.18	0.01	0.60	4.40 2.82	4.71	41%	69%
Overland	12					0.33	0.33	0.9	0	0.25	1]	0.25	0.0825	1	104.9	9 175.36	0.024	0.040	0.024	0.040										
Countryside Drive																														
	5 7					0.57 0.12	0.57 0.69	0.9 0.9	0.4	0.25 0.25	0.6	0.51 0.90	0.29 0.11	1 1	104.9		0.085 0.032	0.142 0.053	0.085 0.116	0.142 0.194										
Culvert	9					0.07 0.51	0.76 1.27	0.9 0.9	0.9	0.25 0.25	0.1	0.84 0.25	0.06 0.13		104.9		0.017 0.037	0.028 0.062	0.133 0.171	0.223 0.285										
	13	Twin Inlet	248.97	Twin Outlet	248.40	0.06	1.33	0.9	0	0.25	1	0.25	0.02	1	104.9		0.004	0.007	0.175	0.292	44.4	600	0.283	1.885	0.013	3.737	0.62	1.03	2%	4%
	6					0.27	0.27	0.9	0.6	0.25	0.4	0.64	0.17	1	104.9		0.050	0.084	0.050	0.084			-	<u> </u>	-					
Overland	8 11					0.19 0.34	0.46 0.80	0.9 0.9	0.95 0	0.25 0.25	0.05	0.87 0.25	0.16 0.09	1 1	104.9 104.9		0.048 0.025	0.080 0.041	0.099 0.123	0.165 0.206										

Heart Lake Road at Countryside Drive LID PRACTICE EVALUATION - PRELIMINARY

Kitchener, Ontario

Project No.: Date: 47877-100 February 22, 2022

Design By: File:

C:\Users\SDhanvantari\Desktop\47877 Heart Lake Road\Storm Drainage Memo\47877-100-100 LID-Screening.xlsx

Analysis of Rights-of-way Only

Table 1A

Location #				Contr	ibuting Are	a					LID Facili	ty				ı	Evaluatio		Infitration Possble?	Comments
	Proposed	Area	Area (A),	Runoff	I (=AxC),	Runoff Vo	lume, m ³	Loca	ition	Length,	Functional	Depth of	Void	Volume Treated,	Pervious	I/P		Design eria?		
	Facility	Number	ha	Coeff. (C)	(m ²)	From 5 mm	From 12.5 mm	Downstream MH	Upstream MH	(m)	Width, (m)	Practice, (m)	Ratio	(m ³)	(m ²)	Ratio ¹	For 5 mm	For 12.5 mm		
Heart Lake	EES-1	1,2,3.4,5	1.000	0.750	7500	37.500	93.750			112.6	2.00	1.5	0.4	135.1	225.2	33.30	YES	YES	YES	
Countryside	EES-2	6,8	0.210	0.770	1617	8.085	20.213			100.0	2.00	1.5	0.4	120.0	200.0	8.09	YES	YES	YES	

Area Potentially Treated by LID's Total Area of Right of Way³ % Area Potentially Treated by LIDs

Table 1B

Location #					In	filtration Calc	ulations					Comments
	Proposed	Runoff Vo	olume, m ³	Footprint			Assumed Infiltration	Time to	Volume		Design teria?	
	Facility	From 5 mm	From 12.5 mm	Area, A _f (m ²)	Depth, d _r (mm)	Void Ratio, V _r	Rate ² , i (mm/hr)	Drain, t _s (hr)	Infiltrated, WQV (m ³)	For 5 mm	For 12.5 mm	
Heart Lake	EES-1	37.500	93,750	225.20	1500.00	0.4	12.0	50.0	135.12	YES	YES	
Countryside	EES-2	8.085	20.213	200.00	1500.00	0.4	14.0	42.9	120.00	YES	YES	

Potential Volume Infiltrated 255.12 Target Volume (First 5 mm Runoff)⁴ 71.00 % Runoff Infiltrated by LIDs 359%

- 1. Credit Valley Conservation (CVC) and Toronto Region Conservation (TRCA) Guidelines suggest an I/P ratio of between 5 and 10 for perforated pipe systems.

 2. The assumed infiltration rate is taken from the approximate infiltration rate of sand. A 2.5 Safety Factor was added based on Table C2 of the CVC and TRC Guidelines.

 3. The total area of the rights-of-way includes the Cambridge Ave and Fife Ave right of ways within the contract limits.

 4. The target volume is based on the total area of right-of-way.

2/22/2022 9:42 PM Page 1 of 1

Heart Lake Road at Countryside Drive LID PRACTICE EVALUATION - PRELIMINARY

Kitchener, Ontario

Project No.: Date: 47877-100 February 22, 2022

Design By: File: C:\Users\SDhanvantari\Desktop\47877 Heart Lake Road\Storm Drainage Memo\47877-100-100 LID-Screening.xlsx

Analysis of Entire Catchments

Table 2A

												4010 E/1									
Location #	ŧ				Contr	ibuting Are	a					LID Facili	ty				ı	Evaluation	1	Infitration Possble?	Comments
	Ī	Proposed	Area	Area (A),	Runoff	I (=AxC),	Runoff Vo	lume, m ³	Loca	ation	Length,	Functional Width,	Depth of Practice,	Void	Volume Treated,	Pervious			Design eria?		
		Facility	Number	ha	Coeff. (C)	(m ²)	From 5 mm	From 12.5 mm	Downstream MH	Upstream MH	(m)	(m)	(m)	Ratio	(m ³)	(m ²)	Ratio ¹	For 5 mm	For 12.5 mm		
ST3.2 - Heart L	ake E	EES-1	1,2,3,4,5	2.090	0.510	10659	53.295	133.238			112.6	2.00	1.5	0.4	135.1	225.2	47.33	YES	YES	YES	
ST3.2 - Country	/side [E	EES-2	6,8	0.550	0.454	2499	31.240	67.478			100.0	2.00	1.5	0.4	120.0	200.0	12.50	YES	YES	YES	

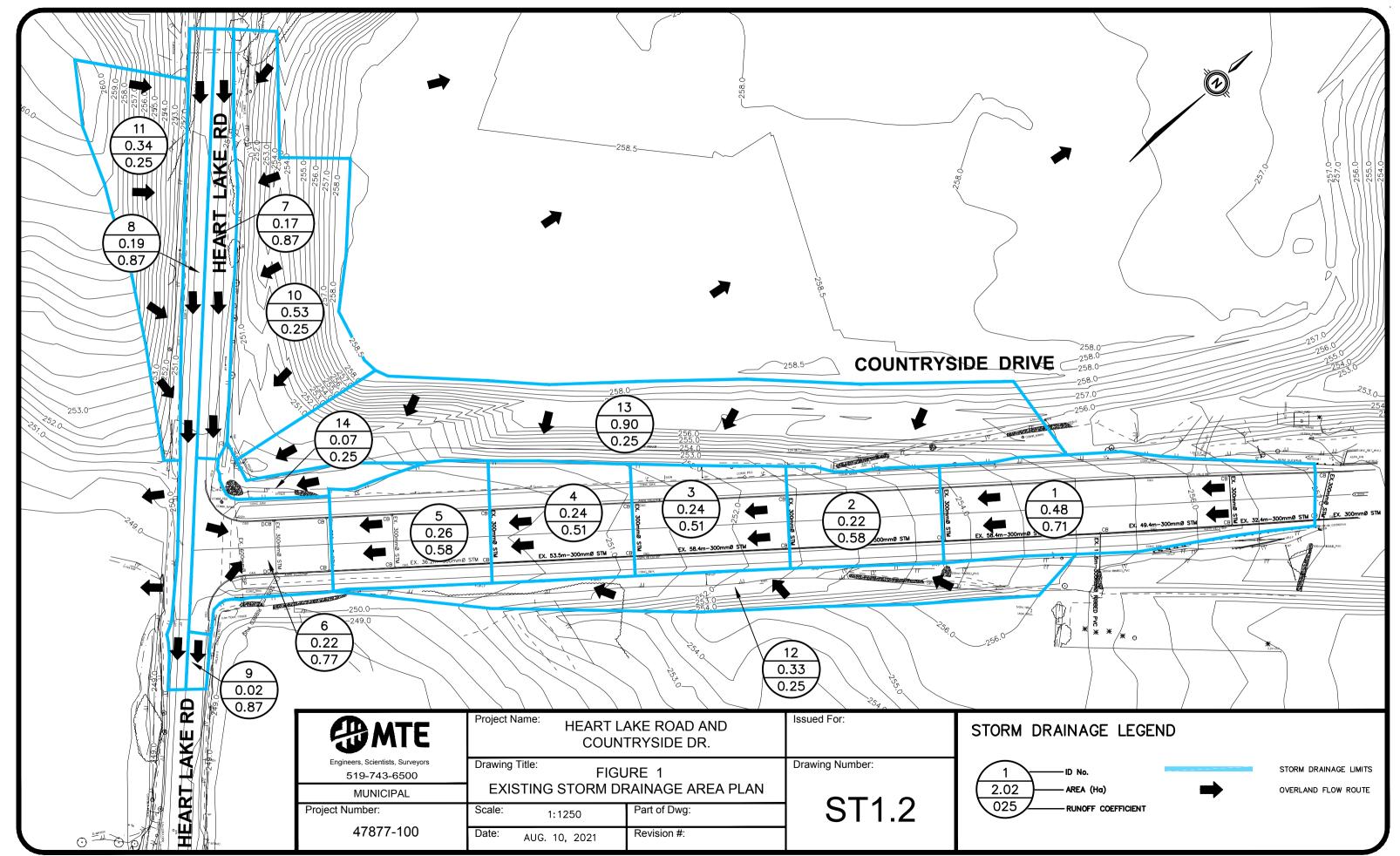
Area Potentially Treated by LID's 2.09 Total Area of Right of Way³ % Area Potentially Treated by LIDs 147%

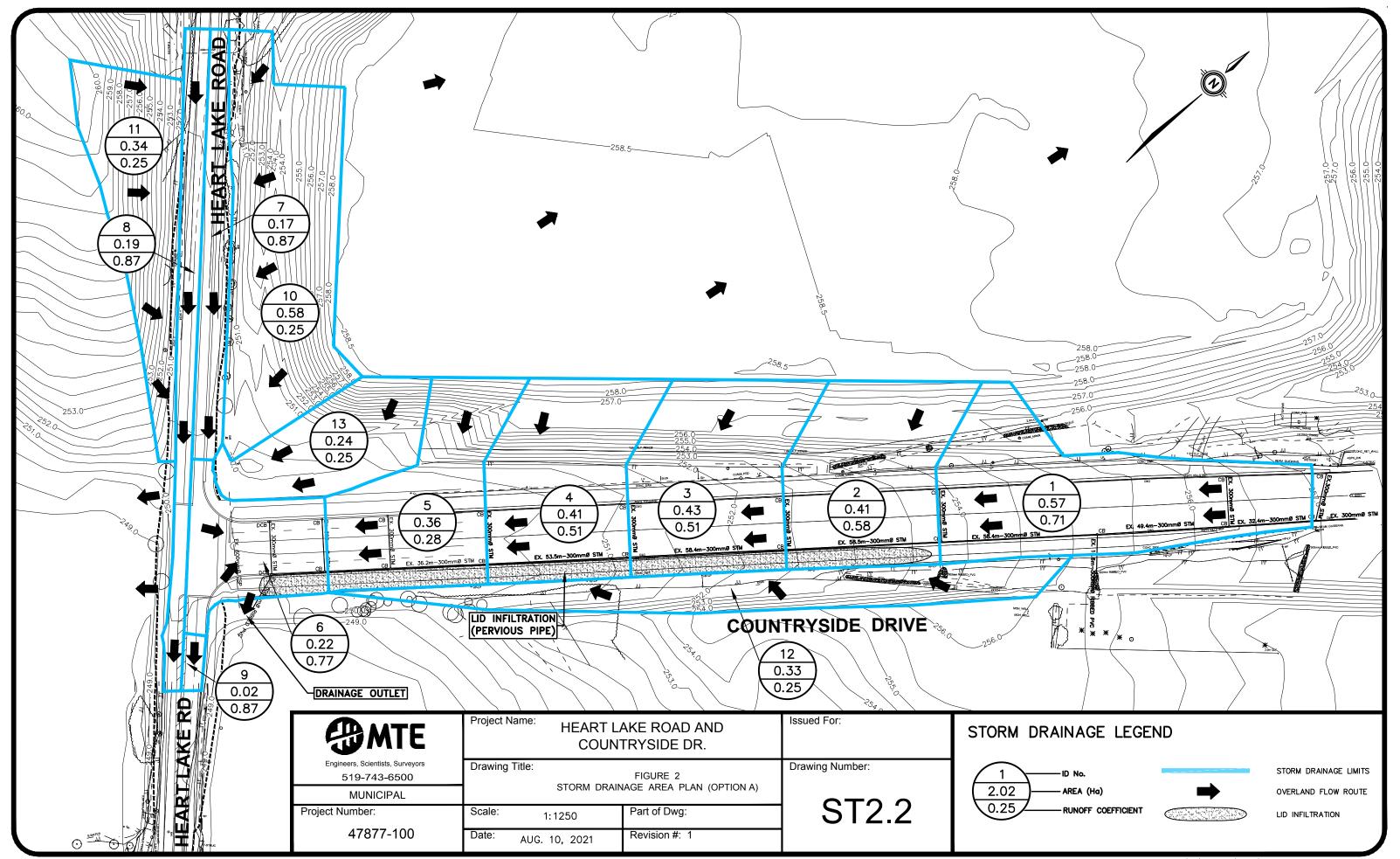
Table 2B

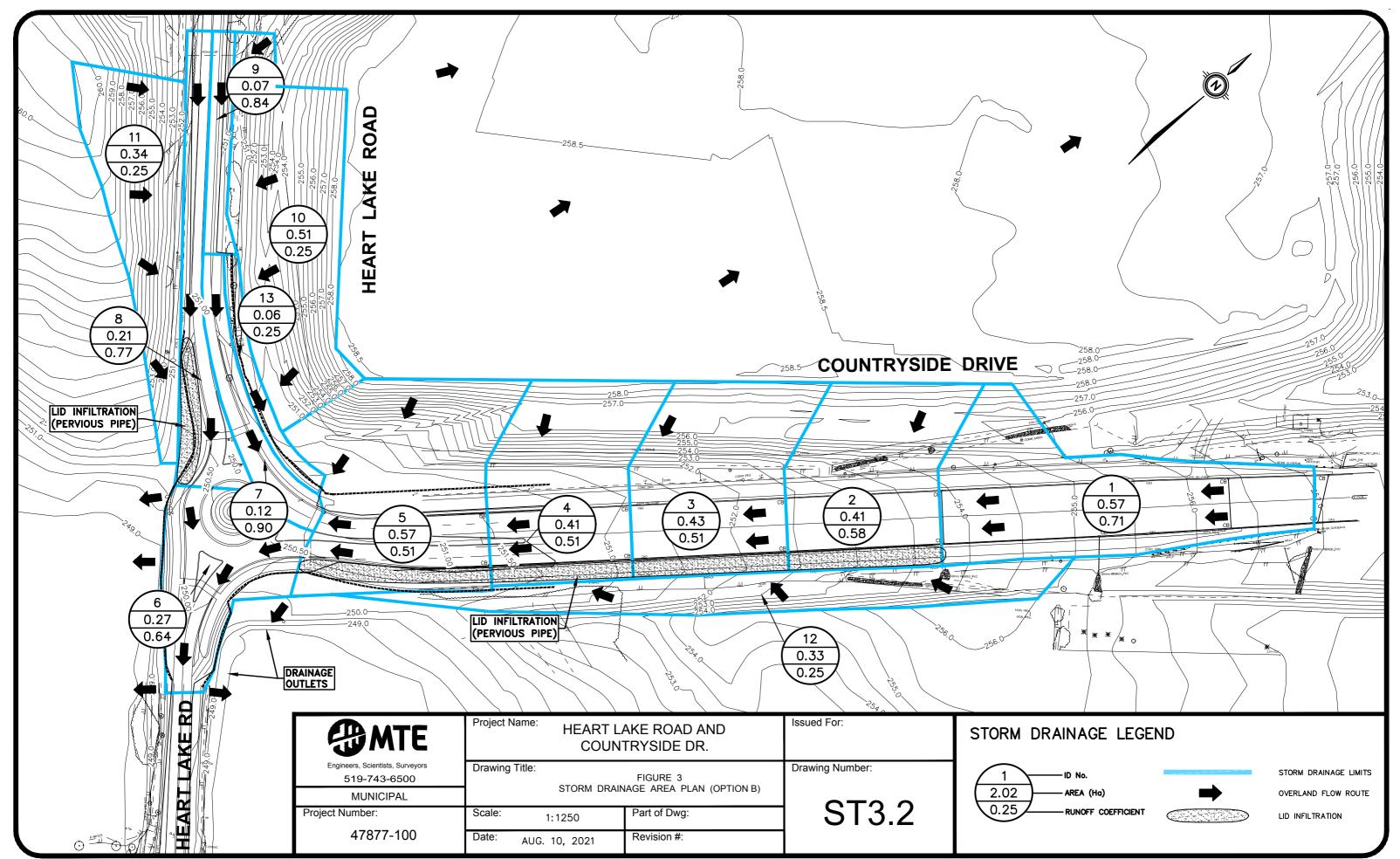
Location #		Infiltration Calculations							Comments			
	Proposed	Runoff Vo	olume, m ³	. ootpiiit			Assumed Infiltration	Time to	Volume		Design eria?	
	Facility	From 5 mm	From 12.5 mm	(m ²)	Depth, d _r (mm)	Void Ratio, V _r	Rate ² , i (mm/hr)	Drain, t _s (hr)	Infiltrated, WQV (m ³)	For 5 mm	For 12.5 mm	
Heart Lake	EES-1	53.295	133.238	225.20	1500.00	0.4	12.0	50.0	135.12	YES	YES	
Countryside	EES-2	31.240	67.478	200.00	1500.00	0.5	12.0	62.5	150.00	YES	YES	

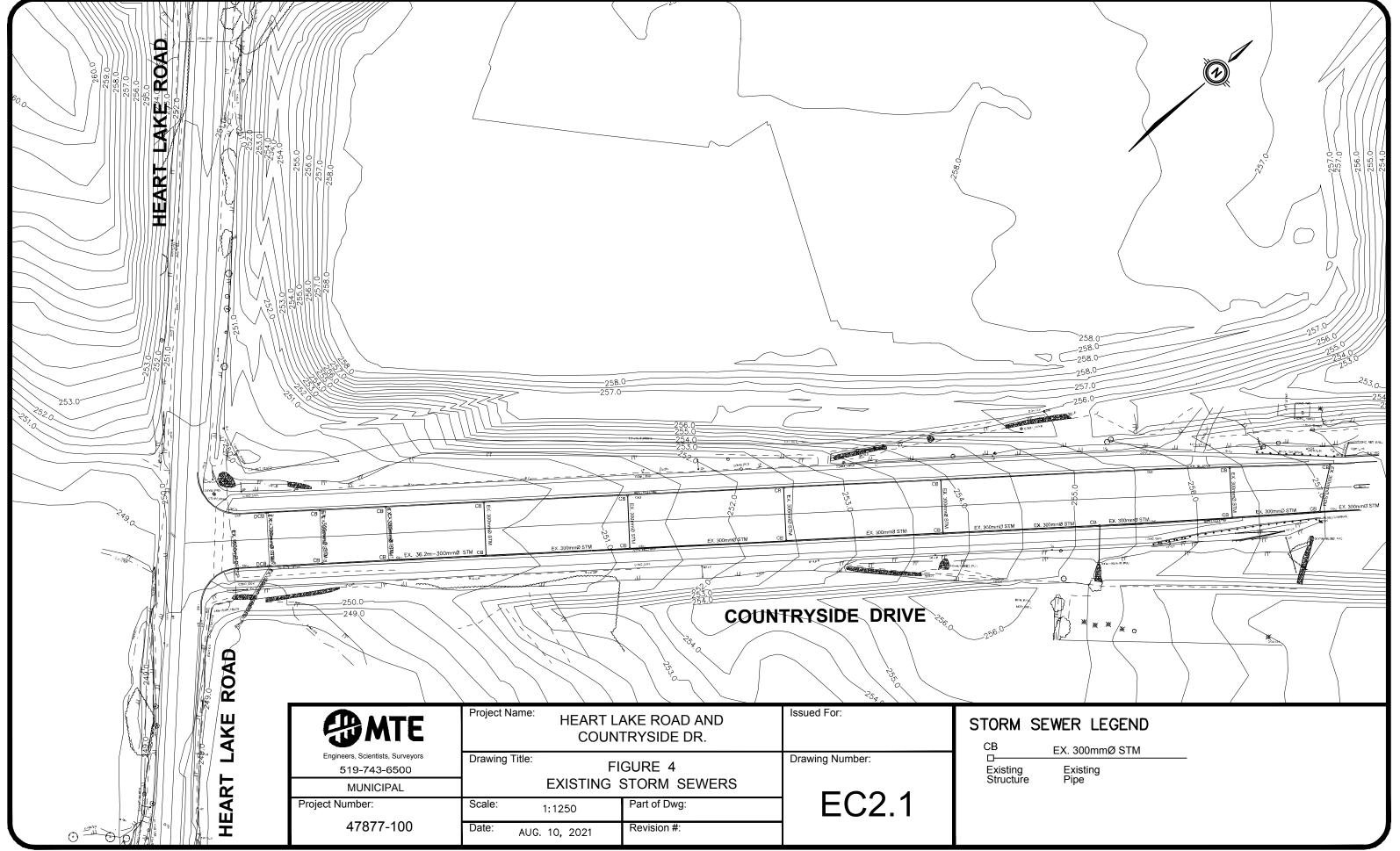
Potential Volume Infiltrated 285.12 Target Volume (First 5 mm Runoff)4 % Runoff Infiltrated by LIDs 402%

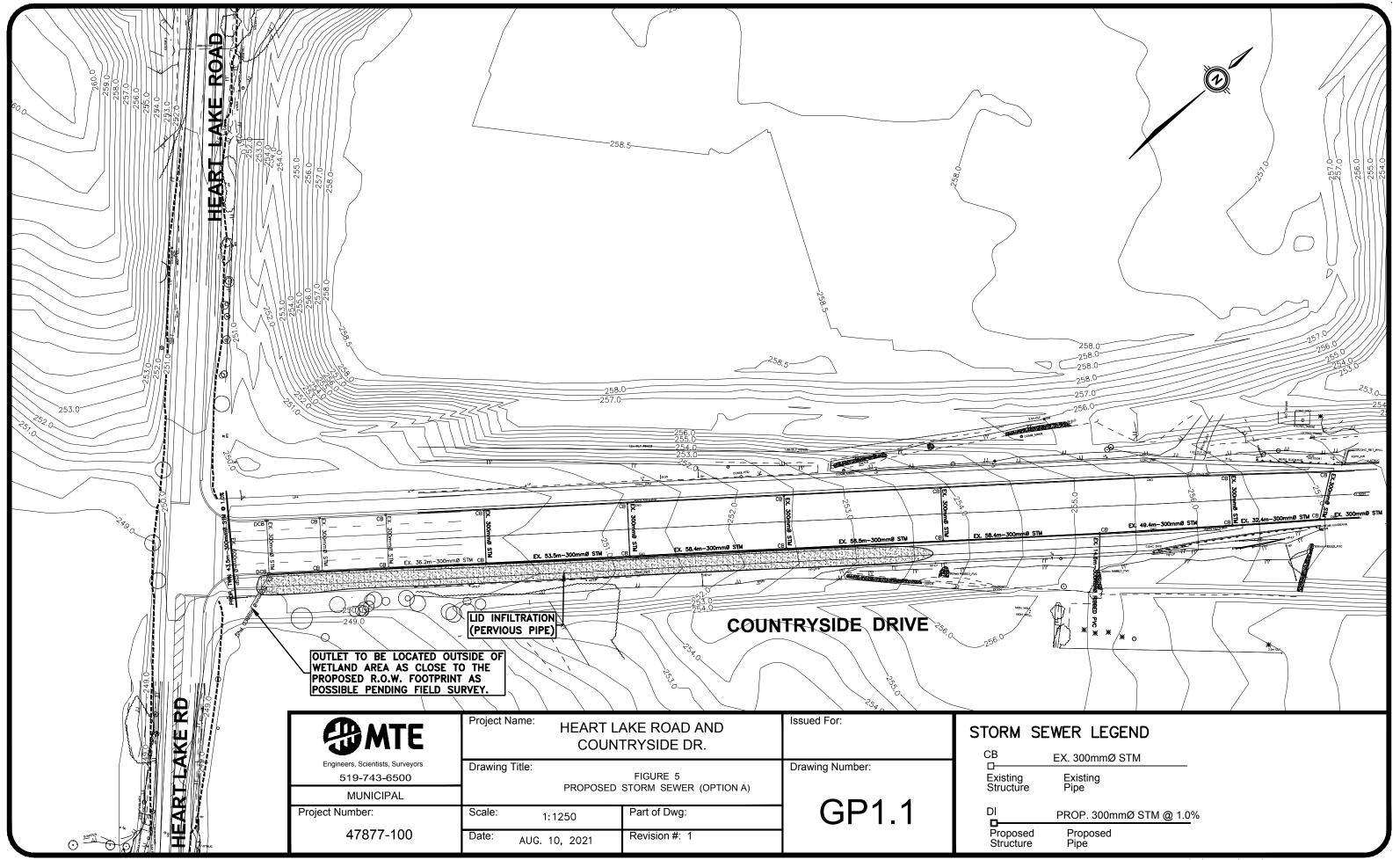
NOTES:

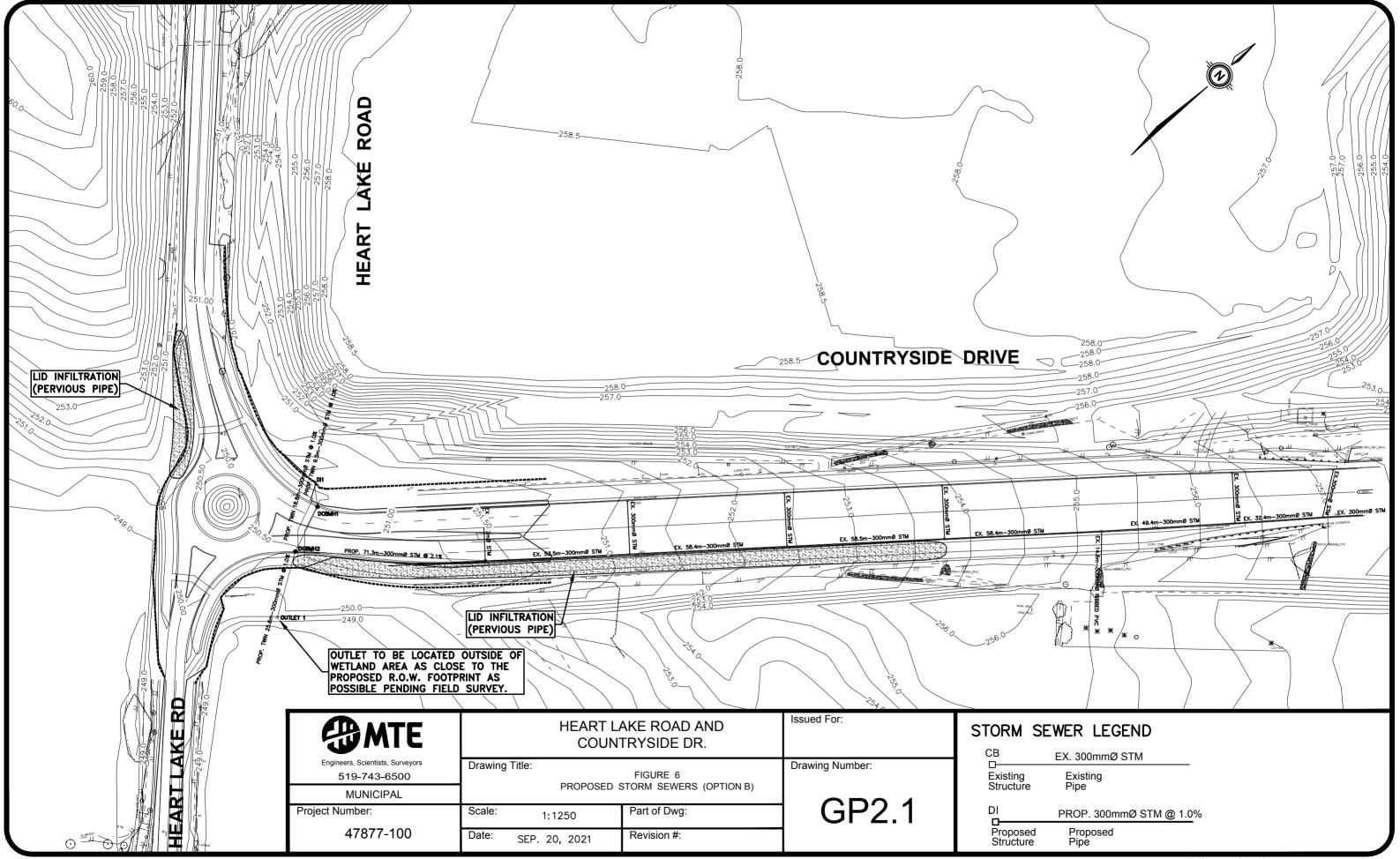

- 1. Credit Valley Conservation (CVC) and Toronto Region Conservation (TRCA) Guidelines suggest an VP ratio of between 5 and 10 for perforated pipe systems.

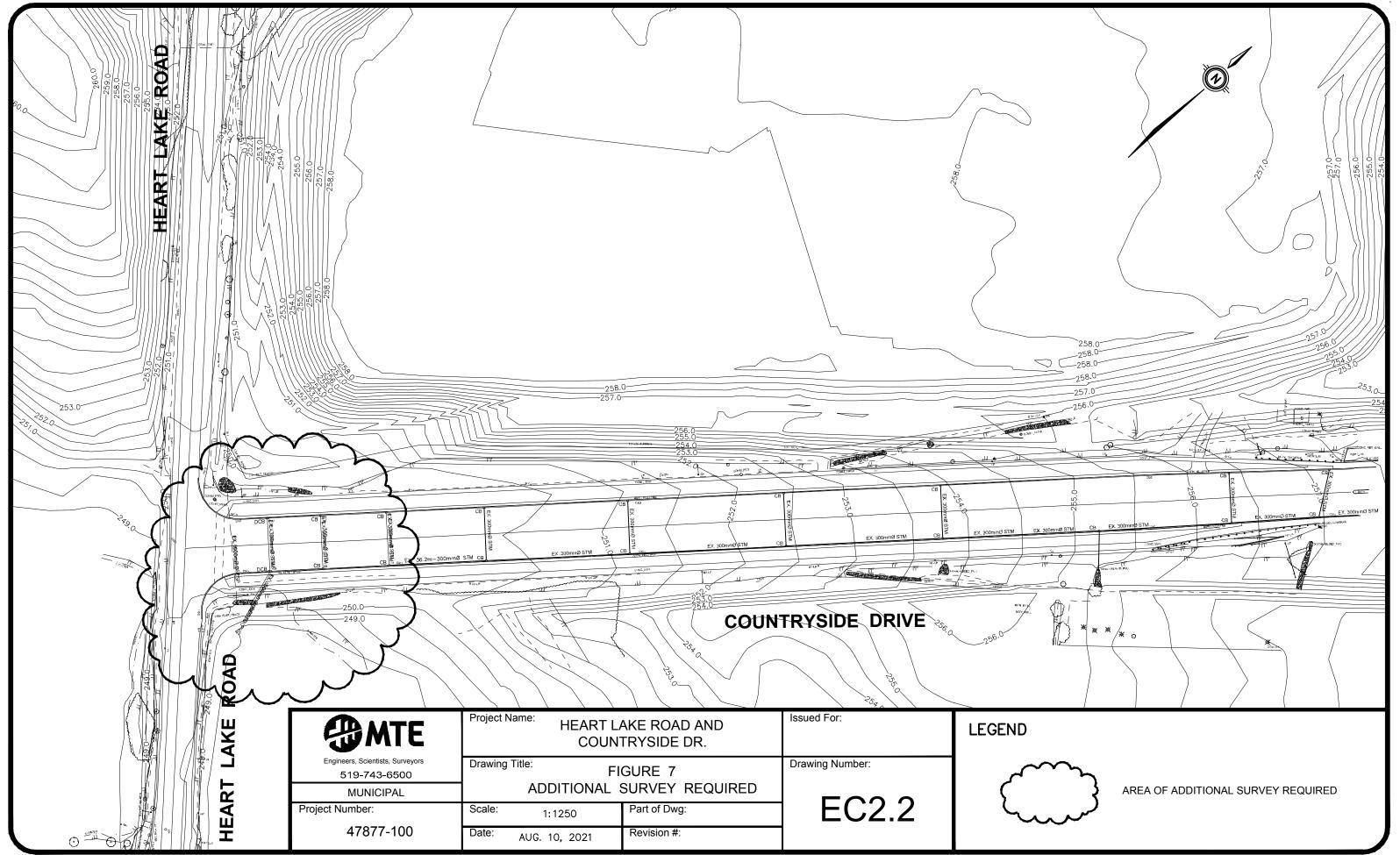

 2. The assumed infiltration rate is taken from the approximate infiltration rate of sand. A 2.5 Safety Factor was added based on Table C2 of the CVC and TRC Guidelines.


 3. The total area of the rights-of-way includes the Cambridge Ave right of ways within the contract limits.
- 4. The target volume is based on the total area of right-of-way.


2/22/2022 9:42 PM Page 1 of 1


APPENDIX C – FIGURES





Appendix G

Geotechnical Investigation Report MTE Consultants Inc. August 2022

Heart Lake Road & Countryside Drive EA

Geotechnical Investigation Report

Project Location:

Heart Lake Road & Countryside Drive, Brampton, ON

Prepared for:

City of Brampton 2 Wellington Street West Brampton, ON

Prepared by:

MTE Consultants Inc. 365 Home Street Stratford, ON N5A 2A5

August 16, 2022

MTE File No.: 47877-100

Contents

1.0	Introduction	1
2.0	Previous Assessment and Summary of Findings	1
3.0	Investigative Program	2
3.1	Field Program	2
3.2	Geotechnical Laboratory Program	3
3.3	Environmental Laboratory Program	3
4.0	Soil Conditions	4
4.1	Existing Pavement Structure	4
4.2	Fill	5
4.3	Glacial Till	5
4.4	Silt and Sand	6
4.5	Silty Sand and Gravel	6
4.6	Peat	6
5.0	Groundwater Conditions	6
6.0	Environmental Soil	7
6.1	Soil Quality	8
7.0	Discussion and Recommendations	9
7.1	Preliminary Excess Soil Management	10
7	.1.1 Excess Soil in Ontario – Regulatory Update and Discussion	
7.	.1.2 Summary of Findings	11
7.	.1.3 Excavated and Excess Soil Management Options	11
7.2	Site Preparation	14
7.3	Excavations and Dewatering	14
7.4	Surface Works	15
7.	.4.1 Curbs, Gutter, and Sidewalks	15
7.	.4.2 Empirical Pavement Assessment	16
7.	.4.3 Pavement Construction	17
7.5	Pavement Drainage	18
7.6	Construction Inspection and Testing	19
8.0	Limitations of Report	20

Tables

Table 1 - Borehole Coordinate Summary	3
Table 2 - Environmental Laboratory Testing Summary	
Table 3 - Pavement Structure Thicknesses	
Table 4 - Summary of the Pavement Structure	
Table 5 - Results of Granular Base/Subbase Grain Size Distribution Analysis	
Table 6 - Results of Glacial Till Particle Size Distribution Analysis	
Table 7 - Saturated Soil Conditions	
Table 8 - Locations Exceeding the 2011 Table 3 SCS (in addition to exceeding the 2011 Table 3 SCS)	
SCS, and the 2020 Table 3.1 ESQS)	
Table 9 - Locations Exceeding the 2011 Table 1 SCS Only	
Table 10 - MTE Pavement Design for Heart Lake Road	
Table 11 - MTE Pavement Design for Countryside Drive	

Appendices

Appendix A Appendix B Appendix C

Figures Borehole Logs

Tables

Laboratory Certificate of Analysis Excess Soil Procedures Appendix D

Appendix E

1.0 Introduction

MTE Consultants Inc. (MTE) was retained by the City of Brampton to conduct a geotechnical investigation for the reconstruction of the intersection at Heart Lake Road and Countryside Drive in Brampton Ontario, as shown on **Figure 1 in Appendix A**.

It is understood that the project will involve upgrading the intersection at Heart Lake Road and Countryside Drive in Brampton Ontario. The intersection currently comprises a stop sign at Countryside Drive and through traffic along Heart Lake Road. Concrete curbs, gutters, and sidewalks are currently present along both sides of Countryside Drive and gravel shoulders and ditches are currently present along Heart Lake Road.

The intersection upgrade would consist of a full reconstruction of the existing pavement structure. The intersection upgrade configuration was not determined at the time of this report.

Heart Lake Road generally slopes down from northwest to southeast with a grade difference of 1.2 m between Boreholes BH103-20 and BH104-20. Countryside Drive is generally level within the subject area with a grade difference of 0.1 m between Boreholes BH101-20 and BH102-20. The boreholes conducted in the ditches were approximately 0.9 to 1.4 m below the road surface.

The purpose of this geotechnical investigation is to determine the soil and groundwater conditions along the roadways and provide geotechnical engineering recommendations for site preparation, excavations and dewatering, pavement structure design and construction, and pavement drainage requirements. In addition, soil was sampled from the investigated locations for laboratory chemical analysis for preliminary soil management discussion purposes.

2.0 Previous Assessment and Summary of Findings

Prior to completing the geotechnical investigation for the Heart Lake Road and Countryside Drive intersection, MTE completed a Phase I Environmental Site Assessment (ESA) for the Project/Project Area. The purpose of the Phase I ESA was to identify potential environmental concerns which may environmentally impact the Project Area. A summary of the Phase I ESA findings is provided below. Please refer to MTE's Phase I ESA report (provided under separate cover) for additional information.

The findings of the Phase I ESA were used to: determine potential locations for the environmental assessment in conjunction with the geotechnical boreholes to adequately assess areas of potential environmental concern, to develop the preliminary soil sampling and analysis work plan for the proposed drilling activities, and to determine the general environmental quality of the on-site soil for preliminary soil management discussion purposes ahead of the planned construction activities.

For the readers' benefit, the current Ministry of Environment, Conservation and Parks (MECP) was previously named the Ontario Ministry of the Environment (MOE) and the Ontario Ministry of the Environment and Climate Change (MOECC). For ease of discussion in this report, "MECP" is used to represent this provincial ministry and is inclusive of MOE and MOECC.

Based on a review of historical aerial photographs, the Project Area has been used as an intersection since at least 1946. MTE reviewed information for the Project Area and properties within 250 m of the Intersection (representing the "Phase I Study Area"), including aerial photographs, geology and hydrogeological records and mapping, "MECP" database records and previous reports.

The Project Area is bordered to the north by an on-going land development project with evidence of earthworks (former agricultural parcel); and to the east, south and west by wetlands and/or wooded areas.

Based on the findings of the Phase I ESA, no evidence of actual contamination in connection with the Project Area or surrounding properties was identified. However, fill materials of unknown quality may have been imported for use during the construction of Heart Lake Road and Countryside Drive, due to the lower elevation of the adjacent wetland areas.

As a potential environmental concern was identified within the road allowance (e.g. presence of fill of unknown quality), soil was subsequently sampled from the investigated locations for laboratory chemical analysis and preliminary management discussion purposes.

3.0 Investigative Program

3.1 Field Program

The fieldwork for this investigation was carried out on November 17, 2020 and involved the drilling of eight (8) boreholes (Boreholes BH101-20 to BH108-20) to depths of 1.2 to 3.7 m. The locations of the boreholes are shown on the Site Plan, **Figure 2 in Appendix A**.

Public utility companies were contacted prior to the start of drilling activities in order to isolate underground utilities near the boring locations. It is noted, no existing watermain, sanitary, and/or storm sewers were located along the subject sections of the roadways.

Boreholes BH101-20 to BH104-20, and BH107-20 were advanced with a Diedrich CME55 truck mounted drill rig equipped with continuous flight hollow and solid stem augers. Boreholes BH105-20, BH106-20, and BH108-20 were advanced with a Pionjar Jackhammer drill. Both drills were supplied and operated by London Soil Test Ltd.

Representative soil samples were recovered throughout the depths explored. Standard Penetration Tests (SPT) were carried out during sampling operations in Boreholes BH101-20 to BH104-20, and BH107-20 using conventional split spoon equipment. The SPT N-values recorded are plotted on Boreholes BH101-20 to BH104-20, and BH107-20 in **Appendix B**. Due to access constraints SPT were not able to be conducted on Boreholes BH105-20, BH106-20, and BH108-20.

Selected soil samples collected from the boreholes (within the proposed construction depths) were subdivided for visual and olfactory screening, combustible soil vapour (CSV) headspace measurements, and/or laboratory chemical analysis. Samples for chemical analysis were collected directly into pre-cleaned, laboratory supplied, test group specific containers. For the analysis of PHC F1 and VOCs/BTEX, soil samples were collected by means of plastic syringe core samplers into Teflon lined screw cap, gas tight glass vials prepared by the subcontracted laboratory with methanol preservative.

Upon completion of drilling, the boreholes were backfilled with soil cuttings and bentonite in accordance with Ontario Regulation 468/10 (formerly O. Reg. 903) under the provinces Water Resources Act.

The fieldwork was monitored throughout by a member of our geotechnical and environmental engineering staff, who directed the drilling procedures; recorded the SPT values; documented the soil stratigraphy; monitored the groundwater conditions; and transported the recovered soil samples to our office for further classification.

The borehole coordinates and ground surface elevations were surveyed by MTE with a Leika Global Navigation Satellite System (GNSS) rover. The borehole locations are referenced to Canadian Spatial Reference System (CSRS 1997) coordinates with the zone reference (17T) excluded. The geodetic ground surface elevations are based on GNSS and local base station telemetry and have a vertical root mean squared error of less than 20 mm.

The borehole locations and elevations are provided in the following table;

Table 1 - Borehole Coordinate Summary

Borehole	Northing (m)	Easting (m)	Elevation (masl)
BH101-20	4844285.2	597252.2	250.1
BH102-20	4844261.5	597259.4	250.2
BH103-20	4844292.2	597188.3	250.8
BH104-20	4844217.4	597266.5	249.6
BH105-20	4844278.9	597225.0	249.9
BH106-20	4844207.5	597286.1	248.2
BH107-20	4844259.7	597209.3	250.5
BH108-20	4844221.2	597243.1	248.7

Notes: masl – meters above sea level

3.2 Geotechnical Laboratory Program

All of the soil samples collected were submitted for moisture content testing with the results shown on the borehole logs in **Appendix B**. Additionally, one soil sample from the pavement structure granular materials was submitted for a grain size distribution analysis, one native soil sample was submitted for a particle size distribution analysis, and one sample of the peat was submitted for organic content testing. The laboratory test results are provided in **Appendix C**. The remaining soil samples will be stored for a period of 3 months and will be discarded of at that time without prior request from the client to extend storage time.

3.3 Environmental Laboratory Program

Environmental analyses were conducted on selected soil samples, representing material considered likely to be excavated or removed as part of the shallow reconstruction of the existing pavement structure. All samples were submitted to ALS Environmental (ALS), a CALA-accredited laboratory, for analysis of one or more of the parameters of potential concern (as warranted based on field observations and headspace results) to assess the soils for soil management purposes, as follows:

Table 2 - Environmental Laboratory Testing Summary

Sample ID	Approx. Depth (mbgs)	Matrix	Analysis
BH101-20 SS2	0.8-1.4	Silt Till	PHC, BTEX, Metals, SAR, EC
BH102-20 SS1	0.0-0.6	Topsoil	PHC, BTEX, Metals, pH
BH1002-20 SS1	0.0-0.6	Topsoil	Field Duplicate - PHC, BTEX, Metals, TCLP
BH102-20 SS2B	1.2-1.5	Buried Topsoil	PHC, BTEX, Metals, PAHs
BH103-20 SS2	0.8-1.4	Silt Till	PHC, BTEX, Metals, SAR/EC
BH104-20 SS2	0.8-1.4	Fill	PHC, BTEX, Metals, PAHs, SAR/EC

Sample ID	Approx. Depth (mbgs)	Matrix	Analysis
BH104-20 SS3	1.5-2.1	Silt and Sand	PHC, BTEX, Metals, SAR/EC, pH
BH105-20 SA/DP1	0.0-0.6	Topsoil	PHC, BTEX, Metals, OC Pesticides, mSPLP
BH106-20 SA/DP1	0.0-0.6	Topsoil/Fill	PHC, BTEX, Metals, SAR/EC, OC Pesticides
BH106-20 SA/DP2	0.6-1.2	Sand and Silt	PHC, BTEX, Metals, SAR/EC, pH
BH107-20 SS1	0.0-0.6	Fill	PHC, BTEX, Metals, PAHs, SAR/EC
BH108-20 SA/DP1	0.0-0.6	Fill with organics	PHC, BTEX, Metals, SAR/EC, mSPLP
BH108-20 SA/DP2	0.6-1.2	Peat	Metals, mSPLP

Notes: SS – split spoon; SA/DP – sample/direct push; PHC – petroleum hydrocarbon fractions; BTEX – benzene, toluene, ethylbenzene and xylenes; PAHs – polycyclic aromatic hydrocarbons; SAR – sodium adsorption ratio; EC – electrical conductivity; OC – Organochlorinated Pesticides; TCLP – Toxicity Characteristic Leachate Procedure; mSPLP – Modified Synthetic Precipitation Leaching Procedure.

Standard QA/QC protocols for bottle preparation, sample collection and transportation were followed as outlined in the Ministry of Environment's (MOE's) 1996 document entitled, "Guidance on Sampling and Analytical Methods of Use at Contaminated Sites in Ontario". In addition, as noted in Table 2 above, a blind field duplicate soil sample was submitted to the laboratory for chemical analysis for QA/QC purposes. Refer to the Certificates of Analysis included in **Appendix D** for submission details.

4.0 Soil Conditions

Reference is provided to the appended borehole logs for soil stratigraphy details, SPT N-values, moisture content profiles, and groundwater observations and measurements. Soil conditions encountered at the site typically include pavement structure and/or fill, overlying native glacial till, silt and sand, silty sand and gravel, and peat deposits.

4.1 Existing Pavement Structure

Boreholes BH101-20, BH103-20, and BH104-20 were advanced along the subject roadways. The existing pavement structure generally comprised of surficial asphaltic concrete underlain by granular base and subbase soils. The asphaltic concrete and granular base and subbase soils thicknesses at the aforementioned borehole locations are summarized in the following table;

Table 3 - Pavement Structure Thicknesses

Borehole Number	Asphaltic Concrete (mm)	Base Thickness (mm)	Subbase Thickness (mm)
BH101-20	130	180	410
BH103-20	200	130	380
BH104-20	300	200	410

The range and mean of the asphaltic concrete, granular base and subbase soils are summarized in the following table;

Table 4 - Summary of the Pavement Structure

Road Structure	Range	Mean
Asphaltic Concrete	130 - 300 mm	210 mm
Base	130 - 200 mm	170 mm
Subbase	380 - 410 mm	400 mm

The pavement structure granular materials typically range in composition from brown sand and gravel to brown gravelly sand. The results of a grain size distribution analysis conducted on a sample of the granular materials is provided in **Appendix C** and summarized in the following table:

Table 5 - Results of Granular Base/Subbase Grain Size Distribution Analysis

Borehole Number	Sample Depth (mm)	Gravel (%)	Sand (%)	Fines (%)
BH104-20	300 - 510	43	44	13

The granular material sample marginally did not meet the OPSS 1010 gradation specifications for Granular 'B' Type I soils due to high fines content.

SPT N-values in the granular materials range from 34 to 41 blows per 300 mm penetration of the split spoon sampler indicating dense conditions.

Insitu moisture contents in the granular materials range from about 4 to 6% indicating moist conditions.

4.2 Fill

Fill was encountered surficially in Boreholes BH102-20, and BH105-20 to BH108-20 and also beneath the pavement structure in Borehole BH104-20. The fill extended to depths of 0.6 to 1.5 m (average depth of 1.0 m). The fill is brown to dark brown in colour and typically ranges in composition from silty sand and gravel to silt with some sand and gravel. Topsoil fill was encountered surficially in Boreholes BH102-20, BH105-20, and BH106-20 and topsoil/organics were encountered within the fill at depth in Boreholes BH102-20, BH107-20, and BH108-20. SPT N-values in the fill range from 5 to 16 blows per 300 mm penetration of the split spoon sampler indicating loose to compact conditions.

Insitu moisture contents in the fill range from about 5 to 24% indicating moist to wet conditions.

4.3 Glacial Till

Glacial till was encountered beneath the pavement structure, fill, and/or silt and sand in Boreholes BH101-20 to BH107-20 and extends to the termination depth of Boreholes BH101-20, and BH103-20 to BH107-20. The upper portion of till in Borehole BH101-20 was 1.9 m thick and the till in Borehole BH102-20 was 0.8 m thick. The till is brown to grey in colour and typically ranges in composition from gravelly silt to clayey silt. Occasional cobbles were noted within the till in Borehole BH103-20. The results of a particle size distribution analysis conducted on a sample of the glacial till are provided in **Appendix C** and summarized in the following table;

Table 6 - Results of Glacial Till Particle Size Distribution Analysis

Borehole Number	Sample Depth (mbgs)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH107-20	0.8 - 1.4	10	33	38	19

SPT N-values measured in the till range from 9 to above 50 blows per 300 mm penetration of the split spoon sampler indicating loose to very dense conditions. It is noted the loose conditions were encountered within the till deposit in Borehole BH102-20.

Insitu moisture contents in the till range from about 7 to 24% indicating very moist to saturated conditions. The cohesive portion of till encountered in Borehole BH104-20 appeared to range from drier than the plastic limit to about the plastic limit.

4.4 Silt and Sand

Silt and sand deposits were encountered beneath the fill and/or glacial till in Boreholes BH101-20, BH104-20, and BH106-20 and were 0.4 to 0.9 m thick. Silt and sand was also encountered beneath the silty sand and gravel deposit in Borehole BH102-20 and extends to the termination depth of the borehole. The silt and sand was brown to grey in colour and typically ranges in composition from silt and sand to sandy silt. SPT N-values measured in the silt and sand range from 6 to 19 blows per 300 mm penetration of the split spoon sampler indicating loose to compact conditions. It is noted the loose conditions were encountered within the silt and sand deposit in Borehole BH104-20.

Insitu moisture contents in the silt and sand range from about 7 to 23% indicating very moist to saturated conditions.

4.5 Silty Sand and Gravel

A brown silty sand and gravel deposit was encountered beneath the glacial till in Borehole BH102-20 at a depth of 2.3 m (Elevation 247.9 m) and was 0.7 m thick. A SPT N-value measured in the silty sand and gravel was 12 blows per 300 mm penetration of the split spoon sampler indicating compact conditions.

An insitu moisture content in the silty sand and gravel was about 12% indicating saturated conditions.

4.6 Peat

Dark brown to light brown sandy peat was encountered beneath the fill in Borehole BH108-20 and extended to the termination depth of the borehole. The organic content of a sample of the peat was determined to be 56%. Insitu moisture contents in the peat were approximately above 40% indicating wet conditions.

5.0 Groundwater Conditions

Groundwater observations and measurements were carried out in the open boreholes at the time of drilling and are summarized on the borehole logs. Saturated soil conditions encountered at the time of drilling are summarized in the following table;

Table 7 - Saturated Soil Conditions

Borehole Number	Saturated Soil Type	Depth of Saturated Soil (mbgs)	Elevation of Saturated Soil (masl)
BH101-20	150 mm Sand Seam	2.4	247.7
BH102-20	Sandy Silt Till / Silty Sand and Gravel / Silt and Sand	2.0	248.2
BH103-20		Dry	
BH104-20	Silt and Sand	1.5	248.1
BH105-20	Dry		
BH106-20	Silt and Sand	0.9	247.3
BH107-20	150 mm Sandy Silt Till Seam	2.1	248.4
BH108-20 80 mm Saturated Peat Seam		1.2	247.5

It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations and local variations.

6.0 Environmental Soil

Headspace screening of organic vapour concentrations was conducted using a RKI Eagle II meter. The field headspace readings were generally measured to be between <5 parts per million (ppm) and 50 ppm for organic vapour, indicative of low (typical background) concentrations of volatiles in the recovered soil samples.

To determine the general environmental quality of the soil within the Project Area in relation to **on-site reuse** of excavated soil, the soil results have been compared to the Table 1 Full Depth Background Site Condition Standards (SCS) due to the presence of the adjacent wetlands and the Table 3 Full Depth Generic SCS in a Non-Potable Groundwater Condition of the "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (April 15, 2011) for residential/parkland/institutional and/or industrial/commercial/community property use with coarse textured soils, respectively (herein referred to as the "2011 Table 1 SCS" and "2011 Table 3 SCS"). These SCS are typically appropriate for properties within the City of Brampton.

Surplus soil is typically generated during road construction activities and export of this surplus soil is often required. To determine appropriate **off-site reuse/disposal/management** options for surplus soils that may be generated during the construction activities (planned for 2024), the analytical results have also been compared to the Table 3.1 Full Depth Generic Excess Soil Quality Standards (ESQS) in a Non-Potable Groundwater Condition for industrial/commercial/community property use from Appendix 1 of the Rules for Soil Management associated with O.Reg.406/19 (December 8, 2020) under the Environmental Protection Act (herein referred to as the "2020 Table 3.1 ESQS").

6.1 Soil Quality

The results of the soil chemical analyses are summarized in Tables 101 to 104 and 201 to 204 in **Appendix C** and copies of the ALS Laboratory Certificates of Analysis are included in **Appendix D**.

The analytical results for the selected soil samples representing the proposed Project Area along the subject portions of Heart Lake Road and Countryside Drive indicate that PHC-related concentrations above the 2011 Table 3 SCS (and therefore, also the 2011 Table 1 SCS and 2020 Table 3.1 ESQS) have been identified in the topsoil at one location. In addition, SAR and EC (salt use-related) levels exceeding the above-noted Standards have been identified at varying depths, generally across the Project Area.

The above-noted impacted soils are summarized in the following table;

Table 8 - Locations Exceeding the 2011 Table 3 SCS (in addition to exceeding the 2011 Table 1 SCS, and the 2020 Table 3.1 ESQS)

Sample ID	Approx. Depth (mbgs)	Soil Type	Parameter Exceeding Standards
Majority of analyzed locations	Various	Fill and native soils	SAR and/or EC
BH102-20 SS1 (and its duplicate)	0.0-0.6	Topsoil	PHC Fraction F4G

A Toxicity Characteristic Leachate Procedure (TCLP) analysis was subsequently conducted on the impacted soil at Borehole BH102-20 (TCLP parameters; VOCs, PCBs, Metals and Inorganics) and shows that concentrations of the analyzed parameters meet the O.Reg. 347 Schedule 4 leachate criteria (see **Appendix D**). As such, the analyzed topsoil at the assessed location is characterized as non-hazardous for disposal purposes.

Additional parameters exceeding the more stringent 2011 Table 1 SCS (considered background concentrations for Ontario) and the 2020 Table 3.1 ESQS were also detected at Borehole BH102-20 where the 2011 Table 3 SCS were exceeded and, as such, will be managed accordingly in conjunction with those contaminated soils.

The following table summarizes other locations where the analyzed parameters were detected at concentrations exceeding the more stringent 2011 Table 1 SCS.

Table 9 - Locations Exceeding the 2011 Table 1 SCS Only

Sample ID	Approx. Depth (mbgs)	Soil Type	Parameter Exceeding 2011 Table 1 SCS	Parameter Exceeding 2020 Table 3.1 ESQS
BH102-20 SS2B	1.2-1.5	Fill (buried topsoil)	PHC Fractions F4/F4G	-
BH106-20 SA/DP1	0.0-0.6	Topsoil/Fill	PHC Fraction F4G	-
BH107-20 SS1	0.0-0.6	Fill	PHC Fractions F3, F4/F4G	-

Sample ID	Approx. Depth (mbgs)	Soil Type	Parameter Exceeding 2011 Table 1 SCS	Parameter Exceeding 2020 Table 3.1 ESQS
BH108-20 SA/DP1	0.0-0.6	Fill with organics	PHC Fractions F4/F4G	-
BH108-20 SA/DP2	0.6-1.2	Peat	Metals (Selenium)	-

It is noted that the laboratory Method Detection Limits (MDLs) reported for one or more OC Pesticide parameters in a sample from Borehole BH106-20 (SA/DP1, 0.0-0.6 m) are above their respective 2011 and/or 2020 Standards. As reported in ALS Certificate of Analyses No. L2530806, the elevated MDLs were due to a detection limit adjustment related to sample matrix effects (i.e. chemical interference, colour, turbidity). These parameters were not detected above the MDLs nor the 2011 Table 1 SCS in the other topsoil sample submitted for OC Pesticide analysis. As such, OC Pesticides are not considered to be potential contaminants of concern in relation to the management of soil materials that may be excavated from the proposed Project Area.

In accordance with O.Reg. 406/19, a minimum number of Leachate Screening tests (i.e. Modified Synthetic Precipitation Leaching Procedure [mSPLP]) are required for certain contaminants of concern. Based on the above-noted Selenium results (above the 2011 Table 1 SCS), three selected samples from Boreholes BH106-20 and BH108-20 were submitted for mSPLP-Metals analysis. The results indicate that the concentrations of the analyzed parameters meet the applicable O.Reg. 406/19 Table 3.1 Leachate Screening Criteria (see Appendix D) and, therefore, confirm that the analyzed soil meets the 2020 Table 3.1 ESQS.

All other results indicate that the analyzed soils meet the 2011 Table 1 SCS for the analyzed parameters.

7.0 Discussion and Recommendations

The project will involve upgrading the intersection at Heart Lake Road and Countryside Drive in Brampton Ontario. The intersection currently comprises a stop sign at Countryside Drive and through traffic along Heart Lake Road. The intersection upgrade would consist of a full reconstruction of the existing pavement structure. The intersection upgrade configuration was not determined at the time of this report.

The subsurface stratigraphy at the site generally comprises pavement structure and/or fill, overlying native glacial till, silt and sand, silty sand and gravel, and peat deposits. Saturated soil conditions were encountered within the native soils throughout the site at depths ranging from 0.9 to 2.4 m (Elevation 247.3 to 248.4 m).

Based on the results of this geotechnical investigation, full reconstruction of the pavement structure and upgrading the layout if the intersection is feasible for the site; however, the encountered groundwater and peat soils will affect design and construction. The following subsections of this report contain geotechnical and environmental recommendations pertaining to excess soil management, site preparation, excavations and dewatering, pavement structure design and construction, and pavement drainage requirements.

7.1 Preliminary Excess Soil Management

7.1.1 Excess Soil in Ontario – Regulatory Update and Discussion

In December 2019, the MECP finalized their On-Site and Excess Soil Management regulatory package, including Ontario Regulation 406/19 ("Regulation") and Rules for Soil Management and Excess Soil Quality Standards ("Rules"). The Regulation become law on January 1, 2021. On April 21, 2022 the MECP announced they are "pausing" the major Planning Documents and Requirements, previously required under the Regulation until January 1, 2023. **Based on the planned construction schedule (2024), the pause does not influence this project.**

Notwithstanding the above, under O.Reg. 406/19, given certain grandfather exemptions (Section 11 (3) and Section 12 (6)) the work completed to date for the project (e.g. Phase I ESA and sampling and analysis plan completed as part of this geotechnical investigation) may preclude the need for future excess soil Reporting Requirements (such as: Assessment of Past Uses (APU), a Sampling and Analysis Plan (SAP), and a Soil Characterization Report (SCR). However, other Planning Requirements such as an Excess Soil Destination Assessment Report (ESDAR), filing notices on the Registry, and the requirement for a formal soil tracking system may be triggered. The need for these requirements can be determined once additional project information is available (e.g. volume of excess soil to be generated).

In addition, movements of soil from one infrastructure project to another infrastructure project are exempt, with temporary storage allowed between such projects, if applicable for the City.

Although the excess soil sampling and analysis completed do not meet all of the requirements defined in the Regulation or Rules, due to the nature of the pre-design process, completing preliminary excess soil sampling and analysis in conjunction with this geotechnical investigation is considered a **reasonable and very appropriate "first step"**. Should the project not be exempt or grandfathered from the Regulation and Rules, additional work associated with excess soil management will be required at a future time (e.g. impact delineation, expanding upon existing information to meet one or more of the Planning Requirements).

The City and their design consultant are strongly encouraged to reduce the amount of excess soil to be generated, where/if practical. It is recommended that the above-noted Planning Requirements be considered early on in the design stage and that supplemental excess soil assessment and reporting, if required, be initiated a minimum of six to eight months ahead of the planned construction.

Regardless of possible exemptions and grandfathering clauses, as of January 1, 2021, the Project Leader (typically the owner, not the contractor) is responsible for the following:

- Understanding and determining appropriate reuse and disposal sites, and obtaining written consent from the reuse site(s) before excess soil from this project can be received.
- Providing a written procedure outlining the process and steps to be taken by the Contractor, should impacted soils be encountered during construction (e.g. visual/olfactory).
- Understanding and adhering to soil storage requirements including management of: noise; dust; mud tracking; run-off and erosion; leaching into groundwater, and potential odour issues. Soils tested and found to be of different quality must be segregated. Individual stockpiles must not exceed 2,500 m³ each, and must be placed greater than 30 m from a water body.

If soils are contaminated, such material must be transported using MECP licensed haulers. Vehicles transporting/hauling of excess soil must be safe, appropriate, leak proof (if applicable), covered when appropriate, etc. The vehicle operator will be expected to know, and provide the following information (verbal or record), if requested: loading location, date/time it was loaded, quantity, contact information for person in charge at project area, transport company/driver information, license plate, and reuse site location.

The final requirements for the management of excess soil for the project, including export/import of fill, and the findings and recommendations provided herein should be reviewed well in advance of tendering and construction.

7.1.2 Summary of Findings

A concentration of PHC Fraction F4G was detected above the 2011 Table 3 SCS within the topsoil at Borehole BH102-20 (SS1, between approximately 0.0 to 0.6 m).

Further, topsoil fill and fill materials at Boreholes BH102-20 (approximately 1.2 to 1.5 m), BH106-20 (approximately 0.0 to 0.6 m), BH107-20 (approximately 0.0 to 0.6 m), and BH108-20 (approximately 0.0 to 0.6 m) exceed the 2011 Table 1 SCS for PHC Fractions F3 and/or F4/F4G. The underlying peat at Borehole BH108-20 (approximately 0.6 to 1.2 m) also exceeds the 2011 Table 1 SCS for Selenium.

Additional soil sampling and analysis between and beyond the boreholes noted above should be completed to better define the spatial extent of these impacts to support excess soil reuse and disposal options and to determine volume of impacted soil.

In addition, SAR and/or EC (salt use related) impacted soils exceeding all of the referenced Standards were identified at variable depths, generally across the Project Area. SAR is a parameter of ecological significance, which is a measure of the exchange of sodium and calcium and magnesium ions on the permeability of aggregate soils. The detection of elevated levels of SAR and EC is an indication of de-icing road salt impacts.

Under O.Reg. 153/04, as amended, SAR and/or EC are not considered as contaminants of concern when related to de-icing activities. As such, the elevated concentrations of SAR and/or EC (above the 2011 Table 1SCS, 2011 Table 3 SCS and/or 2020 Table 3.1 ESQS) are not considered to be of concern to the Project Area. However, an intended receiver of any excess soil from this Project Area must be made aware of the elevated levels of SAR and EC, so that they may place, or dispose of the soil appropriately and in accordance with the Soil Rules, which came into effect on January 1, 2021.

7.1.3 Excavated and Excess Soil Management Options

The discussion and recommendations provided herein are based on:

- 1. components of Regulation 406/19 and its associated Rules, effective April 21, 2022;
- 2. current industry best management practices; and,
- the soil samples collected and analyzed from the eight boreholes completed for this assignment on November 17, 2020 only.

The final requirements for the management of excess soil for the Project must be reviewed well in advance of tendering, once the estimated volume of excess soil is determined.

A. Contaminated Soils - Above the 2011 Table 3 SCS

Based on the analytical results, PHC impacted topsoil material at Borehole BH102-20 (approximately 0.0 to 0.6 m) should be delineated, separated and transferred to an appropriate reuse/disposal site.

TCLP analysis indicates that the topsoil at Borehole BH102-20 is characterized as non-hazardous for disposal purposes.

In accordance with O.Reg. 406/19, appropriate receivers may include:

- MECP licensed landfill/waste receiver (prior to 2025 and via MECP licensed haulers);
- Class 1 Soil Management Sites; and
- Local Waste Transfer Facility.

It is recommended that the topsoil be handled by workers with caution. The contractor should include appropriate precautions with respect to handling impacted soil in their Health and Safety Plan for the duration of the excavation(s) and construction.

B. On-Site Reuse

Generally stated, the on-site soils are environmentally suitable for on-site reuse (excluding soil described in Item A above). However, the presence of the adjacent wetlands must be considered. Additional soil sampling and analysis between and beyond the boreholes could be completed to better define the spatial extent of these impacts to support appropriate on-site reuse.

If disturbed/excavated during construction, fill and/or peat materials at Boreholes BH102-20 (approximately 1.2 to 1.5 m), BH106-20, BH107-20 and BH108-20, which exceed the 2011 Table 1 SCS should be segregated. These soils may be reused within the Project Area, if geotechnically suitable; however, should be placed beyond the 30 m buffer zones associated with the adjacent wetlands (see **Figure 2**) and not along a property boundary, including the location of origin.

In addition, reuse of any on-site soil (all assumed to be impacted by salt), including the remaining locations investigated should be restricted to below a 1.5 m depth within the boulevards and, as such, assumed to be below penetration depths of plant root systems.

C. Excess Soil – Above the Table 1 SCS (All Other Concentrations Below the 2020 Table 3.1 ESQS) and Salt Impacted Soils

Similar to Item B, the majority of the on-site soils are environmentally suitable for off-site reuse at an **appropriate** reuse site (excludes soil described in Item A above). However, the concentrations of PHCs and/or Selenium which exceed the 2011 Table 1 SCS in the fill and peat at Boreholes BH102-20, BH106-20, BH107-20 and BH108-20; and the SAR/EC levels must be considered.

The PHC- and Metals-related impacts (concentrations above the 2011 Table 1 SCS, but below the 2020 Table 3.1 ESQS and 2020 Table 3.1 Leachate Screening [mSPLP] criteria, where applicable) could be delineated to determine the spatial extent for soil management purposes as these concentrations may limit the options available for reuse.

Should excess soil be exported from the Project Area for off-site reuse, such soils must be free of staining; PHC- or solvent-like odours, and/or debris. Reuse Site options may include, but may not be limited to:

- Other development projects, in accordance with the Soil Rules;
- Site Alteration Permit Properties (SAPPs) having appropriate approval to accept such PHC-, Metals- and salt-impacted soil;
- Class 1 Soil Management Site;

- Class 2 Soil Management Site;
- Local Waste Transfer Facility; and
- Aggregate pits having appropriate approval to accept such <u>salt</u>-impacted soil (excluding the fill and peat at Boreholes BH102-20, BH106, BH107-20, and BH108-20).

The deposit of this material on a Reuse Site is also subject to the following conditions:

- The analytical results documented herein (and any future analytical results) should be forwarded to the owner/manager of the Reuse Site(s) prior to proceeding with the shipment of soil. In accordance with O. Reg. 406/19, the Reuse Site must provide written consent to accept the soil. We find that OPSS Forms PH-CC-181, 182 and/or 183 are currently useful in this regard.
- 2. The intended Reuse Site must be made aware of the elevated levels of SAR, so that they may dispose of, or place, the soil appropriately and in accordance with the Soil Rules (Rules for Specific Soil Types Salt Impacted Excess Soil). For example, the excess soil is placed at least 1.5 m below the surface of the soil, and is not finally placed within 30 m of a waterbody, or within 100 m of a potable water well or area with an intended property use that may require a potable water well; where it is reasonable to expect that the soil will be affected by the same chemicals as a result of continued deicing applications; or at an industrial or commercial property use site and to which non-potable standards would be applicable.
- The Reuse Site must have a beneficial purpose for the material being imported and the quantity of soil must be suitable and placed for that purpose. Consultation with a geotechnical engineer may be required.
- 4. The moisture content of the material is suitable for transportation.
- 5. The excess soil must be finally placed no later than two years after it is deposited at the Reuse Site.

Other considerations should include:

- Ensuring appropriate drainage patterns are maintained during and following placement at the Reuse Site.
- Ensuring the protection of natural heritage features (wetlands and woodlands) during the and following placement at the receiving site, including the use of erosion controls.

If soils are encountered during the excavation and/or loading activities that appear to have been environmentally impacted and not assessed herein (i.e. presence of debris, soil exhibiting staining and/or odour, etc.), the Project QP_{ESA} be should be notified immediately. These soils should be segregated, inspected, and sampled to determine appropriate handling and/or disposal requirements in accordance with the attached (**Appendix E**) project procedures for potential contamination discovered during earthworks.

7.2 Site Preparation

The existing asphaltic concrete within the proposed work area should be removed. The existing granular base and subbase soils only marginally failed the OPSS 1010 specification for Granular 'B' Type 1 soils due to high fines content, therefore MTE recommends reusing the material within the road allowance as subgrade or subbase soil. The existing base/subbase materials may be stripped and stockpiled on-site and must be placed back in the roadway in maximum 300 mm thick lifts and compacted to 100% standard Proctor maximum dry density (SPMDD).

The existing fill materials (extending to depths of 0.6 to 1.5 m) that are environmentally suitable (refer to Sections 7.1.2 and 7.1.3) are generally considered geotechnically suitable to be left below the new road structure in the reconstruction areas; however, topsoil/organics were encountered within the fill at depths ranging from 0.4 to 1.2 m in Boreholes BH102-20, BH107-20, and BH108-20.

The subgrade soils **should be proof rolled and inspected by qualified geotechnical personnel** to ensure stability. Any areas with excessive organic content and/or topsoil must be subexcavated and if the subgrade is wet and unstable, additional granular subbase will be required. The surficial topsoil fill encountered in Boreholes BH102-20, BH105-20, and BH106-20 should also be removed from any road reconstruction areas.

It is anticipated that the Heart Lake Road and Countryside Drive intersection will have to be widened to accommodate the proposed intersection upgrade and also for the possibility of new curbs and sidewalks. Surficial topsoil fill must be removed from any road widening area. To conduct the widening process, granular material would have to be placed outside of the existing road envelope and then the pavement design constructed above. The existing base/subbase material will have to be benched into the imported granular material used to raise grades. The benching process is outlined on **Figure 3 in Appendix A**.

Due to the peat deposit encountered in Borehole BH108-20, MTE does not recommend to construct the proposed intersection upgrades in the vicinity of this borehole (south portion of the intersection). MTE recommends construction the intersection upgrades to the north and east where possible.

7.3 Excavations and Dewatering

Temporary excavations at this site must comply with the Ontario Occupational Health and Safety Act and Regulations for Construction Projects. The pavement structure, fill, silt and sand, and silty sand and gravel soils encountered at the site are classified as Type 3 soils (O. Reg. 213/91, s. 226 (4)). Temporary side slopes through this material must be cut at an inclination of 1.0 horizontal to 1.0 vertical or less from the base of the excavation. The deposit of peat would be classified as Type 4 soil (O. Reg. 213/91, s. 226 (4)) and temporary side slopes through this material must be cut at an inclination of 3.0 horizontal to 1.0 vertical or less from the base of the excavation, exclusive of groundwater effects.

The glacial till soils encountered at the site are classified as Type 2 soils and temporary side slopes can be cut near vertical at 1.2 m above the base of excavation and then at an inclination of 1.0 horizontal to 1.0 vertical or less above this level, exclusive of groundwater effects. Where wet to saturated conditions are encountered, excavation side slopes should be expected to slough to flatter inclinations, potentially 3.0 horizontal to 1.0 vertical or flatter.

Trench side slopes must be continuously inspected especially after periods of heavy rainfall or snow melt to identify areas of instability. Surface water should be directed away from entering the trench.

Where spatial limitations (from utility poles, existing underground services, above ground structures, etc.) do not permit overburden cut slopes at the inclinations above, a steeper cut slope can be employed if trench boxes are used to protect workers. Some movement or slumping of the soils adjacent to the trench box should be expected if this option is used.

Minor groundwater inflow should be expected where/if excavations extend into the saturated glacial till encountered in Borehole BH102-20 at a depth of 2.0 m (Elevation 248.2 m) and the saturated seams encountered within the glacial till in Boreholes BH101-20 and BH107-20 at depths of 2.4 m and 2.1 m (Elevation 247.7 m and 248.4 m), respectively. Minor groundwater inflow should also be expected where/if excavations extend into the saturated silt and sand encountered in Boreholes BH104-20 and BH106-20 at depths of 1.5 m and 0.9 m (Elevation 248.1 m and 247.3 m), respectively. It is envisioned that conventional sump pump techniques will be suitable to control the groundwater inflow if excavations extend into the saturated soil conditions encountered in these areas.

Moderate groundwater inflow should be expected where/if excavations extend into the saturated silty sand and gravel deposit encountered in Borehole BH102-20 at a depth of 2.3 m (Elevation 247.9 m). It is our opinion that extensive pumping may be required to handle the groundwater infiltration if excavations extend to 2.3 m or below in this area.

A saturated seam was also encountered within the peat deposit in Borehole BH108-20 at a depth of 1.2 m (Elevation 247.5 m). MTE recommends to avoid excavations in this area due to the peat deposit.

It will be necessary to flatten or support the excavation side slopes where groundwater seepage is occurring to ensure stability. Every excavation that a worker may be required to enter shall be kept reasonably free of water (O. Reg. 213/91, s. 230).

It should be noted that an Environmental Activity and Sector Registry (EASR) or Permit to Take Water (PTTW), issued by the Ministry of Environment, Conservation and Parks, will be required if the dewatering system/sumps result in a water taking of more than 50,000 L/day to 400,000 L/day, respectively. The design of the dewatering system should be left to the contractor's discretion to control groundwater at least 0.5 m below the invert level in order to provide stable excavation base. The contractor should notify the prime consultant in the event that he feels that an EASR/PTTW will be needed.

7.4 Surface Works

7.4.1 Curbs, Gutter, and Sidewalks

The concrete for curbs, gutters and sidewalks should be proportioned, mixed, placed and cured in accordance with the requirements of OPSS 353, and OPSS 1350 and shall meet the following specific requirements (OPSS 353.05.01), as per The Corporation of the City of Brampton's Part D Scope of Work Specifications and Drawings document:

- Minimum compressive strength = 32 MPa at 28 days
- Maximum water to cement (w/c) ratio = 0.45
- Coarse aggregate = 19.0 mm nominal max. size
- Maximum slump = $45 \text{ mm (for curb)} / 70 \pm 20 \text{ mm (for sidewalk)}$

• Air entrainment = $6.5 \pm 1.5\%$

A minimum of 150 mm of OPSS 1010 Granular 'A' material compacted to at least 100% SPMDD is required as a base for sidewalks. During cold weather any freshly placed concrete must be covered with insulating blankets to protect against freezing as per OPSS 904. Three cylinders from each day's pour should be taken for compressive strength testing. Air entrainment, temperature and slump tests should be conducted on the same batch of concrete from the test cylinders made.

7.4.2 Empirical Pavement Assessment

To determine if the City of Brampton's minimum pavement design would be suitable for the subject roadways an assessment was completed in accordance with the guidelines provided by the Ontario Ministry of Transportation (MTO) publication MTO MI-183 (*Adoption and Verification of AASHTO Pavement Design Guide for Ontario Conditions*). The assessment was completed for a 25-year design life.

The roadways are classified as arterial roadways by the City of Brampton and do not have a transit routes. A traffic volume of 8,150 Average Annual Daily Traffic (AADT) for Heart Lake Road and a traffic volume of 12,200 AADT for Countryside Drive was provided by Paradigm Transportation Solutions Limited. A detailed breakdown of the traffic composition by vehicle classification was not available and design parameters were assumed by MTE. It is understood that projected traffic counts are being obtained and the pavement design should be reassessed when received.

A base truck percentage of 1.5% for Heart Lake Road and 1.2% for Countryside Drive was provided by Paradigm Transportation Solutions Limited. The combined truck factor was derived using the MTO MI-183 Table D-3 and D-4, typical truck compositions, and truck factors.

In consideration of the rural landscape and new subdivision developments near the subject sections of the roadways, a growth rate of 3.0% was assumed in the pavement assessment.

The pavement subgrade soils are expected to comprise compacted subgrade fill in the road widening areas, existing fill materials or native soils. The predominate materials encountered in the boreholes would be classified as Category 6 soils in accordance with MTO MI-183 Table D-8 and were taken to be in 'poor to fair' condition. Based on Category 6 soils in a poor to fair condition, the estimated modulus of subgrade was taken to be 20 MPa for the roadways.

The full pavement design parameters utilized in the assessment and estimated Equivalent Single Axel Loads (EASLs) for Heart Lake Road and Countryside Drive are provided in **Tables 401 and 402 in Appendix C**.

Based on the pavement assessment completed, the required design Structural Number (SN) for Heart Lake Road would be 120 mm. The City of Brampton specified pavement design for an arterial roadway without a transit route would provide a SN of 112 mm and as such, is considered to be insufficient for the reconstruction.

Based on the pavement assessment completed, the required design Structural Number (SN) for Countryside Drive would be 126 mm. The City of Brampton specified pavement design for an arterial roadway without a transit route would provide an SN of 112 mm and as such, is considered to be insufficient for the reconstruction.

7.4.3 Pavement Construction

A full reconstruction of the pavement structure is proposed at the intersection of Heart Lake Road and Countryside Dive and would involve removing the existing pavement structure materials, reusing the granular pavement structure soils as subbase soils, and placement of new Granular 'B' subbase soils (if needed), Granular 'A' base soils and asphaltic concrete.

The existing fill materials are suitable to be left below the road structure following a proof roll and inspection by qualified geotechnical personnel. Areas with excessive organic content and/or topsoil must be subexcavated. Depending on finished grades at the site the pavement subgrade soils will comprise of compacted subgrade fill, existing fill materials or native soils.

The City of Brampton specified pavement design for an arterial roadway was deemed insufficient for Heart Lake Road. Based on the pavement assessment, the required SN for Heart Lake Road would be 120 mm. The following pavement design provides an adequate SN for the roadway;

Table 10 - MTE Pavement Design for Heart Lake Road

Pavement Component	Heart Lake Road
HL3 (High Stability) Surface Hot Mix Asphalt	50 mm
HL8 Binder Hot Mix Asphalt	100 mm
OPSS 1010 Granular 'A' Base	150 mm
OPSS 1010 Granular 'B' Subbase	450 mm
Structural Number	125 mm

The City of Brampton specified pavement design for an arterial roadway was deemed insufficient for Countryside Drive. Based on the pavement assessment, the required SN for Countryside Drive would be 126 mm. The following pavement design provides an adequate SN for the roadway;

Table 11 - MTE Pavement Design for Countryside Drive

Pavement Component	Countryside Drive
HL3 (High Stability) Surface Hot Mix Asphalt	50 mm
HL8 Binder Hot Mix Asphalt	110 mm
OPSS 1010 Granular 'A' Base	150 mm
OPSS 1010 Granular 'B' Subbase	450 mm
Structural Number	129 mm

Samples of aggregates should be checked for conformance to OPSS 1010 prior to utilization on-site and during construction. The Granular 'B' subbase and Granular 'A' base courses must be compacted to 100% SPMDD, as verified by insitu density testing.

The hot mix asphalt paving materials should conform to the requirements of OPSS 1150. The asphalt should be placed and compacted in accordance with OPSS 310. The City of Brampton specified Performance Graded Asphalt Cement (PG-AC) designation for the hot mix asphalt is 64-28.

The surface asphalt should be placed in one lift. The binder asphalt should be placed in two lifts. It is recommended to place the surface asphalt as soon as possible following placement of the binder asphalt to ensure the full pavement strength is provided for regular traffic.

A joint transition treatment will be required where old and new pavement meet. Provided the existing pavement is 100 mm thick or greater, the recommended transition treatment comprises milling of the old surface layer approximately 0.3 m wide and 50 mm deep. Where the existing pavement is less than 100 mm thick, the transition treatment should comprise saw cutting the existing asphalt to provide a clean face to tie the new asphalt into.

It is recommended to clean all of the construction joints with stiff bristle brooms and compressed air to remove all dirt, dust, and other foreign matter. A tack coat should be applied to all construction joints prior to the placement of hot mix asphalt to ensure an adequate bond is achieved between the pavement layers.

The necessity for continuous repair work and paving supervision as well as quality assurance testing during road reconstruction projects cannot be over emphasized. An annual maintenance program is also recommended to maintain the pavements at a suitable level.

The pavement design is based on the assumption that construction will be carried out during the drier time of the year and that the subgrade soil is stable as determined by proof-rolling inspected by qualified geotechnical personnel. The subgrade and subbase materials can be significantly damaged and loose internal strength if construction is conducted in unfavorable weather. If the subgrade is wet and unstable, additional granular subbase will be required.

All materials and construction services required for the work should be in accordance with the relevant sections of the Ontario Provincial Standard Specifications.

7.5 Pavement Drainage

Adequate subsurface drainage is considered critical to the performance and lifespan of pavement. The pavement subgrade should be sloped at a minimum of 3% to promote drainage, and the pavement granular courses and asphalt should be sloped at a minimum of 2% to promote rainwater drainage. Surface water should not be allowed to pond along the outside pavement edges.

Where curbs are not constructed on the roadways, adequate ditches should be constructed to promote drainage of the pavement structure. Ditches should be constructed with an invert 500 mm below the top of subgrade in accordance with OPSD 200.010.

Where curbs are constructed, continuous pavement subdrains should be constructed to drain the pavement structure. The purpose of the subdrains is to remove excess subsurface water in order to improve overall pavement serviceability and increase the pavement life.

The work of subdrain installation shall be in accordance with OPSS 405 and OPSD 216.021. The subdrain shall be 150 mm diameter perforated pipe conforming to OPSS 1801 or 1840, and prewrapped with geotextile conforming to OPSS 1860. A typical detail of a pavement subdrain is provided on **Figure 4 in Appendix A**.

7.6 Construction Inspection and Testing

MTE recommends that geotechnical inspection and testing procedures be conducted throughout the various phases of the project.

Engineer site visits should be conducted to confirm suitable subgrade. Imported granular materials should be tested for conformance to specifications prior to importation to the site. Field compaction testing of the pavement structure components (granulars and hot mix asphalt) should be conducted. Samples of the hot mix asphalt should be collected during pavement and laboratory testing for compliance completed. It is recommended to collect hot mix asphalt samples at a minimum frequency of 1 sample for each 500 tonnes placed on-site.

During placement of concrete at the site, testing should be performed on-site to confirm the slump and air content of the concrete are within specifications. Concrete test cylinders should be cast for compressive strength testing from the same samples tested for slump and air content. Concrete should be tested at a frequency of once every 100 m³ or daily, whichever is greater.

MTE offers soil compaction, concrete, and asphalt testing, as well as soil inspection services through our Stratford and London offices.

8.0 Limitations of Report

Services performed by MTE Consultants Inc. (MTE) were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Geotechnical Engineering & Consulting profession practicing under similar conditions in the same geographic area were the services are provided. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This report was completed for the sole use of the Client. This report is not intended to be exhaustive in scope or to imply a risk-free site. As such, this report may not deal with all issues potentially applicable to the site and may omit aspects which are or may be of interest to the reader.

In addition, it should be recognized that a soil sample result represents one distinct portion of a site at the time it is collected, and that the findings of this report are based on conditions as they existed during the time period of the investigation. The material in the report reflects our best judgment using the information available at the time the report was written. The soil and groundwater conditions between and beyond the test holes may differ from those encountered in the test holes. Should subsurface conditions arise that are different from those in the test holes MTE should be notified to determine whether or not changes should be made as a result of these conditions.

It should be recognized that the passage of time may affect the views, conclusions and recommendations (if any) provided in this report because groundwater conditions of a property can change, along with regulatory requirements. All design details were not known at the time of submission of this report and it is recommended MTE should be retained to review the final design documents prior to construction to confirm they are consistent with our report recommendations. Should additional or new information become available, MTE recommends that it be brought to our attention in order that we may determine whether it affects the contents of this report.

Any use which another party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such parties. MTE accepts no responsibility for liabilities incurred by or damages, if any, suffered by another party as a result of decisions made or actions taken, based upon this report. Others with interest in the site should undertake their own investigations and studies to determine how or if the condition affects them or their plans. The contractors bidding on this project or undertaking the construction should make their own interpretation of the factual information and draw their own conclusions as to how subsurface conditions may affect their work.

The benchmark and elevations provided in this report are primarily established to identify differences between the test hole locations and should not be used for other purposes such as, planning, development, grading, and excavation.

All of which is respectfully submitted,

MTE Consultants Inc.

Ben Heinbuch, P.Eng. Geotechnical Engineer 519-271-7952 ext. 2333 bheinbuch@mte85.com

Dan Gonser, P.Eng. Manager, Geotechnical 519-271-7952 ext. 2343 dgonser@mte85.com

Carol Mitchell, P.Eng., QP_{ESA} Senior Environmental Engineer 519-743-6500 ext. 1250 cmitchell@mte85.com

DMG: bgh

M:\47877\100\Geotechnical\Report\Final\47877-100_2022-08-16_Geotechnical Report_Final.docx

Appendix A

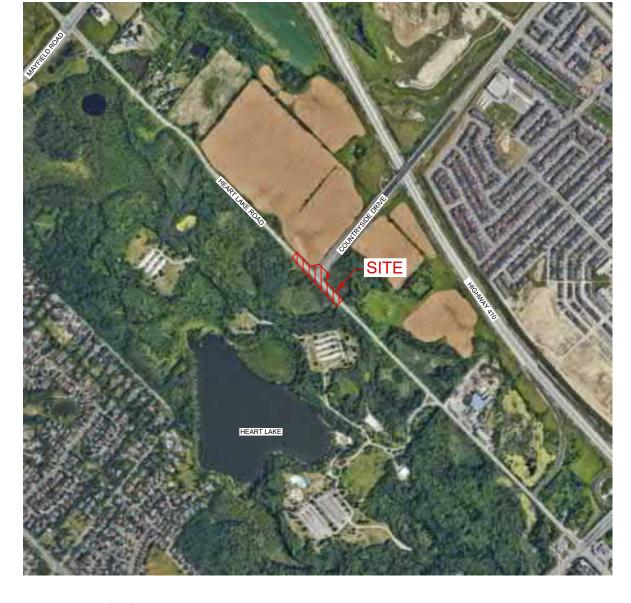
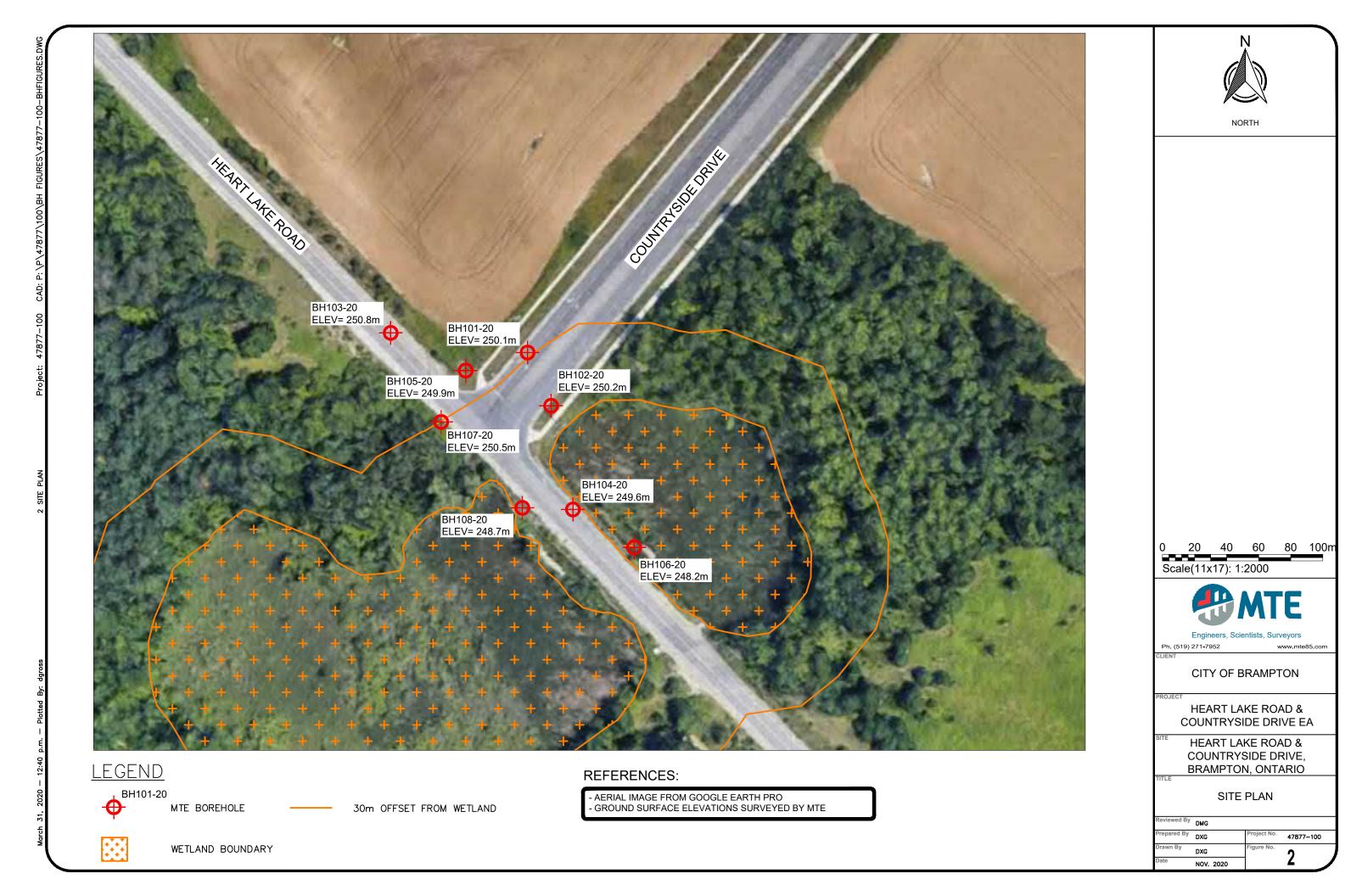
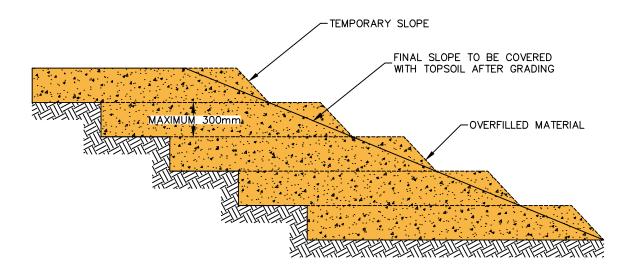

Figures

Figure 1 - Location Plan
Figure 2 - Site Plan

Figure 3 - Fill Placement for Road Widening

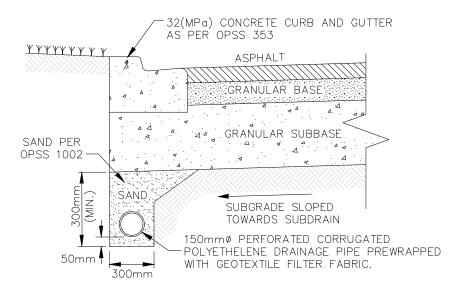
Figure 4 - Typical Pavement Subdrain Detail


REFERENCES:


- AERIAL IMAGE FROM GOOGLE EARTH PRO

SCALE: N.T.S

	CLIENT	TITLE			
	CITY OF BRAMPTON	LOCATION PLAN			
	PROJECT	Reviewed By	DMG	N	
4	HEART LAKE ROAD & COUNTRYSIDE DRIVE EA	Prepared By Drawn By	DXG		
	COUNTRYSIDE DRIVE EA		DXG		
	SITE LIFADT LAKE DOAD 9	Date	NOV. 2020		
	HEART LAKE ROAD & COUNTRYSIDE DRIVE,	Project No.	47877-100		
	BRAMPTON, ONTARIO	Figure No.	1	NORTH	



GENERAL REQUIREMENTS

- 1. THE SUBGRADE SHOULD BE INSPECTED AND APPROVED BY A GEOTECHNICAL ENGINEER PRIOR TO FILL CONSTRUCTION. FILL PLACEMENT AND COMPACTION OPERATIONS TO BE CARRIED OUT UNDER ENGINEERING SUPERVISION.
- 2. POOR SUBGRADE SOIL CONDITIONS OR GROUNDWATER SEEPAGE MAY REQUIRE SPECIAL DRAINAGE PROVISIONS, GEOTEXTILE FABRIC AND/OR GRANULAR FILL.
- 3 LIFTS SHOULD BE PLACED ONE LEVEL AT A TIME AND THE FILL COMPACTED BEFORE THE NEXT BENCHING LEVEL IS PLACED.
- 4 THE OVERFILL MATERIAL SHOULD BE EXCAVATED AND REUSED IF POSSIBLE.
- 5. THE FINISHED SLOPE SHOULD BE GRADED AT MAXIMUM 3H:1V AND COVERED WITH AT LEAST 200mm OF TOPSOIL IMMEDIATELY AFTER GRADING.

NOTE: INSTALLATION OF SUBDRAIN WILL BE REQUIRED TO RUN CONTINUOUSLY ALONG BOTH SIDES OF THE ROAD WITH CURB AND GUTTER.

GENERAL REQUIREMENTS FOR PAVEMENT SUBDRAINS:

- PERFORATED CORRUGATED POLYETHYLENE DRAINAGE PIPE SHALL MEET THE REQUIREMENTS OF OPSS 1840.
- 2. PIPE FILTER FABRIC CONFORMING TO OPSS 1860 FOR GEOTEXTILE CLASS 1 WITH A FILTRATION OPENING SIZE OF 150 TO 450 MICRONS SHALL BE SUPPLIED ON ALL SECTIONS OF PERFORATED PIPE.
- 3. THE OPEN UPSTREAM ENDS OF PIPES SHOULD BE CAPPED.
- 4. SUBDRAIN PIPES TO BE SET ON AT LEAST 1% GRADE DRAINING TO A POSITIVE FROST-FREE OUTLET. IF THE SUBDRAINS ARE OUTLETTED TO A DITCH THEN THE LAST 1.5 M OF THE OUTLET PIPE SHOULD CONSIST OF A CORRUGATED GALVANIZED STEEL PIPE EQUIPPED WITH A RODENT GATE.
- 5. BEDDING AND BACKFILL MATERIAL SHALL BE CONCRETE SAND MEETING THE GRADATION REQUIREMENTS OF OPSS 1002 (FINE AGGREGATE FOR CONCRETE).
- 6. THIS IS NOT A DESIGN DRAWING OR CONTRACT SPECIFICATION.

Appendix B

Borehole Logs

Abbreviations and Symbols MTE Boreholes BH101-20 to BH108-20

The following are abbreviations and symbols commonly used on borehole logs, figures and reports.

Sample Types

AS	Auger Sample
CS	Chunk Sample
BS	Bulk Sample
GS	Grab Sample
WS	Wash Sample
SS	Split Spoon
RC	Rock Core
SC	Soil Core
TW	Thinwall, Open
TP	Thinwall, Piston

Soil Tests

PP	Pocket Penetrometer
FV	Field Vane
SPT	Standard Penetration Test
CPT	Cone Penetration Test
WC	Water Content
WL	Water Level

Penetration Resistance

Standard Penetration Test, N (ASTM D1586)	The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) open spilt spoon sampler for a distance of 300 mm (12 in.).
Dynamic Cone Penetration Resistance	The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive an uncased 50 mm (2 in.) diameter, 60o cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

Soil Description

Cohesive Soils	Undrained Shear Strength (Cu)					
Consistency	kPa	psf				
Very Soft	0 to 12	0 to 250				
Soft	12 to 25	250 to 500				
Firm	25 to 50	500 to 1,000				
Stiff	50 to 100	1,000 to 2,000				
Very Stiff	100 to 200	2,000 to 4,000				
Hard	Above 200	Above 4,000				

Cohesionless Soils	
Relative Density	SPT N Value
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	Above 50

WH	Sampler advanced by static weight of hammer
WR	Sampler advanced by static weight of drilling rods
PH	Sampler advanced by hydraulic force
PM	Sampler advanced by manual force

DTPL	Drier than Plastic Limit
APL	About Plastic Limit
WTPL	Wetter than Plastic Limit
mbgs	Metres below Ground Surface

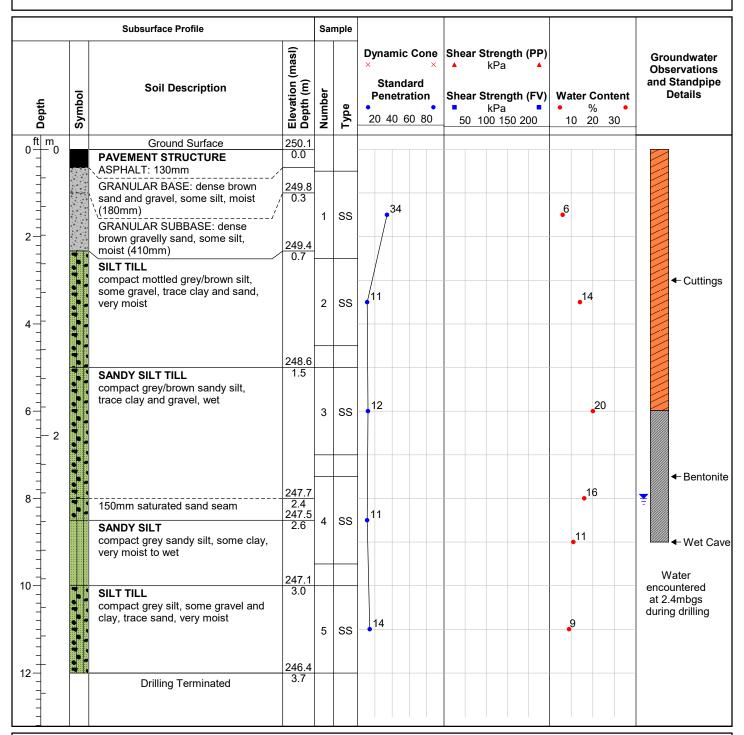
ID Number: BH101-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100

Client: City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON


Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME55 Truck

Drill Method: Solid Stem Augers

Protective Cover: N/A

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

ID Number: BH102-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100

Client: City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON

Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME55 Truck

Drill Method: Hollow Stem Augers

Protective Cover: N/A

		Subsurface Profile		Sai	mple				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Туре	Dynamic Cone × Standard Penetration 20 40 60 80	Shear Strength (PP) kPa Shear Strength (FV) kPa 50 100 150 200	Water Content	Groundwater Observations and Standpipe Details
0 ft m	***	Ground Surface	250.2						
		FILL (TOPSOIL) dark brown sandy silt, wet (150mm) FILL loose dark brown silty sand and gravel, some organics (rootlets), very moist	0.0 250.0 0.2	1	SS	8		. 7	← Cuttings
2-		compact	249.4 0.8					7	
4-1		compact dark brown sandy silt,	249.0 1.2	2	SS	16		.24	
+		some gravel and topsoil, very moist	248.7						
6-1-2		SANDY SILT TILL loose brown sandy silt, some gravel, trace clay, very moist saturated	1.5 248.2 2.0	3	ss	9		. 18	◆ Bentonite
	<u> </u>		247.9 2.3						← Wet Cave
8-		SILTY SAND AND GRAVEL compact brown silty sand and gravel, saturated	2.3	4	SS	12		•12	Water encountered at 2.0mbgs during drilling
10-	•		247.2]
		SILT AND SAND compact grey silt and sand, some gravel, saturated	3.0	5	SS	19		15	
12-		Drilling Terminated	3.7						

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

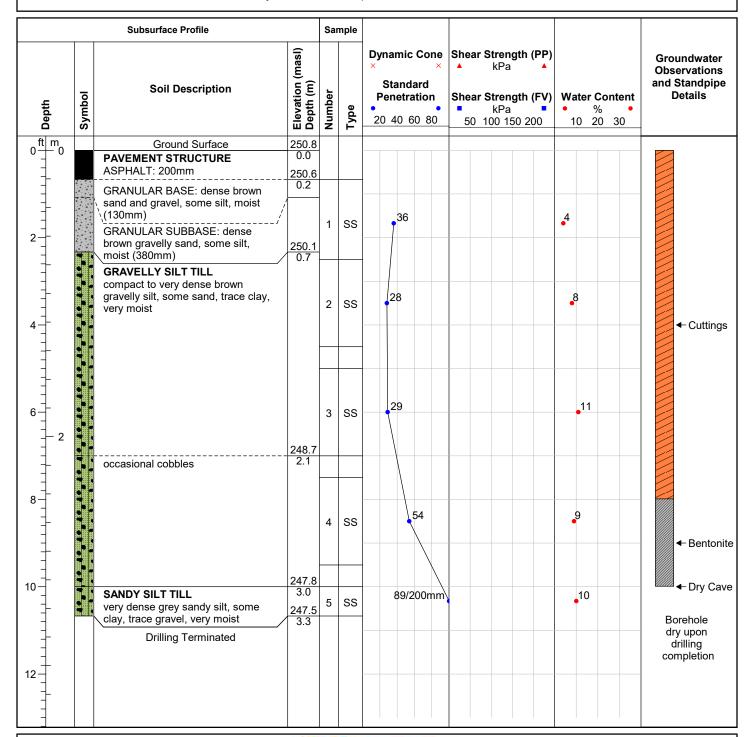
ID Number: BH103-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100

Client: City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON


Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME55 Truck

Drill Method: Solid Stem Augers

Protective Cover: N/A

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

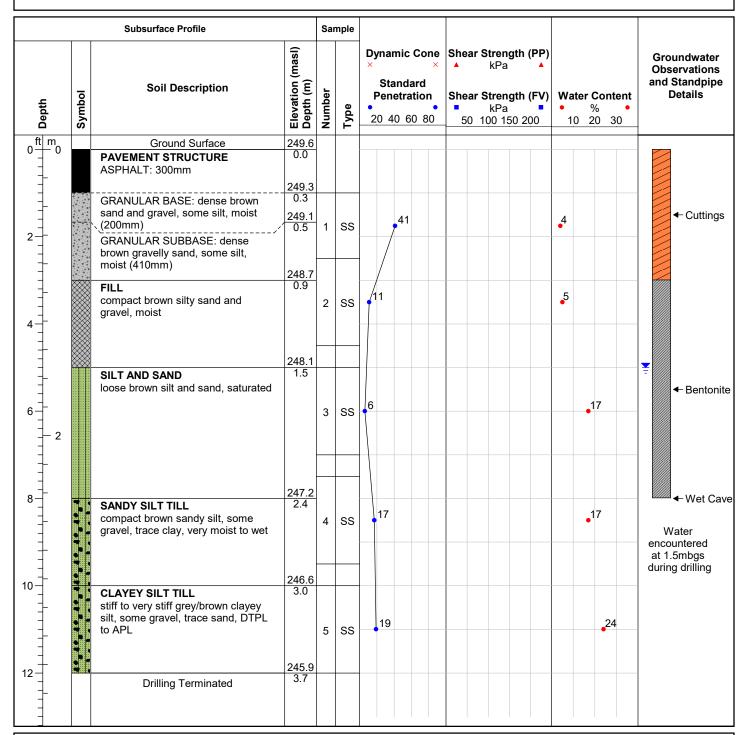
ID Number: BH104-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100

Client: City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON


Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME55 Truck

Drill Method: Solid Stem Augers

Protective Cover: N/A

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

Notes:

A grab sample was taken at a depth of 0.3 to 0.5mbgs

ID Number: BH105-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100 **Client:** City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON

Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: Pionjar Jackhammer

Drill Method: Direct Push

Protective Cover: N/A

		Subsurface Profile			mple				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)		Туре	Dynamic Cone × × Standard Penetration 20 40 60 80	Shear Strength (PP) kPa Shear Strength (FV) kPa 50 100 150 200	Water Content - % - 10 20 30	Groundwater Observations and Standpipe Details
0 ft m 0		Ground Surface FILL (TOPSOIL) dark brown sandy silt, very moist to wet (150mm) FILL dark brown silt, some sand and gravel, very moist to wet	249.9 0.0 249.7 0.2	1	DP			19	← Bentonite
- - - - - - - - -		SILT TILL mottled grey/brown silt, some sand and gravel, trace clay, very moist to wet Drilling Terminated	0.6 248.7 1.2	2	DP			.15	← Dry Cave
62		Dilling Femiliated							Borehole dry upon drilling completion
8-1									
10-									
12-									

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

ID Number: BH106-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100 **Client:** City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON

Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: Pionjar Jackhammer

Drill Method: Direct Push

Protective Cover: N/A

		Subsurface Profile		Sai	mple				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Туре	Dynamic Cone × × Standard Penetration 20 40 60 80	Shear Strength (PP) kPa Shear Strength (FV) kPa 50 100 150 200	Water Content	Groundwater Observations and Standpipe Details
0 ft m	***	Ground Surface	248.2						
		FILL (TOPSOIL) dark brown sandy silt, very moist to wet (150mm) FILL light brown sandy silt, some gravel, very moist to wet	0.0 248.0 0.2	1	DP			20	← Cuttings
2		SILT AND SAND light brown silt and sand, saturated	247.3 0.9	2	DP			. 19	▼ Bentonite
4			040.7					20	← Wet Cave Water
- - - - 6-] :	SILT TILL mottled grey/brown silt, some sand and gravel, trace clay, wet	246.7 1.5 246.4	3	DP			19	encountered at 0.9mbgs during drilling
10 — 2 — 2 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1		Drilling Terminated	1.8						

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

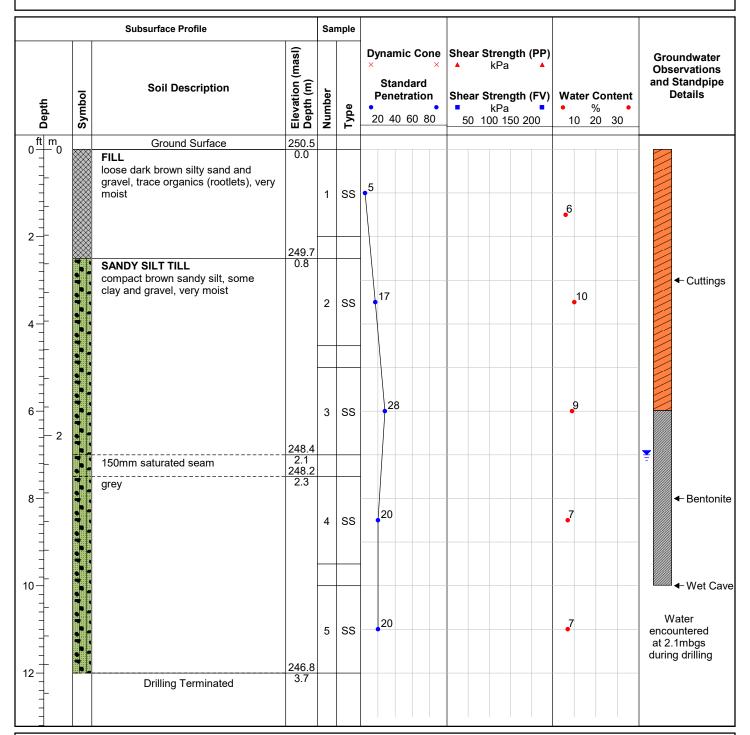
ID Number: BH107-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100

Client: City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON


Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME55 Truck

Drill Method: Solid Stem Augers

Protective Cover: N/A

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

ID Number: BH108-20

Project: Heart Lake Road & Countryside Drive EA

Project No: 47877-100 **Client:** City of Brampton

Site Location: Heart Lake Road & Countryside Drive, Brampton, ON

Drill Date: 11/17/2020

Drilling Contractor: London Soil Test Ltd.

Drill Rig: Pionjar Jackhammer

Drill Method: Direct Push

Protective Cover: N/A

		Subsurface Profile		Sa	mple				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Туре	Dynamic Cone × × Standard Penetration 20 40 60 80	Shear Strength (PP) kPa Shear Strength (FV) kPa 50 100 150 200		Groundwater Observations and Standpipe Details
0 ft m		Ground Surface	248.7						
0 - 0		FILL brown sandy silt, some gravel and organics (rootlets), wet	248.3 0.4	1	DP			.18	← Cuttings
-		dark brown sandy silt (topsoil), some organics, wet							
2	***		248.1 0.6						
	**************************************	PEAT dark brown to light brown sandy peat, some organics, wet	0.0	2	DP			40	◆ Bentonite
4			247.5						<u>*</u>
6-1		80mm saturated sand seam	1.2	3	DP			40	← Wet Cave Water encountered
2			246.6	4	DP			40	at 1.2mbgs during drilling
10-		Drilling Terminated	2.1						

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

Reviewed by: D. Gonser

Appendix C

Laboratory Test Results

Tables 101 to 105 201 to 205 301 to 302 401 to 402

					Sample Location	BH101-20	BH102-20	BH102-20	BH102-20	BH103-20	BH104-20	BH104-20	BH105-20	BH106-20	BH106-20	BH107-20	BH108-20	BH108-20
					Sample Name	BH101-20 SS2	BH102-20 SS1	BH1002-20 SS1	BH102-20 SS2B	BH103-20 SS2	BH104-20 SS2	BH104-20 SS3	BH105-20 SA1	BH106-20 SA1	BH106-20 SA2	BH107-20 SS1	BH108-20 SA1	BH108-20 SA2
			2011 Table 3 SCS		Lab Job #	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806
Parameters	Unit	RDL	(I/C/C. Coarse)		Laboratory ID	L2530806-1	L2530806-2	L2530806-3	L2530806-4	L2530806-5	L2530806-6	L2530806-7	L2530806-8	L2530806-9	L2530806-10	L2530806-11	L2530806-12	L2530806-13
			(4 5, 5, 5 5 5 5 7		Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020
				Max	kimum Concentration			Field Duplicate										
Metals and Inorganics																		
Antimony	μg/g	1	40	<	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/g	1	18		9.7	9.7	3.7	3.5	4.9	5.1	3.6	2.1	5.2	3.5	2	2.6	2.4	6.1
Barium	μg/g	1	670		122	67.7	49.6	52	105	77.4	47.6	20.3	115	53.9	15.8	32.4	24.8	122
Beryllium	μg/g	0.5	8		0.95	0.73	<0.50	<0.50	0.79	<0.50	<0.50	<0.50	0.95	<0.50	<0.50	<0.50	<0.50	0.62
Boron	μg/g	5	120		7.1	5	6.9	7.1	6.4	6.1	<5.0	<5.0	6.6	5.6	<5.0	<5.0	<5.0	6.8
Cadmium	μg/g	0.5	1.9		1.07	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.07
Chromium	μg/g	1	160		28.6	21.8	16.9	18.9	26	16	9.9	6.8	28.6	15.9	7.7	17.4	10.6	15.9
Cobalt	μg/g	1	80		9.9	9.9	4.6	4.6	8.2	9.3	4.9	3.5	9.1	6.5	3.1	3.7	4	4.7
Copper	μg/g	1	230		42.8	34.6	14.8	15.8	42.4	32.6	29.5	19.7	30.2	31.7	13.1	42.8	15.9	35.7
Lead	μg/g	1	120		26.3	10.3	25.7	26.3	15.5	7.3	8.4	4.8	12.1	16.4	3.8	25.7	12.6	15.4
Molybdenum	μg/g	1	40		1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2
Nickel	μg/g	1	270		25.2	22.2	9.5	10.3	20.5	16.8	9.5	6.9	25.2	13.4	6.1	8.7	8.4	15.2
Selenium	μg/g	1	5.5		1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6
Silver	μg/g	0.2	40	<	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	μg/g	0.5	3.3	<	0.5	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
Uranium	μg/g	1	33		1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	1.7
Vanadium	μg/g	1	86		39.8	35.6	25.2	27.2	34.8	25.7	18.5	14.4	39.8	21.9	16.5	20.9	15	26
Zinc	μg/g	5	340		93.2	44.4	79.3	67.8	58.9	42.9	35.1	22.7	93.2	89.6	19.3	66	48.8	65.5
Electrical Conductivity	mS/cm	0.004	1.4		1.87	1.36	-	-	-	1.61	1.37	1.87	-	0.473	0.985	0.127	0.363	-
Sodium Adsorption Ratio (SAR)	unitless	0.1	12		89.2	10.1	-	-	-	89.2	12.6	40.5	-	6.54	24.3	1.86	13.9	-
рН	pH units	0.1	NR		8	-	8	-	-	-	-	7.6	-	-	7.34	-	-	-

Notes:
2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

- Exceeds 2011 Table 3 SCS

"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant
NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Geotechnical Investigation Heart Lake Road and Countryside Drive, Brampton ON

MTE File No.: 47877-100 Page 1 of 1 August 2022

					Sample Location	BH105-20	BH106-20
					Sample Name	BH105-20 SA1	BH106-20 SA1
		l	2011 Table 3 SCS		Lab Job #	L2530806	L2530806
Parameters	Unit	RDL	(I/C/C, Coarse)		Laboratory ID	L2530806-8	L2530806-9
			(11010)		Sampling Date	17-Nov-2020	17-Nov-2020
				M	aximum Concentration		
Organochlorine Pesticides (OCs)							
Aldrin	μg/g	0.02	0.088	<	0	<0.020	<0.020
alpha-Chlordane	μg/g	0.02	NR	<	0.02	<0.020	<0.020
gamma-Chlordane	μg/g	0.02	NR	<	0.02	<0.020	<0.020
Chlordane (Total)	μg/g	0.028	0.05	<	0.028	<0.028	<0.028
o,p-DDD	μg/g	0.02	NR	٧	0.02	< 0.020	<0.020
p,p-DDD	μg/g	0.02	NR	٧	0.02	< 0.020	<0.020
o,p-DDD + p,p-DDD	μg/g	0.028	4.6	<	0.028	<0.028	<0.028
o,p-DDE	μg/g	0.02	NR	<	0.02	< 0.020	<0.020
p,p-DDE	μg/g	0.02	NR	<	0.02	<0.020	<0.020
o,p-DDE + p,p-DDE	μg/g	0.028	0.52	<	0.028	<0.028	<0.028
o,p-DDT	μg/g	0.02	NR	<	0.02	<0.020	<0.020
p,p-DDT	μg/g	0.02	NR	<	0.02	< 0.020	<0.020
o,p-DDT + p,p-DDT	μg/g	0.028	1.4	<	0.028	<0.028	<0.028
Dieldrin	μg/g	0.02	0.088	<	0.02	<0.020	<0.020
Endosulfan I	μg/g	0.02	NR	<	0.02	<0.020	<0.020
Endosulfan II	μg/g	0.02	NR	<	0.02	<0.020	<0.020
Total Endosulfan	μg/g	0.028	0.3	<	0.028	<0.028	<0.028
Endrin	μg/g	0.02	0.04	<	0.02	<0.020	<0.020
Heptachlor	μg/g	0.02	0.19	<	0.02	<0.020	<0.020
Heptachlor epoxide	μg/g	0.02	0.05	<	0.02	<0.020	<0.020
Hexachlorobenzene	μg/g	0.01	0.66	<	0.05	<0.010	<0.050
Hexachlorobutadiene	μg/g	0.01	0.031	<	0.05	<0.010	<0.050
gamma-Hexachlorocyclohexane (Lindane)	μg/g	0.01	0.056	<	0.05	<0.010	<0.050
Hexachloroethane	μg/g	0.01	0.21	<	0.05	<0.010	<0.050
Methoxychlor	μg/g	0.02	1.6	<	0.02	<0.020	<0.020

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended

Bold - Exceeds 2011 Table 3 SCS Bold - Detection limit exceeds 2011 Table 3 SCS

"-" - parameter not analyzed RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

"<" - Less than the Reporting Detection Limit

Page 1 of 1

Table 103: Polycyclic Aromatic Hydrocarbons (PAHs) Analysis in Soil

					Sample Location	BH102-20	BH104-20	BH107-20
					Sample Name	BH102-20 SS2B	BH104-20 SS2	BH107-20 SS1
			2011 Table 3 SCS		Lab Job #	L2530806	L2530806	L2530806
Parameters	Unit	RDL	(I/C/C, Coarse)		Laboratory ID	L2530806-4	L2530806-6	L2530806-11
			(, 0, 000.00)		Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020
					Maximum			
					Concentration			
Polycyclic Aromatic Hydrocarbons (PAHs)							
Acenaphthene	μg/g	0.05 - 0.4	96	<	0.05	< 0.050	< 0.050	< 0.050
Acenaphthylene	μg/g	0.05 - 0.125	0.15	/	0.05	< 0.050	< 0.050	< 0.050
Anthracene	μg/g	0.05 - 0.125	0.67	/	0.05	< 0.050	< 0.050	< 0.050
Benz(a)anthracene	μg/g	0.05 - 0.125	0.96	/	0.05	< 0.050	< 0.050	< 0.050
Benzo(a)pyrene	μg/g	0.05 - 0.125	0.3	/	0.05	< 0.050	< 0.050	< 0.050
Benzo(b)fluoranthene	μg/g	0.05 - 0.125	0.96	/	0.05	< 0.050	< 0.050	< 0.050
Benzo(g,h,i)perylene	μg/g	0.05 - 0.15	9.6	<	0.05	< 0.050	< 0.050	< 0.050
Benzo(k)fluoranthene	μg/g	0.05 - 0.125	0.96	<	0.05	< 0.050	< 0.050	< 0.050
Chrysene	μg/g	0.05 - 0.125	9.6		0.055	< 0.050	< 0.050	0.055
Dibenz(a,h)anthracene	μg/g	0.05 - 0.125	0.1	<	0.05	< 0.050	< 0.050	< 0.050
Fluoranthene	μg/g	0.05 - 0.5	9.6	<	0.05	< 0.050	< 0.050	< 0.050
Fluorene	μg/g	0.05 - 0.125	62	<	0.05	< 0.050	< 0.050	< 0.050
Indeno(1,2,3-cd)pyrene	μg/g	0.05 - 0.125	0.76	<	0.05	< 0.050	< 0.050	< 0.050
1-Methylnaphthalene	μg/g	0.03 - 0.075	76	<	0.03	< 0.030	< 0.030	< 0.030
2-Methylnaphthalene	μg/g	0.03 - 0.075	76	<	0.03	< 0.030	< 0.030	< 0.030
1+2-Methylnaphthalene	μg/g	0.0424 - 0.106	76	<	0.042	<0.042	<0.042	<0.042
Naphthalene	μg/g	0.013 - 0.32	9.6	<	0.013	<0.013	<0.013	<0.013
Phenanthrene	μg/g	0.046 - 0.46	12	<	0.046	<0.046	< 0.046	< 0.046
Pyrene	μg/g	0.05 - 0.5	96	<	0.05	< 0.050	< 0.050	< 0.050

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

Exceeds 2011 Table 3 SCS

Bold

"-" - parameter not analyzed RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

"<" - Less than the Reporting Detection Limit

					Sample Location	BH101-20	BH102-20	BH102-20	BH102-20	BH103-20	BH104-20	BH104-20	BH105-20	BH106-20	BH106-20	BH107-20	BH108-20
					Sample Name	BH101-20 SS2	BH102-20 SS1	BH1002-20 SS1	BH102-20 SS2B	BH103-20 SS2	BH104-20 SS2	BH104-20 SS3	BH105-20 SA1	BH106-20 SA1	BH106-20 SA2	BH107-20 SS1	BH108-20 SA1
			2011 Table 3 SCS		Lab Job #	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806
Parameters	Unit	RDL	(I/C/C, Coarse)		Laboratory ID	L2530806-1	L2530806-2	L2530806-3	L2530806-4	L2530806-5	L2530806-6	L2530806-7	L2530806-8	L2530806-9	L2530806-10	L2530806-11	L2530806-12
			(,,		Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020
					Maximum Concentration			Field Duplicate									
Petroleum Hydrocarbons (PHCs)																	
F1 (C6 to C10)	μg/g	5	55	<	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F1 (C6 to C10) minus BTEX	μg/g	5	55	<	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10 to C16)	μg/g	10 - 50	230	<	50	<10	<50	<50	<10	<10	<10	<10	<10	<10	<10	<20	<10
F3 (C16 to C34)	μg/g	50 - 250	1700		650	<50	650	390	89	<50	<50	<50	<50	<50	<50	410	56
F4 (C34 to C50)	μg/g	50 - 250	3300		2270	<50	2270	1390	189	<50	<50	<50	<50	115	<50	830	126
Reached Baseline at C50	unitless		NR		NA	YES	NO	NO	NO	YES	YES	YES	YES	NO	YES	NO	NO
F4G (Gravimetric)	μg/g	250	3300		7680	-	7680	5620	790	-	-	-	-	610	0	3040	550

Notes:
2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

- Exceeds 2011 Table 3 SCS

"-" - parameter not analyzed RDL - Reported detection limit NR - Not Relevant NV- No Value

NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Geotechnical Investigation Heart Lake Road and Countryside Drive, Brampton ON

				,	Sample Location	BH101-20	BH102-20	BH102-20	BH102-20	BH103-20	BH104-20	BH104-20	BH105-20	BH106-20	BH106-20	BH107-20	BH108-20
					Sample Name	BH101-20 SS2	BH102-20 SS1	BH1002-20 SS1	BH102-20 SS2B	BH103-20 SS2	BH104-20 SS2	BH104-20 SS3	BH105-20 SA1	BH106-20 SA1	BH106-20 SA2	BH107-20 SS1	BH108-20 SA1
			2011 Table 3 SCS		Lab Job #	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806
Parameters	Unit	RDL	(I/C/C, Coarse)		Laboratory ID	L2530806-1	L2530806-2	L2530806-3	L2530806-4	L2530806-5	L2530806-6	L2530806-7	L2530806-8	L2530806-9	L2530806-10	L2530806-11	L2530806-12
			(, ,		Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020
					Maximum Concentration			Field Duplicate									
Volatile Organic Compounds (VOCs)																	
Benzene	μg/g	0.0068	0.32	<	0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Ethylbenzene	μg/g	0.018	9.5	<	0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Toluene	μg/g	0.08	68	<	0.08	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	< 0.080	< 0.080	<0.080	<0.080	<0.080	< 0.080
o-Xylene	μg/g	0.02	NR	<	0.02	<0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	< 0.020	<0.020	<0.020	< 0.020	< 0.020
m+p-Xylene	μg/g	0.03	NR	<	0.03	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Xylene Mixture	μg/g	0.05	26	<	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050

Notes:
2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011) - Exceeds 2011 Table 3 SCS

Geotechnical Investigation Heart Lake Road and Countryside Drive, Brampton ON

					Sample Location	BH101-20	BH102-20	BH102-20	BH102-20	BH103-20	BH104-20	BH104-20	BH105-20	BH106-20	BH106-20	BH107-20	BH108-20	BH108-20
					Sample Name	BH101-20 SS2	BH102-20 SS1	BH1002-20 SS1	BH102-20 SS2B	BH103-20 SS2	BH104-20 SS2	BH104-20 SS3	BH105-20 SA1	BH106-20 SA1	BH106-20 SA2	BH107-20 SS1	BH108-20 SA1	BH108-20 SA2
			2011 Table 1 SCS		Lab Job #	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806
Parameters	Unit	RDL	(R/P/I or I/C/C, Coarse)	Table 3.1 ESQS (I/C/C)	Laboratory ID	L2530806-1	L2530806-2	L2530806-3	L2530806-4	L2530806-5	L2530806-6	L2530806-7	L2530806-8	L2530806-9	L2530806-10	L2530806-11	L2530806-12	L2530806-13
			(,,		Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020
					Maximum Concentration			Field Duplicate										
Metals and Inorganics																		
Antimony	μg/g	1	1.3	40	< 1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/g	1	18	18	9.7	9.7	3.7	3.5	4.9	5.1	3.6	2.1	5.2	3.5	2	2.6	2.4	6.1
Barium	μg/g	1	220	670	122	67.7	49.6	52	105	77.4	47.6	20.3	115	53.9	15.8	32.4	24.8	122
Beryllium	μg/g	0.5	2.5	8	0.95	0.73	< 0.50	< 0.50	0.79	< 0.50	< 0.50	< 0.50	0.95	< 0.50	< 0.50	< 0.50	< 0.50	0.62
Boron	μg/g	5	36	120	7.1	5	6.9	7.1	6.4	6.1	<5.0	<5.0	6.6	5.6	<5.0	<5.0	<5.0	6.8
Cadmium	μg/g	0.5	1.2	1.9	1.07	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.07
Chromium	μg/g	1	70	160	28.6	21.8	16.9	18.9	26	16	9.9	6.8	28.6	15.9	7.7	17.4	10.6	15.9
Cobalt	μg/g	1	21	80	9.9	9.9	4.6	4.6	8.2	9.3	4.9	3.5	9.1	6.5	3.1	3.7	4	4.7
Copper	μg/g	1	92	230	42.8	34.6	14.8	15.8	42.4	32.6	29.5	19.7	30.2	31.7	13.1	42.8	15.9	35.7
Lead	μg/g	1	120	120	26.3	10.3	25.7	26.3	15.5	7.3	8.4	4.8	12.1	16.4	3.8	25.7	12.6	15.4
Molybdenum	μg/g	1	2	40	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2
Nickel	μg/g	1	82	270	25.2	22.2	9.5	10.3	20.5	16.8	9.5	6.9	25.2	13.4	6.1	8.7	8.4	15.2
Selenium	μg/g	1	1.5	5.5	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6
Silver	μg/g	0.2	0.5	40	< 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	μg/g	0.5	1	3.3	< 0.5	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50
Uranium	μg/g	1	2.5	33	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	1.7
Vanadium	μg/g	1	86	86	39.8	35.6	25.2	27.2	34.8	25.7	18.5	14.4	39.8	21.9	16.5	20.9	15	26
Zinc	μg/g	5	290	340	93.2	44.4	79.3	67.8	58.9	42.9	35.1	22.7	93.2	89.6	19.3	66	48.8	65.5
Electrical Conductivity	mS/cm	0.004	0.57	1.4	1.87	1.36	-	-	-	1.61	1.37	1.87	-	0.473	0.985	0.127	0.363	-
Sodium Adsorption Ratio (SAR)	unitless	0.1	2.4	12	89.2	10.1	-	-	-	89.2	12.6	40.5	-	6.54	24.3	1.86	13.9	-
pH	pH units	0.1	NR	NV	8	-	8	-	-	-	-	7.6	-	-	7.34	-	-	-

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

2019 Excess Soil Quality Standards (ESQS) - As identified in Appendix 1 of the Rules for Soil Management adopted by reference in O.Reg. 406/19 made under the Environmental Protection Act (December 4, 2019)

Bold
- Exceeds 2011 Table 1 SCS
- Exceeds Table 3.1 ESQS (I/C/C)

"-" - parameter not analyzed

RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Geotechnical Investigation Heart Lake Road and Countryside Drive, Brampton ON MTE File No.: 47877-100 Page 1 of 1 August 2022

						Sample Location	BH105-20	BH106-20
						Sample Name	BH105-20 SA1	BH106-20 SA1
		l	2011 Table 1 SCS (R/P/I			Lab Job #	L2530806	L2530806
Parameters	Unit	RDL	or I/C/C, Coarse)	Table 3.1 ESQS (I/C/C)		Laboratory ID	L2530806-8	L2530806-9
			,			Sampling Date	17-Nov-2020	17-Nov-2020
					Ma	aximum Concentration		
Organochlorine Pesticides (OCs)								
Aldrin	μg/g	0.02	0.05	0.088	<	0	<0.020	<0.020
alpha-Chlordane	μg/g	0.02	NR	NV	٧	0.02	<0.020	<0.020
gamma-Chlordane	μg/g	0.02	NR	NV	٧	0.02	<0.020	<0.020
Chlordane (Total)	μg/g	0.028	0.05	0.05	٧	0.028	<0.028	<0.028
o,p-DDD	μg/g	0.02	NR	NV	٧	0.02	<0.020	< 0.020
p,p-DDD	μg/g	0.02	NR	NV	٧	0.02	<0.020	< 0.020
o,p-DDD + p,p-DDD	μg/g	0.028	0.05	NV	'	0.028	<0.028	<0.028
o,p-DDE	μg/g	0.02	NR	NV	٧	0.02	< 0.020	< 0.020
p,p-DDE	μg/g	0.02	NR	NV	<	0.02	<0.020	<0.020
o,p-DDE + p,p-DDE	μg/g	0.028	0.05	NV	٧	0.028	<0.028	<0.028
o,p-DDT	μg/g	0.02	NR	NV	<	0.02	<0.020	<0.020
p,p-DDT	μg/g	0.02	NR	NV	<	0.02	<0.020	< 0.020
o,p-DDT + p,p-DDT	μg/g	0.028	1.4	NV	<	0.028	<0.028	<0.028
Dieldrin	μg/g	0.02	0.05	0.088	<	0.02	<0.020	< 0.020
Endosulfan I	μg/g	0.02	NR	NV	'	0.02	<0.020	< 0.020
Endosulfan II	μg/g	0.02	NR	NV	'	0.02	<0.020	<0.020
Total Endosulfan	μg/g	0.028	0.04	0.04	<	0.028	<0.028	<0.028
Endrin	μg/g	0.02	0.04	0.04	<	0.02	<0.020	< 0.020
Heptachlor	μg/g	0.02	0.05	0.072	٧	0.02	<0.020	<0.020
Heptachlor epoxide	μg/g	0.02	0.05	0.05	٧	0.02	<0.020	<0.020
Hexachlorobenzene	μg/g	0.01	0.01	0.66	٧	0.05	<0.010	<0.050
Hexachlorobutadiene	μg/g	0.01	0.01	0.01	<	0.05	<0.010	<0.050
gamma-Hexachlorocyclohexane (Lindane)	μg/g	0.01	0.01	0.01	٧	0.05	<0.010	<0.050
Hexachloroethane	μg/g	0.01	0.01	0.13	٧	0.05	<0.010	<0.050
Methoxychlor	μg/g	0.02	0.05	0.19	<	0.02	<0.020	<0.020

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

2019 Excess Soil Quality Standards (ESQS) - As identified in Appendix 1 of the Rules for Soil Management adopted by reference in O.Reg. 406/19 made under the Environmental Protection Act (December 4, 2019)

adopted by reference in an tegrited read	- and - in in - in - in - in - in - in
Bold	- Exceeds 2011 Table 1 SCS
Bold	- Exceeds Table 3.1 ESQS (I/C/C)
Bold	- Detection limit exceeds at least one of 2011 Table 1, 3 SCS or Table 3.1 ESQS (I/C/C)~

[&]quot;-" - parameter not analyzed

RDL - Reported detection limit NR - Not Relevant

NV- No Value

NA - Not Applicable

"<" - Less than the Reporting Detection Limit

						Sample Location	BH102-20	BH104-20	BH107-20
						Sample Name	BH102-20 SS2B	BH104-20 SS2	BH107-20 SS1
			2011 Table 1 SCS (R/P/I or I/C/C. Coarse)			Lab Job #	L2530806	L2530806	L2530806
Parameters	Unit	RDL	or I/C/C, Coarse)	Table 3.1 ESQS (I/C/C)		Laboratory ID	L2530806-4	L2530806-6	L2530806-11
						Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020
						Maximum			
						Concentration			
Polycyclic Aromatic Hydrocarbons (PAHs									
Acenaphthene	μg/g	0.05 - 0.4	0.072	15	<	0.05	< 0.050	< 0.050	< 0.050
Acenaphthylene	μg/g	0.05 - 0.125	0.093	0.093	<	0.05	< 0.050	<0.050	< 0.050
Anthracene	μg/g	0.05 - 0.125	0.16	0.16	<	0.05	< 0.050	< 0.050	< 0.050
Benz(a)anthracene	μg/g	0.05 - 0.125	0.36	1	<	0.05	< 0.050	<0.050	< 0.050
Benzo(a)pyrene	μg/g	0.05 - 0.125	0.3	0.7	<	0.05	< 0.050	<0.050	<0.050
Benzo(b)fluoranthene	μg/g	0.05 - 0.125	0.47	7	<	0.05	< 0.050	<0.050	<0.050
Benzo(g,h,i)perylene	μg/g	0.05 - 0.15	0.68	13	<	0.05	< 0.050	<0.050	<0.050
Benzo(k)fluoranthene	μg/g	0.05 - 0.125	0.48	7	<	0.05	< 0.050	<0.050	< 0.050
Chrysene	μg/g	0.05 - 0.125	2.8	14		0.055	< 0.050	<0.050	0.055
Dibenz(a,h)anthracene	μg/g	0.05 - 0.125	0.1	0.7	<	0.05	< 0.050	<0.050	<0.050
Fluoranthene	μg/g	0.05 - 0.5	0.56	70	<	0.05	<0.050	<0.050	<0.050
Fluorene	μg/g	0.05 - 0.125	0.12	6.8	<	0.05	<0.050	<0.050	<0.050
Indeno(1,2,3-cd)pyrene	μg/g	0.05 - 0.125	0.23	0.76	<	0.05	< 0.050	<0.050	< 0.050
1-Methylnaphthalene	μg/g	0.03 - 0.075	0.59	NV	<	0.03	< 0.030	<0.030	<0.030
2-Methylnaphthalene	μg/g	0.03 - 0.075	0.59	NV	<	0.03	< 0.030	<0.030	<0.030
1+2-Methylnaphthalene	μg/g	0.0424 - 0.106	0.59	8.7	<	0.042	<0.042	<0.042	<0.042
Naphthalene	μg/g	0.013 - 0.32	0.09	1.8	<	0.013	< 0.013	<0.013	<0.013
Phenanthrene	μg/g	0.046 - 0.46	0.69	12	<	0.046	<0.046	<0.046	<0.046
Pyrene	μg/g	0.05 - 0.5	1	70	<	0.05	< 0.050	<0.050	< 0.050

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

2019 Excess Soil Quality Standards (ESQS) - As identified in Appendix 1 of the Rules for Soil Management adopted by reference in O.Reg. 406/19 made under the Environmental Protection Act (December 4, 2019)

Bold	
Bold	

- Exceeds 2011 Table 1 SCS - Exceeds Table 3.1 ESQS (I/C/C)

"-" - parameter not analyzed RDL - Reported detection limit

NR - Not Relevant

NV- No Value

NA - Not Applicable

"<" - Less than the Reporting Detection Limit

Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or I/C/C, Coarse)	Table 3.1 ESQS (I/C/C)	Sample Location	BH101-20	BH102-20	BH102-20	BH102-20	BH103-20	BH104-20	BH104-20	BH105-20	BH106-20	BH106-20	BH107-20	BH108-20
					Sample Name	BH101-20 SS2	BH102-20 SS1	BH1002-20 SS1	BH102-20 SS2B	BH103-20 SS2	BH104-20 SS2	BH104-20 SS3	BH105-20 SA1	BH106-20 SA1	BH106-20 SA2	BH107-20 SS1	BH108-20 SA1
					Lab Job #	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806
					Laboratory ID	L2530806-1	L2530806-2	L2530806-3	L2530806-4	L2530806-5	L2530806-6	L2530806-7	L2530806-8	L2530806-9	L2530806-10	L2530806-11	L2530806-12
					Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020
					Maximum Concentration			Field Duplicate									
Petroleum Hydrocarbons (PHCs)																	
F1 (C6 to C10)	μg/g	5	25	NV	< 5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F1 (C6 to C10) minus BTEX	μg/g	5	25	25	< 5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10 to C16)	μg/g	10 - 50	10	26	< 50	<10	<50	<50	<10	<10	<10	<10	<10	<10	<10	<20	<10
F3 (C16 to C34)	μg/g	50 - 250	240	1700	650	<50	650	390	89	<50	<50	<50	<50	<50	<50	410	56
F4 (C34 to C50)	μg/g	50 - 250	120	3300	2270	<50	2270	1390	189	<50	<50	<50	<50	115	<50	830	126
Reached Baseline at C50	unitless		NR	NV	NA	YES	NO	NO	NO	YES	YES	YES	YES	NO	YES	NO	NO
F4G (Gravimetric)	μg/g	250	120	3300	7680	-	7680	5620	790	-	-	-	-	610	-	3040	550

Notes:
2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (as amended April 15, 2011)
2019 Excess Soil Quality Standards (ESQS) - As identified in Appendix 1 of the Rules for Soil Management adopted by reference in O.Reg. 406/19 made under the Environmental Protection Act (December 4, 2019)

Bola	
Bold	
Bold	

- Exceeds 2011 Table 1 SCS - Exceeds Table 3.1 ESQS (I/C/C)

- Detection limit exceeds at least one of 2011 Table 1, 3 SCS or Table 3.1 ESQS (I/C/C)~

"-" - parameter not analyzed RDL - Reported detection limit NR - Not Relevant

NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

Parameters	Unit	RDL	2011 Table 1 SCS (R/P/I or I/C/C, Coarse)	Table 3.1 ESQS (I/C/C)	Sample Location	BH101-20	BH102-20	BH102-20	BH102-20	BH103-20	BH104-20	BH104-20	BH105-20	BH106-20	BH106-20	BH107-20	BH108-20
					Sample Name	BH101-20 SS2	BH102-20 SS1	BH1002-20 SS1	BH102-20 SS2B	BH103-20 SS2	BH104-20 SS2	BH104-20 SS3	BH105-20 SA1	BH106-20 SA1	BH106-20 SA2	BH107-20 SS1	BH108-20 SA1
					Lab Job #	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806	L2530806
					Laboratory ID	L2530806-1	L2530806-2	L2530806-3	L2530806-4	L2530806-5	L2530806-6	L2530806-7	L2530806-8	L2530806-9	L2530806-10	L2530806-11	L2530806-12
					Sampling Date	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020	17-Nov-2020
					Maximum Concentration			Field Duplicate									
Volatile Organic Compounds (VOCs)																	
Benzene	μg/g	0.0068	0.02	0.034	< 0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Ethylbenzene	μg/g	0.018	0.05	1.9	< 0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
Toluene	μg/g	0.08	0.2	7.8	< 0.08	<0.080	< 0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080
o-Xylene	μg/g	0.02	NR	NV	< 0.02	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	<0.020	< 0.020	<0.020
m+p-Xylene	μg/g	0.03	NR	NV	< 0.03	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Xylene Mixture	μg/g	0.05	0.05	3	< 0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050

Notes:

2011 Site Condition Standards (SCS) - As identified in 'Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act' (as amended April 15, 2011)

2019 Excess Soil Quality Standards (ESQS) - As identified in Appendix 1 of the Rules for Soil Management adopted by reference in O.Reg. 406/19 made under the Environmental Protection Act (December 4, 2019)

Bold

- Exceeds 2011 Table 1 SCS

Bold

- Exceeds Table 3.1 ESQS (I/C/C)

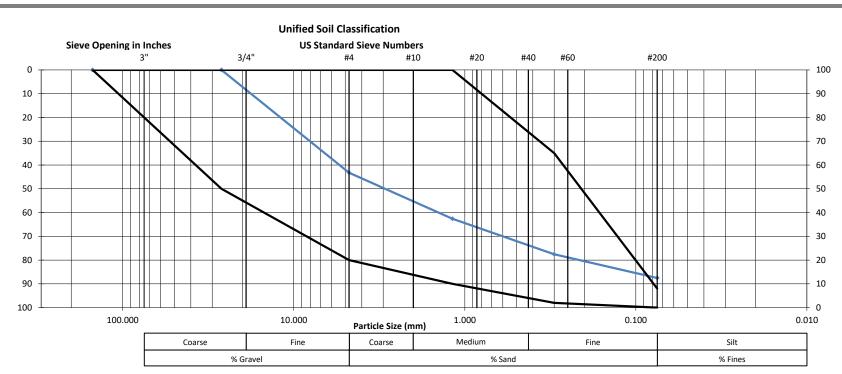
"-" - parameter not analyzed
RDL - Reported detection limit
NR - Not Relevant
NV- No Value
NA - Not Applicable
"<" - Less than the Reporting Detection Limit

MTE File No.: 47877-100 Page 1 of 1 August 2022

Particle Size Distribution Analysis Test Results

Project Name: Heart Lake Road & Countryside Drive EA

Date Sampled: Nov. 17, 2020


MTE File No.: 47877-100

Client: City of Brampton

Date Tested: Nov. 24, 2020

Table No.: 301

Project Location: Heart Lake Road & Countryside Drive, Brampton, ON

Black lines represent the acceptable ranges for % Passing by mass as per OPSS 1010 specifications for a Granular 'B' Type 1 Symbol Borehole ID Sample # Sample Depth

BH104-20 GS-1 300-510 mm

DescriptionSAND and GRAVEL, some Silt

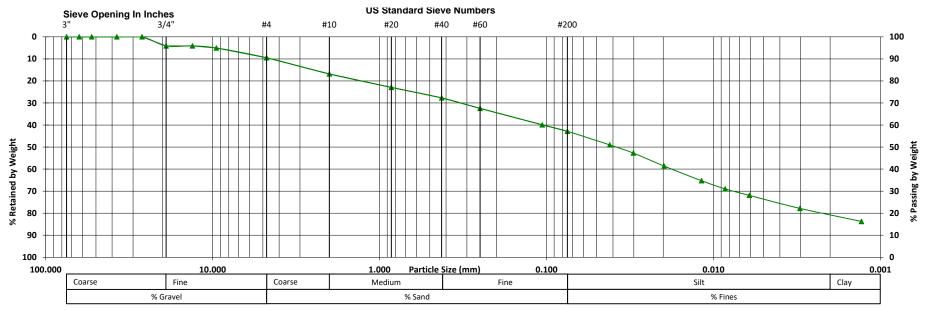
% Passing by Weight

tained by Weight

NOTES:

Particle Size Distribution Analysis Test Results

Project Name: Heart Lake Road & Countryside Drive EA


Date Sampled: Nov. 17, 2020 Date Tested: Dec. 1-4, 2020 MTE File No: 47877-100

Client: City of Brampton

Location: Heart Lake Road & Countryside Drive, Brampton, ON

Table No.: 302

Unified Soil Classification

 Symbol
 Borehole ID
 Sample #
 Sample Depth
 Description

 →
 BH107-20
 SS-2
 0.8-1.4 mbgs
 Sandy SILT TILL, some Clay and Gravel

NOTES:

Table 401
Pavement Design Parameters and Estimated EASLs
Heart Lake Road - Street Lights Intersection Option
City Brampton
47877-100

DESIGN YEAR	YEAR	AVERAGE ANNUAL DAILY TRAFFIC	ESTIMATED CUMULATIVE ANNUAL ESALs			
0	2,021	8,395	-			
1	2,022	8,646	31,000			
2	2,023	8,906	62,900			
3	2,024	9,173	95,800			
4	2,025	9,448	129,700			
5	2,026	9,732	164,600			
6	2,027	10,023	200,500			
7	2,028	10,324	237,500			
8	2,029	10,634	275,600			
9	2,030	10,953	314,900			
10	2,031	11,282	355,400			
11	2,032	11,620	397,100			
12	2,033	11,969	440,000			
13	2,034	12,328	484,200			
14	2,035	12,697	529,700			
15	2,036	13,078	576,600			
16	2,037	13,471 13,875	624,900			
17	2,038	674,700				
18	2,039	725,900				
19	2,040	14,720	778,700			
20	2,041	15,161 15,616	833,100			
21	2,042	889,100				
22	2,043	16,085	946,800			
23	2,044	16,567	1,006,200			
24	2,045	17,064	1,067,400			
25	2,046	17,576	1,130,400			
Roadway Cla		ı	Arterial			
Combined T	1.31					
Percent Truc		1.5%				
Traffic Grow	3.0%					
Days Per Ye	365					
Number of L	1					
Estimated R	20 MPa					
Initial Service	4.5					
Terminal Se	rviceability		2.5			
Reliability Le	evel		90%			
Overall Stan	0.47					

Table 402
Pavement Design Parameters and Estimated EASLs
Countryside Drive - Street Lights Intersection Option
City Brampton
47877-100

DESIGN

DESIGN YEAR	YEAR	AVERAGE ANNUAL DAILY TRAFFIC	CUMULATIVE ANNUAL ESALS
0	2,021	12,566	-
1	2,022	12,943	41,800
2	2,023	13,331	84,800
3	2,024	13,731	129,100
4	2,025	14,143	174,700
5	2,026	14,567	221,700
6	2,027	15,004	270,100
7	2,028	15,455	320,000
8	2,029	15,918	371,400
9	2,030	16,396	424,300
10	2,031	16,888	478,800
11	2,032	17,394	534,900
12	2,033	17,916	592,700
13	2,034	18,454	652,300
14	2,035	19,007	713,600
15	2,036	19,577	776,800
16	2,037	20,165	841,900
17	2,038	20,770	908,900
18	2,039	21,393	977,900
19	2,040	22,035	1,049,000
20	2,041	22,696	1,122,300
21	2,042	23,376	1,197,700
22 23	2,043	24,078	1,275,400
23	2,044 2,045	24,800	1,355,400 1,437,800
25	2,046	25,544 26,310	1,522,700
Roadway Cla	·	20,310	
-	ruck Factor (CTF) =		Arterial
Percent Truc	` ,		1.31
Traffic Grow			1.5%
			3.0%
-	ar For Truck Traffic =		365
	anes in one Direction =		2
Estimated R	esilient Modulus of Sul	ograde =	20 MPa
Initial Service	eability		4.5
Terminal Se	rviceability		2.5
Reliability Le	evel		90%
Overall Stan	dard Deviation		0.47

ESTIMATED

Appendix D

Laboratory Certificate of Analysis

L2530806 L2534350

MTE CONSULTANTS INC. (Kitchener)

ATTN: JEN LAMBKE

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Date Received: 18-NOV-20

Report Date: 26-NOV-20 12:19 (MT)

Version: FINAL REV. 2

Client Phone: 519-743-6500

Certificate of Analysis

Lab Work Order #: L2530806
Project P.O. #: NOT SUBMITTED

Job Reference: 47877-100 (HEART LAKE)

C of C Numbers: 17-825494

Legal Site Desc:

Emily Hansen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 2 of 20

17877-100 (HEART LAKE)		IOAL	- COID	Page 2 of 20 26-NOV-20 12:19 (MT)					
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-1 BH101-20 SS2									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Physical Tests									
Conductivity	1.36		0.0040	mS/cm	24-NOV-20	*0.57	1.4		
% Moisture	11.7		0.25	%	20-NOV-20	0.01			
Saturated Paste Extractables			0.20	"					
SAR	10.1		0.10	SAR	24-NOV-20	*2.4	12		
Calcium (Ca)	34.5		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	2.40		0.50	mg/L	24-NOV-20				
Sodium (Na)	228		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	9.7		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	67.7		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	0.73		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	5.0		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	21.8		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	9.9		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	34.6		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	10.3		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	22.2		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	35.6		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	44.4		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	20-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Difluorobenzene	113.8		50-140 50-140	%	20-NOV-20 20-NOV-20				
Hydrocarbons	113.0		50-140	%	20-NOV-20				
	-E O		E 0	110/0	20 NOV 20	0.5			
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	55 55		
F1-BTEX F3 (C10 C16)	<5.0		5.0	ug/g	20-NOV-20	25	55		
F2 (C10-C16) F3 (C16-C34)	<10 <50		10	ug/g	20-NOV-20	10	230		
F3 (C16-C34) F4 (C34-C50)	<50 <50		50 50	ug/g	20-NOV-20	240	1700		
Total Hydrocarbons (C6-C50)	<50 <72		50 72	ug/g	20-NOV-20 20-NOV-20	120	3300		
Chrom. to baseline at nC50	YES		12	ug/g No Unit	20-NOV-20 20-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	85.1		60-140	%	20-NOV-20 20-NOV-20				
•									
Surrogate: 3,4-Dichlorotoluene	105.3		60-140	%	20-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 3 of 20 26-NOV-20 12:19 (MT)

Sample Details 26-NOV-20 12								2:19 (MT)	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-2 BH102-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	10.6		0.25	%	20-NOV-20				
pH Motels	8.00		0.10	pH units	23-NOV-20				
Metals	4.0		4.0		0.4 NOV. 00	4.0	40		
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	3.7 49.6		1.0 1.0	ug/g	24-NOV-20 24-NOV-20	18	18		
Barium (Ba)	<0.50		0.50	ug/g	24-NOV-20 24-NOV-20	220	670		
Beryllium (Be)	6.9		5.0	ug/g	24-NOV-20 24-NOV-20	2.5 36	8		
Boron (B)				ug/g	24-NOV-20 24-NOV-20		120		
Cadmium (Cd)	<0.50 16.9		0.50	ug/g	24-NOV-20 24-NOV-20	1.2	1.9		
Chromium (Cr)	4.6		1.0	ug/g	24-NOV-20 24-NOV-20	70	160		
Cobalt (Co)	14.8		1.0 1.0	ug/g	24-NOV-20 24-NOV-20	21	80		
Copper (Cu) Lead (Pb)	25.7		1.0	ug/g	24-NOV-20 24-NOV-20	92 120	230 120		
Molybdenum (Mo)	<1.0		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	2	40		
Nickel (Ni)	9.5		1.0	-	24-NOV-20 24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	25.2		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	79.3		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds	70.0		0.0	ug/g	24 110 7 20	230	340		
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.02	9.5		
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	20-NOV-20	0.2	00		
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20				
Xylenes (Total)	< 0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	113.6		50-140	%	20-NOV-20				
Surrogate: 1,4-Difluorobenzene	110.2		50-140	%	20-NOV-20				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	55		
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	55		
F2 (C10-C16)	<50	DLM	50	ug/g	24-NOV-20	**10	230		
F3 (C16-C34)	650	DLM	250	ug/g	24-NOV-20	*240	1700		
F4 (C34-C50)	2270	DLM	250	ug/g	24-NOV-20	*120	3300		
F4G-SG (GHH-Silica)	7680		250	ug/g	23-NOV-20	*120	*3300		
Total Hydrocarbons (C6-C50)	2910		360	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	71.8		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	87.1		60-140	%	20-NOV-20				
L2530806-3 BH1002-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Physical Tests									

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....

Page 4 of 20 26-NOV-20 12:19 (MT)

4/8/7-100 (HEART LAKE) 26-NOV-20 12:19 (MT) Sample Details								
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits
L2530806-3 BH1002-20 SS1								
Sampled By: MATT D. on 17-NOV-20								
Matrix: SOIL						#1	#2	
Physical Tests			0.05	٥,	00 1101/ 00			
% Moisture Metals	8.36		0.25	%	20-NOV-20			
	4.0		4.0		04 NOV 00	4.0	40	
Antimony (Sb)	<1.0		1.0 1.0	ug/g	24-NOV-20	1.3	40	
Arsenic (As)	3.5 52.0		1.0	ug/g	24-NOV-20 24-NOV-20	18	18	
Barium (Ba) Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20 24-NOV-20	220 2.5	670 8	
Boron (B)	7.1		5.0	ug/g	24-NOV-20 24-NOV-20	36	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20 24-NOV-20		1.9	
Chromium (Cr)	18.9		1.0	ug/g	24-NOV-20 24-NOV-20	1.2 70	1.9	
Cobalt (Co)	4.6		1.0	ug/g	24-NOV-20 24-NOV-20	21	80	
Copper (Cu)	15.8		1.0	ug/g	24-NOV-20 24-NOV-20	92	230	
Lead (Pb)	26.3		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g ug/g	24-NOV-20	2	40	
Nickel (Ni)	10.3		1.0	ug/g ug/g	24-NOV-20	82	270	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	
Vanadium (V)	27.2		1.0	ug/g	24-NOV-20	86	86	
Zinc (Zn)	67.8		5.0	ug/g	24-NOV-20	290	340	
Volatile Organic Compounds	07.0		0.0	ug/g	24 110 7 20	230	340	
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.32	
Ethylbenzene	<0.018		0.0008	ug/g ug/g	20-NOV-20	0.02	9.5	
Toluene	<0.080		0.010	ug/g	20-NOV-20	0.03	68	
o-Xylene	<0.020		0.020	ug/g	20-NOV-20	0.2	00	
m+p-Xylenes	<0.030		0.030	ug/g ug/g	20-NOV-20			
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	26	
Surrogate: 4-Bromofluorobenzene	112.2		50-140	%	20-NOV-20			
Surrogate: 1,4-Difluorobenzene	106.7		50-140	%	20-NOV-20			
Hydrocarbons								
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	55	
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	55	
F2 (C10-C16)	<50	DLM	50	ug/g	24-NOV-20	**10	230	
F3 (C16-C34)	390	DLM	250	ug/g	24-NOV-20	*240	1700	
F4 (C34-C50)	1390	DLM	250	ug/g	24-NOV-20	*120	3300	
F4G-SG (GHH-Silica)	5620		250	ug/g	23-NOV-20	*120	*3300	
Total Hydrocarbons (C6-C50)	1780		360	ug/g	24-NOV-20			
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20			
Surrogate: 2-Bromobenzotrifluoride	85.5		60-140	%	24-NOV-20			
Surrogate: 3,4-Dichlorotoluene	93.5		60-140	%	20-NOV-20			
L2530806-4 BH102-20 SS2B								
Sampled By: MATT D. on 17-NOV-20								
Matrix: SOIL						#1	#2	
Physical Tests	_		_	_				
% Moisture	20.8		0.25	%	20-NOV-20			

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 5 of 20 26-NOV-20 12:19 (MT)

Sample Details								26-NOV-20 12:19 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-4 BH102-20 SS2B									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Metals									
	4.0		4.0	,	0.4.1101.4.00				
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	4.9		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	105		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	0.79		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	6.4		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	26.0		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	8.2		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	42.4		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	15.5		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	20.5		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	34.8		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	58.9		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	20-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	105.5		50-140	%	20-NOV-20				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	102.5		50-140	%	20-NOV-20				
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	55		
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	55		
F2 (C10-C16)	<10		10	ug/g	24-NOV-20	10	230		
F2-Naphth	<10		10	ug/g	24-NOV-20				
F3 (C16-C34)	89		50	ug/g	24-NOV-20	240	1700		
F3-PAH	89		50	ug/g	24-NOV-20	-			
F4 (C34-C50)	189		50	ug/g	24-NOV-20	*120	3300		
F4G-SG (GHH-Silica)	790		250	ug/g	23-NOV-20	*120	3300		
Total Hydrocarbons (C6-C50)	278		72	ug/g	24-NOV-20	-			
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	74.0		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	93.1		60-140	%	20-NOV-20				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	20-NOV-20	0.072	96		
Acenaphthylene	<0.050		0.050	ug/g	20-NOV-20	0.093	0.15		
Anthracene	<0.050		0.050	ug/g	20-NOV-20	0.16	0.67		
Benzo(a)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.36	0.96		
Benzo(a)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.3	0.3		
\ /1 /									

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 6 of 20

26-NOV-20 12:19 (MT)

Sample Details						26-NOV-20 12:19 (MT)			
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-4 BH102-20 SS2B									
Sampled By: MATT D. on 17-NOV-20							"0		
Matrix: SOIL						#1	#2	T I	
Polycyclic Aromatic Hydrocarbons									
Benzo(b)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.47	0.96		
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	20-NOV-20	0.68	9.6		
Benzo(k)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.48	0.96		
Chrysene	<0.050		0.050	ug/g	20-NOV-20	2.8	9.6		
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.1	0.1		
Fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.56	9.6		
Fluorene	<0.050		0.050	ug/g	20-NOV-20	0.12	62		
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.23	0.76		
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	20-NOV-20	0.59	76		
1-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	76		
2-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	76		
Naphthalene	<0.013		0.013	ug/g	20-NOV-20	0.09	9.6		
Phenanthrene	<0.046		0.046	ug/g	20-NOV-20	0.69	12		
Pyrene	<0.050		0.050	ug/g	20-NOV-20	1	96		
Surrogate: 2-Fluorobiphenyl	84.8		50-140	%	20-NOV-20				
Surrogate: p-Terphenyl d14	94.4		50-140	%	20-NOV-20				
L2530806-5 BH103-20 SS2									
Sampled By: MATT D. on 17-NOV-20									
' '						#1	#2		
Matrix: SOIL									
Physical Tests									
Conductivity	1.61		0.0040	mS/cm	24-NOV-20	*0.57	*1.4		
% Moisture	8.75		0.25	%	20-NOV-20				
Saturated Paste Extractables									
SAR	89.2	SAR:M	0.10	SAR	24-NOV-20	*2.4	*12		
Calcium (Ca)	0.94		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20				
Sodium (Na)	314		0.50	mg/L	24-NOV-20				
Metals					04.11017.05		, -		
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	5.1		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	77.4		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	6.1		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	16.0		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	9.3		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	32.6		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	7.3		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	16.8		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	25.7		1.0	ug/g	24-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 7 of 20
26-NOV-20 12:19 (MT)

47877-100 (HEART LAKE) Sample Details								26-NOV-20 12:19 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits
L2530806-5 BH103-20 SS2								
Sampled By: MATT D. on 17-NOV-20								
Matrix: SOIL						#1	#2	
Metals								
Wetais						06	0.0	
Zinc (Zn)	42.9		5.0	ua/a	24-NOV-20	86 290	86 340	
Volatile Organic Compounds	42.9		3.0	ug/g	24-INOV-20	290	340	
Benzene	40 0060		0.0069		20 NOV 20	0.00	0.22	
Ethylbenzene	<0.0068 <0.018		0.0068 0.018	ug/g	20-NOV-20 20-NOV-20	0.02 0.05	0.32 9.5	
Toluene	<0.016		0.018	ug/g ug/g	20-NOV-20 20-NOV-20	0.05	9.5 68	
o-Xylene	<0.080		0.080	-	20-NOV-20 20-NOV-20	0.2	00	
m+p-Xylenes	<0.020		0.020	ug/g ug/g	20-NOV-20 20-NOV-20			
Xylenes (Total)	<0.050		0.050	ug/g ug/g	20-NOV-20 20-NOV-20	0.05	26	
Surrogate: 4-Bromofluorobenzene	111.1		50-140	ug/g %	20-NOV-20 20-NOV-20	0.03	20	
Surrogate: 1,4-Diffuorobenzene	106.5		50-140	% %	20-NOV-20 20-NOV-20			
Hydrocarbons	100.0		55 140	/ /	20.100-20			
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	55	
F1-BTEX	<5.0 <5.0		5.0	ug/g ug/g	23-NOV-20	25 25	55 55	
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	230	
F3 (C16-C34)	<50		50	ug/g	20-NOV-20 20-NOV-20	240	1700	
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	
Total Hydrocarbons (C6-C50)	<72		72	ug/g ug/g	23-NOV-20	120	3300	
Chrom. to baseline at nC50	YES		12	No Unit	20-NOV-20			
Surrogate: 2-Bromobenzotrifluoride	76.2		60-140	%	20-NOV-20			
Surrogate: 3,4-Dichlorotoluene	98.9		60-140	%	20-NOV-20			
L2530806-6 BH104-20 SS2								
Sampled By: MATT D. on 17-NOV-20						#1	#2	
Matrix: SOIL								
Physical Tests								
Conductivity	1.37		0.0040	mS/cm	24-NOV-20	*0.57	1.4	
% Moisture	7.47		0.25	%	20-NOV-20			
Saturated Paste Extractables								
SAR	12.6		0.10	SAR	24-NOV-20	*2.4	*12	
Calcium (Ca)	14.4		0.50	mg/L	24-NOV-20			
Magnesium (Mg)	7.69		0.50	mg/L	24-NOV-20			
Sodium (Na)	239		0.50	mg/L	24-NOV-20			
Metals								
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	
Arsenic (As)	3.6		1.0	ug/g	24-NOV-20	18	18	
Barium (Ba)	47.6		1.0	ug/g	24-NOV-20	220	670	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	
Chromium (Cr)	9.9		1.0	ug/g	24-NOV-20	70	160	
Cobalt (Co)	4.9		1.0	ug/g	24-NOV-20	21	80	
Copper (Cu)	29.5		1.0	ug/g	24-NOV-20	92	230	
Lead (Pb)	8.4		1.0	ug/g	24-NOV-20	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	
Nickel (Ni)	9.5		1.0	ug/g	24-NOV-20	82	270	

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 8 of 20
26-NOV-20 12:19 (MT)

7877-100 (HEART LAKE) Sample Details						26-NOV-20 12:19 (MT			
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-6 BH104-20 SS2									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Metals									
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g ug/g	24-NOV-20 24-NOV-20	0.5	5.5 40		
	<0.20		0.20	-	24-NOV-20 24-NOV-20				
Thallium (TI) Uranium (U)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	1 2.5	3.3		
` '				ug/g			33		
Vanadium (V) Zinc (Zn)	18.5 35.1		1.0 5.0	ug/g	24-NOV-20 24-NOV-20	86 290	86		
Volatile Organic Compounds	33.1		3.0	ug/g	24-NOV-20	290	340		
	0.0000		0.0000		20 NOV 20	0.00	0.00		
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	20-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20	0.05	22		
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	120.7		50-140	%	20-NOV-20				
Surrogate: 1,4-Difluorobenzene	119.6		50-140	%	20-NOV-20				
Hydrocarbons	5.0			,	00 1101/ 00				
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	55		
F1-BTEX	<5.0		5.0	ug/g	23-NOV-20	25	55		
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	230		
F2-Naphth	<10		10	ug/g	23-NOV-20				
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700		
F3-PAH	<50		50	ug/g	23-NOV-20				
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20				
Chrom. to baseline at nC50	YES		00.440	No Unit	20-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	81.3		60-140	%	20-NOV-20				
Surrogate: 3,4-Dichlorotoluene	79.1		60-140	%	20-NOV-20				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	20-NOV-20	0.072	96		
Acenaphthylene	<0.050		0.050	ug/g	20-NOV-20	0.093	0.15		
Anthracene	<0.050		0.050	ug/g	20-NOV-20	0.16	0.67		
Benzo(a)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.36	0.96		
Benzo(a)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.3	0.3		
Benzo(b)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.47	0.96		
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	20-NOV-20	0.68	9.6		
Benzo(k)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.48	0.96		
Chrysene	<0.050		0.050	ug/g	20-NOV-20	2.8	9.6		
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.1	0.1		
Fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.56	9.6		
Fluorene	<0.050		0.050	ug/g	20-NOV-20	0.12	62		
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.23	0.76		
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	23-NOV-20	0.59	76		
1-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	76		
2-Methylnaphthalene	< 0.030		0.030	ug/g	20-NOV-20	0.59	76		
Naphthalene	<0.013		0.013	ug/g	20-NOV-20	0.09	9.6		
Phenanthrene	<0.046		0.046	ug/g	20-NOV-20	0.69	12		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 9 of 20
26-NOV-20 12:19 (MT)

47877-100 (HEART LAKE) Sample Details								26-NOV-20 1	2:19 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-6 BH104-20 SS2									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Polyovalia Aramatia Hydrogarhana									
Polycyclic Aromatic Hydrocarbons	0.050		0.050		00 NOV 00		00		
Pyrene	<0.050		0.050	ug/g	20-NOV-20	1	96		
Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl d14	81.5 88.7		50-140 50-140	% %	20-NOV-20 20-NOV-20				
	86.7		30-140	70	20-INOV-20				
L2530806-7 BH104-20 SS3									
Sampled By: MATT D. on 17-NOV-20						#1	#2		
Matrix: SOIL						#1 	#2		
Physical Tests									
Conductivity	1.87		0.0040	mS/cm	24-NOV-20	*0.57	*1.4		
% Moisture	17.5		0.25	%	20-NOV-20				
pH	7.60		0.10	pH units	23-NOV-20				
Saturated Paste Extractables				'					
SAR	40.5		0.10	SAR	24-NOV-20	*2.4	*12		
Calcium (Ca)	4.11		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	0.98		0.50	mg/L	24-NOV-20				
Sodium (Na)	352		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	2.1		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	20.3		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	6.8		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	3.5		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	19.7		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	4.8		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	6.9		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	14.4		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	22.7		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds	0.0000		0.0000		40 NOV 05	0.00			
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	68		
o-Xylene m+p-Xylenes	<0.020 <0.030		0.020 0.030	ug/g	19-NOV-20 19-NOV-20				
m+p-xylenes Xylenes (Total)	<0.030		0.030	ug/g ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	116.8		50-140	ug/g %	19-NOV-20	0.03	20		
Surrogate: 1,4-Difluorobenzene	113.0		50-140	% %	19-NOV-20				
Hydrocarbons				"					
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	55		
1 1 (00 0 10)	10.0	1	J.5.5	<u> 49/9</u>	10 110 1 20	20	1 55		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 10 of 20
26-NOV-20 12:19 (MT)

7877-100 (HEART LAKE)	ANALI	IICAL	GUID		KEPON	. I	2	Page 10 6-NOV-20 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits	
L2530806-7 BH104-20 SS3									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Hydrocarbons									
F1-BTEX	<5.0		5.0	ug/g	23-NOV-20	25	55		
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	230		
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700		
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20	120	0000		
Chrom. to baseline at nC50	YES			No Unit	20-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	63.8		60-140	%	20-NOV-20				
Surrogate: 3,4-Dichlorotoluene	97.7		60-140	%	19-NOV-20				
L2530806-8 BH105-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Physical Tests									
% Moisture	18.6		0.25	%	20-NOV-20				
Metals	10.0		0.20	/0	20 110 7 20				
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	5.2		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	115		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	0.95		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	6.6		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	28.6		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	9.1		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	30.2		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	12.1		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	25.2		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	1.1		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	39.8		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	93.2		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	19-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	19-NOV-20	0.05	60		
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	118.3		50-140	%	19-NOV-20				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	113.9		50-140	%	19-NOV-20				
•	-5.0		F 0	/	10 NOV 20	0.5			
F1 (C6-C10) F1-BTEX	<5.0 <5.0		5.0	ug/g	19-NOV-20	25 25	55 55		
r I-DIEA	<5.0		5.0	ug/g	23-NOV-20	25	55		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 11 of 20
26-NOV-20 12:19 (MT)

47877-100 (HEART LAKE)	ANALII	IICAL (GUID	CLINE	KEFOR	\ I	2	Page 11 of 20 26-NOV-20 12:19 (MT
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			ne Limits
L2530806-8 BH105-20 SA1								
Sampled By: MATT D. on 17-NOV-20								
Matrix: SOIL						#1	#2	
Hydrocarbons								
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	230	
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20	120	0000	
Chrom. to baseline at nC50	YES		. –	No Unit	20-NOV-20			
Surrogate: 2-Bromobenzotrifluoride	76.9		60-140	%	20-NOV-20			
Surrogate: 3,4-Dichlorotoluene Organochlorine Pesticides	95.2		60-140	%	19-NOV-20			
Aldrin	<0.020		0.020	ug/g	25-NOV-20	0.05	0.088	
gamma-hexachlorocyclohexane	<0.010		0.020	ug/g ug/g	25-NOV-20	0.03	0.056	
a-chlordane	<0.020		0.010	ug/g ug/g	25-NOV-20	0.01	0.000	
Chlordane (Total)	<0.028		0.028	ug/g	25-NOV-20	0.05	0.05	
g-chlordane	<0.020		0.020	ug/g	25-NOV-20	0.00	0.00	
op-DDD	<0.020		0.020	ug/g	25-NOV-20			
pp-DDD	<0.020		0.020	ug/g	25-NOV-20			
Total DDD	<0.028		0.028	ug/g	25-NOV-20	0.05	4.6	
o,p-DDE	<0.020		0.020	ug/g	25-NOV-20			
pp-DDE	<0.020		0.020	ug/g	25-NOV-20			
Total DDE	<0.028		0.028	ug/g	25-NOV-20	0.05	0.52	
op-DDT	<0.020		0.020	ug/g	25-NOV-20			
pp-DDT	<0.020		0.020	ug/g	25-NOV-20			
Total DDT	<0.028		0.028	ug/g	25-NOV-20	1.4	1.4	
Dieldrin	<0.020		0.020	ug/g	25-NOV-20	0.05	0.088	
Endosulfan I	<0.020		0.020	ug/g	25-NOV-20			
Endosulfan II	<0.020		0.020	ug/g	25-NOV-20			
Endosulfan (Total)	<0.028		0.028	ug/g	25-NOV-20	0.04	0.3	
Endrin	<0.020		0.020	ug/g	25-NOV-20	0.04	0.04	
Heptachlor	<0.020		0.020	ug/g	25-NOV-20	0.05	0.19	
Heptachlor Epoxide	<0.020		0.020	ug/g	25-NOV-20	0.05	0.05	
Hexachlorobenzene	<0.010		0.010	ug/g	25-NOV-20	0.01	0.66	
Hexachlorobutadiene	<0.010		0.010	ug/g	25-NOV-20	0.01	0.031	
Hexachloroethane	<0.010		0.010	ug/g	25-NOV-20	0.01	0.21	
Methoxychlor	<0.020		0.020	ug/g	25-NOV-20	0.05	1.6	
Surrogate: 2-Fluorobiphenyl Surrogate: d14-Terphenyl	68.8 61.5	1	50-140 50-140	% %	25-NOV-20 25-NOV-20			
L2530806-9 BH106-20 SA1	01.5		30-140	70	251107-20			
Sampled By: MATT D. on 17-NOV-20								
Matrix: SOIL						#1	#2	
Physical Tests								
Conductivity	0.473		0.0040	mS/cm	24-NOV-20	0.57	1.4	
% Moisture	12.8		0.25	%	20-NOV-20			
Saturated Paste Extractables								
SAR	6.54		0.10	SAR	24-NOV-20	*2.4	12	
Calcium (Ca)	13.7		0.50	mg/L	24-NOV-20		·-	
Magnesium (Mg)	0.58		0.50		24-NOV-20			
Magnesium (Mg)	0.58		0.50	mg/L	24-NOV-20			

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 12 of 20
26-NOV-20 12:19 (MT)

47877-100 (HEART LAKE)								26-NOV-20 1	2:19 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-9 BH106-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Saturated Paste Extractables									
Sodium (Na)	90.9		0.50	mg/L	24-NOV-20				
Metals	30.3		0.50	IIIg/L	24-1101-20				
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	3.5		1.0	ug/g	24-NOV-20	1.3	18		
Barium (Ba)	53.9		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	5.6		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	15.9		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	6.5		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	31.7		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	16.4		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	13.4		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	21.9		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	89.6		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	19-NOV-20	¥			
m+p-Xylenes	<0.030		0.030	ug/g	19-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	117.3		50-140	%	19-NOV-20				
Surrogate: 1,4-Difluorobenzene	112.3		50-140	%	19-NOV-20				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	55		
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	55		
F2 (C10-C16)	<10		10	ug/g	24-NOV-20	10	230		
F3 (C16-C34)	<50		50	ug/g	24-NOV-20	240	1700		
F4 (C34-C50)	115		50	ug/g	24-NOV-20	120	3300		
F4G-SG (GHH-Silica)	610		250	ug/g	23-NOV-20	*120	3300		
Total Hydrocarbons (C6-C50)	115		72	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	81.7		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	97.5		60-140	%	19-NOV-20				
Organochlorine Pesticides									
Aldrin	<0.020		0.020	ug/g	25-NOV-20	0.05	0.088		
gamma-hexachlorocyclohexane	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	0.056		
a-chlordane	<0.020		0.020	ug/g	25-NOV-20				
Chlordane (Total)	<0.028		0.028	ug/g	25-NOV-20	0.05	0.05		
g-chlordane	<0.020		0.020	ug/g	25-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 13 of 20 26-NOV-20 12:19 (MT)

4/8/7-100 (HEART LAKE) 26-NOV-20 12:19 (MT) Sample Details									
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L2530806-9 BH106-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		I
Organochlorine Pesticides									
op-DDD	<0.020		0.020	ug/g	25-NOV-20				
pp-DDD	<0.020		0.020	ug/g	25-NOV-20				
Total DDD	<0.028		0.028	ug/g	25-NOV-20	0.05	4.6		
o,p-DDE	<0.020		0.020	ug/g	25-NOV-20				
pp-DDE	<0.020		0.020	ug/g	25-NOV-20				
Total DDE	<0.028		0.028	ug/g	25-NOV-20	0.05	0.52		
op-DDT	<0.020		0.020	ug/g	25-NOV-20				
pp-DDT	<0.020		0.020	ug/g	25-NOV-20				
Total DDT	<0.028		0.028	ug/g	25-NOV-20	1.4	1.4		
Dieldrin	<0.020		0.020	ug/g	25-NOV-20	0.05	0.088		
Endosulfan I	<0.020		0.020	ug/g	25-NOV-20				
Endosulfan II	<0.020		0.020	ug/g	25-NOV-20				
Endosulfan (Total)	<0.028		0.028	ug/g	25-NOV-20	0.04	0.3		
Endrin	<0.020		0.020	ug/g	25-NOV-20	0.04	0.04		
Heptachlor	<0.020		0.020	ug/g	25-NOV-20	0.05	0.19		
Heptachlor Epoxide	<0.020		0.020	ug/g	25-NOV-20	0.05	0.05		
Hexachlorobenzene	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	0.66		
Hexachlorobutadiene	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	**0.031		
Hexachloroethane	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	0.21		
Methoxychlor	<0.020		0.020	ug/g	25-NOV-20	0.05	1.6		
Surrogate: 2-Fluorobiphenyl	67.8		50-140	%	25-NOV-20				
Surrogate: d14-Terphenyl	58.3		50-140	%	25-NOV-20				
L2530806-10 BH106-20 SA2									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Physical Tests									
Conductivity	0.985		0.0040	mS/cm	24-NOV-20	*0.57	1.4		
% Moisture	20.6		0.25	%	20-NOV-20				
рН	7.34		0.10	pH units	23-NOV-20				
Saturated Paste Extractables									
SAR	24.3	SAR:M	0.10	SAR	24-NOV-20	*2.4	*12		
Calcium (Ca)	4.48		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20				
Sodium (Na)	187		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	2.0		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	15.8		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	7.7		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	3.1		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	13.1		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	3.8		1.0	ug/g	24-NOV-20	120	120		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 14 of 20

47877-100 (HEART LAKE)	ANALII	IICAL	GUID	LLIIVL	KEPOK	. •	2	Page 14 of 20 6-NOV-20 12:19 (MT
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			ne Limits
L2530806-10 BH106-20 SA2								
Sampled By: MATT D. on 17-NOV-20								
Matrix: SOIL						#1	#2	
Metals								
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	
Nickel (Ni)	6.1		1.0	ug/g	24-NOV-20	82	270	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	
Vanadium (V)	16.5		1.0	ug/g	24-NOV-20	86	86	
Zinc (Zn)	19.3		5.0	ug/g	24-NOV-20	290	340	
Volatile Organic Compounds								
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.32	
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	9.5	
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	68	
o-Xylene	<0.020		0.020	ug/g	19-NOV-20			
m+p-Xylenes	< 0.030		0.030	ug/g	19-NOV-20			
Xylenes (Total)	< 0.050		0.050	ug/g	20-NOV-20	0.05	26	
Surrogate: 4-Bromofluorobenzene	112.3		50-140	%	19-NOV-20			
Surrogate: 1,4-Difluorobenzene	107.9		50-140	%	19-NOV-20			
Hydrocarbons								
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	55	
F1-BTEX	<5.0		5.0	ug/g	23-NOV-20	25	55	
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	230	
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20			
Chrom. to baseline at nC50	YES			No Unit	20-NOV-20			
Surrogate: 2-Bromobenzotrifluoride	72.7		60-140	%	20-NOV-20			
Surrogate: 3,4-Dichlorotoluene	83.1		60-140	%	19-NOV-20			
L2530806-11 BH107-20 SS1								
Sampled By: MATT D. on 17-NOV-20						ш.4	40	
Matrix: SOIL						#1	#2	
Physical Tests								
Conductivity	0.127		0.0040	mS/cm	24-NOV-20	0.57	1.4	
% Moisture	9.13		0.25	%	20-NOV-20			
Saturated Paste Extractables								
SAR	1.86	SAR:M	0.10	SAR	24-NOV-20	2.4	12	
Calcium (Ca)	5.85		0.50	mg/L	24-NOV-20			
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20			
Sodium (Na)	16.3		0.50	mg/L	24-NOV-20			
Metals								
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	
Arsenic (As)	2.6		1.0	ug/g	24-NOV-20	18	18	
Barium (Ba)	32.4		1.0	ug/g	24-NOV-20	220	670	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 15 of 20
26-NOV-20 12:19 (MT)

47877-100 (HEART LAKE) 26-NOV-20 12:19 (MT)									
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-11 BH107-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Metals									
	47.4		4.0		0.4 NOV 00	70	400		
Chromium (Cr)	17.4		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	3.7		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	42.8		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	25.7		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	8.7		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	20.9		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	66.0		5.0	ug/g	24-NOV-20	290	340		
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.32		
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	9.5		
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	68		
o-Xylene	<0.020		0.020	ug/g	19-NOV-20				
m+p-Xylenes	< 0.030		0.030	ug/g	19-NOV-20				
Xylenes (Total)	< 0.050		0.050	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	137.4		50-140	%	19-NOV-20				
Surrogate: 1,4-Difluorobenzene	135.1		50-140	%	19-NOV-20				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	55		
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	55		
F2 (C10-C16)	<20	DLM	20	ug/g	24-NOV-20	**10	230		
F2-Naphth	<20		20	ug/g	24-NOV-20				
F3 (C16-C34)	410	DLM	100	ug/g	24-NOV-20	*240	1700		
F3-PAH	410		100	ug/g	24-NOV-20				
F4 (C34-C50)	830	DLM	100	ug/g	24-NOV-20	*120	3300		
F4G-SG (GHH-Silica)	3040		250	ug/g	23-NOV-20	*120	3300		
Total Hydrocarbons (C6-C50)	1240		140	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	81.0		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	88.8		60-140	%	19-NOV-20				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	< 0.050		0.050	ug/g	24-NOV-20	0.072	96		
Acenaphthylene	<0.050		0.050	ug/g	24-NOV-20	0.093	0.15		
Anthracene	< 0.050		0.050	ug/g	24-NOV-20	0.16	0.67		
Benzo(a)anthracene	< 0.050		0.050	ug/g	24-NOV-20	0.36	0.96		
Benzo(a)pyrene	< 0.050		0.050	ug/g	24-NOV-20	0.3	0.3		
Benzo(b)fluoranthene	<0.050		0.050	ug/g	24-NOV-20	0.47	0.96		
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	24-NOV-20	0.68	9.6		
Benzo(k)fluoranthene	<0.050		0.050	ug/g	24-NOV-20	0.48	0.96		
Chrysene	0.055		0.050	ug/g	24-NOV-20	2.8	9.6		
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	24-NOV-20	0.1	0.1		
Fluoranthene	<0.050		0.050	ug/g	24-NOV-20	0.56	9.6		
oranarono	30.000	1	0.000	∽9′9	2 0	0.00	1 0.0	1	l

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 16 of 20
26-NOV-20 12:19 (MT)

7877-100 (HEART LAKE)	ANALII	ICAL	שוטט	CLINE	KEPOK	. I	2	Page 16 of 26-NOV-20 12:19 (
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits			
L2530806-11 BH107-20 SS1										
Sampled By: MATT D. on 17-NOV-20										
Matrix: SOIL						#1	#2			
Polycyclic Aromatic Hydrocarbons										
Fluorene	<0.050		0.050	ug/g	24-NOV-20	0.12	62			
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	24-NOV-20	0.23	0.76			
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	24-NOV-20	0.59	76			
1-Methylnaphthalene	<0.030		0.030	ug/g	24-NOV-20	0.59	76			
2-Methylnaphthalene	<0.030		0.030	ug/g	24-NOV-20	0.59	76			
Naphthalene	<0.013		0.013	ug/g	24-NOV-20	0.09	9.6			
Phenanthrene	<0.046		0.046	ug/g	24-NOV-20	0.69	12			
Pyrene	<0.050		0.050	ug/g	24-NOV-20	1	96			
Surrogate: 2-Fluorobiphenyl	78.4		50-140	%	24-NOV-20	•				
Surrogate: p-Terphenyl d14	92.8		50-140	%	24-NOV-20					
			00 110	,,,						
L2530806-12 BH108-20 SA1 Sampled By: MATT D. on 17-NOV-20										
Matrix: SOIL						#1	#2			
Physical Tests										
Conductivity	0.363		0.0040	mS/cm	24-NOV-20	0.57	1.4			
% Moisture Saturated Paste Extractables	14.8		0.25	%	20-NOV-20					
	40.0	0454	0.40	0.45	0.4 NOV. 00		***			
SAR	13.9	SAR:M	0.10	SAR	24-NOV-20	*2.4	*12			
Calcium (Ca)	2.01		0.50	mg/L	24-NOV-20					
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20					
Sodium (Na) Metals	71.8		0.50	mg/L	24-NOV-20					
	4.0		4.0		04 NOV 00	4.0	40			
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40			
Arsenic (As)	2.4		1.0	ug/g	24-NOV-20	18	18			
Barium (Ba)	24.8		1.0	ug/g	24-NOV-20	220	670			
Beryllium (Be)	<0.50 <5.0		0.50	ug/g	24-NOV-20	2.5	8			
Boron (B)	<0.50		5.0	ug/g	24-NOV-20	36	120			
Cadmium (Cd)			0.50	ug/g	24-NOV-20	1.2	1.9			
Chromium (Cr)	10.6		1.0	ug/g	24-NOV-20	70	160			
Cobalt (Co)	4.0		1.0	ug/g	24-NOV-20	21	80			
Copper (Cu)	15.9		1.0	ug/g	24-NOV-20	92	230			
Lead (Pb)	12.6		1.0	ug/g	24-NOV-20	120	120			
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40			
Nickel (Ni)	8.4		1.0 1.0	ug/g	24-NOV-20	82 1.5	270			
Selenium (Se)	<1.0			ug/g	24-NOV-20	1.5	5.5			
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40			
Thallium (TI)	<0.50 <1.0		0.50	ug/g	24-NOV-20	1	3.3			
Uranium (U)	15.0		1.0	ug/g	24-NOV-20	2.5	33			
Vanadium (V) Zinc (Zn)	48.8		1.0 5.0	ug/g	24-NOV-20 24-NOV-20	86 200	86			
Volatile Organic Compounds	40.0		3.0	ug/g	24-INOV-20	290	340			
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.32			
Ethylbenzene	<0.018		0.000	ug/g	19-NOV-20	0.02	9.5			
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.03	68			
	10.000		0.500	~ 2 / 2	.55.20	V.L				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 17 of 20
26-NOV-20 12:19 (MT)

'877-100 (HEART LAKE)	ANALI	IICAL	שוטט	CLINE	KEPUK	\ I	2	Page 17 26-NOV-20 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelii	ne Limits	
.2530806-12 BH108-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Volatile Organic Compounds o-Xylene	<0.020		0.020	/	19-NOV-20				
m+p-Xylenes	<0.020		0.020	ug/g	19-NOV-20				
Xylenes (Total)	<0.050		0.030	ug/g	20-NOV-20	0.05	26		
Surrogate: 4-Bromofluorobenzene	110.1		50-140	ug/g %	19-NOV-20	0.03	20		
Surrogate: 1,4-Difluorobenzene	106.8		50-140	%	19-NOV-20				
Hydrocarbons	100.0		30 140	/0	13 140 7 20				
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	55		
F1-BTEX	<5.0		5.0	ug/g ug/g	24-NOV-20	25	55		
F2 (C10-C16)	<10		10	ug/g	24-NOV-20	10	230		
F3 (C16-C34)	56		50	ug/g	24-NOV-20	240	1700		
F4 (C34-C50)	126		50	ug/g ug/g	24-NOV-20	*120	3300		
F4G-SG (GHH-Silica)	550		250	ug/g ug/g	23-NOV-20	*120	3300		
Total Hydrocarbons (C6-C50)	181		72	ug/g ug/g	24-NOV-20	120	3300		
Chrom. to baseline at nC50	NO		12	No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	66.5		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	89.2		60-140	%	19-NOV-20				
.2530806-13 BH108-20 SA2									
Sampled By: MATT D. on 17-NOV-20									
·						#1	#2		
Matrix: SOIL									
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40		
Arsenic (As)	6.1		1.0	ug/g	24-NOV-20	18	18		
Barium (Ba)	122		1.0	ug/g	24-NOV-20	220	670		
Beryllium (Be)	0.62		0.50	ug/g	24-NOV-20	2.5	8		
Boron (B)	6.8		5.0	ug/g	24-NOV-20	36	120		
Cadmium (Cd)	1.07		0.50	ug/g	24-NOV-20	1.2	1.9		
Chromium (Cr)	15.9		1.0	ug/g	24-NOV-20	70	160		
Cobalt (Co)	4.7		1.0	ug/g	24-NOV-20	21	80		
Copper (Cu)	35.7		1.0	ug/g	24-NOV-20	92	230		
Lead (Pb)	15.4		1.0	ug/g	24-NOV-20	120	120		
Molybdenum (Mo)	1.2		1.0	ug/g	24-NOV-20	2	40		
Nickel (Ni)	15.2		1.0	ug/g	24-NOV-20	82	270		
Selenium (Se)	1.6		1.0	ug/g	24-NOV-20	*1.5	5.5		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3		
Uranium (U)	1.7		1.0	ug/g	24-NOV-20	2.5	33		
Vanadium (V)	26.0		1.0	ug/g	24-NOV-20	86	86		
Zinc (Zn)	65.5		5.0	ug/g	24-NOV-20	290	340		
	1	1	1	1	I		I		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Sample Parameter Qualifier key listed:

Qualifier Description SAR:M Reported SAR represents a maximum value. Actual SAR may be lower if both Ca and Mg were detectable. DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Methods Listed (if applicable):

metrious Listea (ii appir	oubicj.		
ALS Test Code	Matrix	Test Description	Method Reference***
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CHLORDANE-T-CALC-Soil Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

DDD-DDE-DDT-CALC-WT Soil DDD, DDE, DDT sums **CALCULATION**

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

EC-WT Soil Conductivity (EC) **MOEE E3138**

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

ENDOSULFAN-T-CALC-Endosulfan Total sums **CALCULATION**

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

F4G SG-O.Reg 153/04 (July

MOE DECPH-E3398/CCME TIER 1

2011)
F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil

ABN-Calculated Parameters

SW846 8270

MOISTURE-WT PAH-511-WT

Soil Soil

PAH-O.Reg 153/04 (July 2011)

CCME PHC in Soil - Tier 1 (mod)

% Moisture SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking techniqueis used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PEST-OC-511-WT

Soil

OC Pesticides-O.Reg 153/04

SW846 8270 (511)

(July 2011)
Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT

Soil

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

Reference Information

SAR-R511-WT

Soil

SAR-O.Reg 153/04 (July 2011)

SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

17-825494

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2530806 Report Date: 26-NOV-20 Page 1 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5	290437							
WG3447892-4 Benzene	DUP	WG3447892-3 < 0.0068	<0.0068	RPD-NA	ug/g	N/A	40	19-NOV-20
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	19-NOV-20
m+p-Xylenes		<0.030	< 0.030	RPD-NA	ug/g	N/A	40	19-NOV-20
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-NOV-20
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	19-NOV-20
WG3447892-2 Benzene	LCS		110.8		%		70-130	19-NOV-20
Ethylbenzene			102.8		%		70-130	19-NOV-20
m+p-Xylenes			103.9		%		70-130	19-NOV-20
o-Xylene			105.9		%		70-130	19-NOV-20
Toluene			107.6		%		70-130	19-NOV-20
WG3447892-1 Benzene	МВ		<0.0068		ug/g		0.0068	19-NOV-20
Ethylbenzene			<0.018		ug/g		0.018	19-NOV-20
m+p-Xylenes			<0.030		ug/g		0.03	19-NOV-20
o-Xylene			<0.020		ug/g		0.02	19-NOV-20
Toluene			<0.080		ug/g		0.08	19-NOV-20
Surrogate: 1,4-I	Difluorobenzene		121.1		%		50-140	19-NOV-20
Surrogate: 4-Br	omofluorobenzene		126.4		%		50-140	19-NOV-20
WG3447892-5	MS	WG3447892-3						
Benzene			103.8		%		60-140	19-NOV-20
Ethylbenzene			94.9		%		60-140	19-NOV-20
m+p-Xylenes			96.7		%		60-140	19-NOV-20
o-Xylene			98.2		%		60-140	19-NOV-20
Toluene			100.3		%		60-140	19-NOV-20
Batch R5	290765							
WG3447145-4 Benzene	DUP	WG3447145-3 < 0.0068	<0.0068	RPD-NA	ug/g	N/A	40	20-NOV-20
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	20-NOV-20
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	20-NOV-20 20-NOV-20
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20 20-NOV-20
Toluene		<0.020	<0.080	RPD-NA	ug/g	N/A	40	20-NOV-20 20-NOV-20
WG3447145-2	LCS	10.000	~0.000	NED-INA	~g/g	IN/A	40	20-INO V-20
Benzene	LUG		108.6		%		70-130	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 2 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT		Soil							
Batch R5 WG3447145-2 Ethylbenzene	290765 LCS			86.0		%		70-130	20-NOV-20
m+p-Xylenes				90.6		%		70-130	20-NOV-20
o-Xylene				87.0		%		70-130	20-NOV-20
Toluene				91.4		%		70-130	20-NOV-20
WG3447145-1 Benzene	MB			<0.0068		ug/g		0.0068	20-NOV-20
Ethylbenzene				<0.018		ug/g		0.018	20-NOV-20
m+p-Xylenes				<0.030		ug/g		0.03	20-NOV-20
o-Xylene				<0.020		ug/g		0.02	20-NOV-20
Toluene				<0.080		ug/g		80.0	20-NOV-20
Surrogate: 1,4-l	Difluorob	enzene		113.4		%		50-140	20-NOV-20
Surrogate: 4-Br	omofluor	obenzene		97.1		%		50-140	20-NOV-20
WG3447145-5 Benzene	MS		WG3447145-3	110.8		%		60-140	20-NOV-20
Ethylbenzene				87.6		%		60-140	20-NOV-20
m+p-Xylenes				91.7		%		60-140	20-NOV-20
o-Xylene				82.3		%		60-140	20-NOV-20
Toluene				93.7		%		60-140	20-NOV-20
EC-WT		Soil							
Batch R5	296958								
WG3450328-4 Conductivity	DUP		WG3450328-3 0.242	0.228		mS/cm	6.0	20	24-NOV-20
WG3450328-2 Conductivity	IRM		WT SAR4	89.1		%		70-130	24-NOV-20
WG3450689-1 Conductivity	LCS			99.1		%		90-110	24-NOV-20
WG3450328-1 Conductivity	МВ			<0.0040		mS/cm		0.004	24-NOV-20
F1-HS-511-WT		Soil							
	290437								
WG3447892-4 F1 (C6-C10)	DUP		WG3447892-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	19-NOV-20
WG3447892-2 F1 (C6-C10)	LCS			88.6		%		80-120	19-NOV-20
WG3447892-1	MB							-	-

Workorder: L2530806 Report Date: 26-NOV-20 Page 3 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Soil							
Batch R	5290437							
WG3447892-1 F1 (C6-C10)	MB		<5.0		ug/g		5	19-NOV-20
Surrogate: 3,4-	Dichlorotoluene		108.0		%		60-140	19-NOV-20
WG3447892-6 F1 (C6-C10)	MS	L2531070-2	86.9		%		60-140	19-NOV-20
Batch R	5290765							
WG3447145-4 F1 (C6-C10)	DUP	WG3447145 -<5.0	< 5.0	RPD-NA	ug/g	N/A	30	20-NOV-20
WG3447145-2 F1 (C6-C10)	LCS		99.4		%		80-120	20-NOV-20
WG3447145-1 F1 (C6-C10)	МВ		<5.0		ug/g		5	20-NOV-20
Surrogate: 3,4-	Dichlorotoluene		116.2		%		60-140	20-NOV-20
WG3447145-6	MS	L2530464-5	07.5		0/		00.440	
F1 (C6-C10)			97.5		%		60-140	20-NOV-20
F2-F4-511-WT	Soil							
	5291582		_					
WG3447829-3 F2 (C10-C16)	DUP	WG3447829 - <10	·5 <10	RPD-NA	ug/g	N/A	30	20-NOV-20
F3 (C16-C34)		<50	<50	RPD-NA	ug/g	N/A	30	20-NOV-20
F4 (C34-C50)		<50	<50	RPD-NA	ug/g	N/A	30	20-NOV-20
WG3447829-2 F2 (C10-C16)	LCS		103.9		%		80-120	20-NOV-20
F3 (C16-C34)			104.3		%		80-120	20-NOV-20
F4 (C34-C50)			104.8		%		80-120	20-NOV-20
WG3447829-1 F2 (C10-C16)	МВ		<10		ug/g		10	20-NOV-20
F3 (C16-C34)			<50		ug/g		50	20-NOV-20
F4 (C34-C50)			<50		ug/g		50	20-NOV-20
Surrogate: 2-Bi	romobenzotrifluoride		96.3		%		60-140	20-NOV-20
WG3447829-4 F2 (C10-C16)	MS	WG3447829-	·5 99.4		%		60-140	20-NOV-20
F3 (C16-C34)			101.4		%		60-140	20-NOV-20
F4 (C34-C50)			102.1		%		60-140	20-NOV-20
,								 _

Workorder: L2530806 Report Date: 26-NOV-20 Page 4 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT		Soil							
Batch R5	292716								
WG3447843-7	DUP		WG3447843-6						
F2 (C10-C16)			<10	<10	RPD-NA	ug/g	N/A	30	23-NOV-20
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	23-NOV-20
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	23-NOV-20
WG3447843-2 F2 (C10-C16)	LCS			89.3		%		80-120	20-NOV-20
F3 (C16-C34)				85.0		%		80-120	20-NOV-20
F4 (C34-C50)				68.3	LCS-L	%		80-120	20-NOV-20
WG3447843-1 F2 (C10-C16)	MB			<10		ug/g		10	20-NOV-20
F3 (C16-C34)				<50		ug/g		50	20-NOV-20
F4 (C34-C50)				<50		ug/g		50	20-NOV-20
Surrogate: 2-Br	omobenz	otrifluoride		89.1		%		60-140	20-NOV-20
WG3447843-8	MS	-otimaonao	WG3447843-6			,0		00 110	20-110 7-20
F2 (C10-C16)	IVIO		VV G 344 / 643-6	97.0		%		60-140	23-NOV-20
F3 (C16-C34)				88.6		%		60-140	23-NOV-20
F4 (C34-C50)				75.0		%		60-140	23-NOV-20
Batch R5	296980								
WG3450219-3	DUP		WG3450219-	5					
F2 (C10-C16)	-		<10	<10	RPD-NA	ug/g	N/A	30	24-NOV-20
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	24-NOV-20
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	24-NOV-20
WG3450219-2 F2 (C10-C16)	LCS			100.6		%		80-120	24-NOV-20
F3 (C16-C34)				106.0		%		80-120	24-NOV-20
F4 (C34-C50)				110.9		%		80-120	24-NOV-20
WG3450219-1	МВ			<10					
F2 (C10-C16)						ug/g		10	24-NOV-20
F3 (C16-C34)				<50		ug/g		50	24-NOV-20
F4 (C34-C50)		(-:11)		<50		ug/g		50	24-NOV-20
Surrogate: 2-Br		zotrifluoride		81.1		%		60-140	24-NOV-20
WG3450219-4 F2 (C10-C16)	MS		WG3450219-	5 98.3		%		60-140	24-NOV-20
F3 (C16-C34)				102.0		%		60-140	24-NOV-20
F4 (C34-C50)				107.2		%		60-140	24-NOV-20
E4G-ADD-511-WT		Soil							

F4G-ADD-511-WT Soil

Workorder: L2530806 Report Date: 26-NOV-20 Page 5 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F4G-ADD-511-WT	Soil							
Batch R5297134 WG3451247-2 LCS F4G-SG (GHH-Silica)			65.3		%		60-140	23-NOV-20
WG3451247-1 MB F4G-SG (GHH-Silica)			<250		ug/g		250	23-NOV-20
MET-200.2-CCMS-WT	Soil							
Batch R5297165 WG3450325-2 CRM Antimony (Sb)		WT-SS-2	89.8		%		70-130	24-NOV-20
Arsenic (As)			96.5		%		70-130	24-NOV-20
Barium (Ba)			98.0		%		70-130	24-NOV-20
Beryllium (Be)			93.1		%		70-130	24-NOV-20
Boron (B)			7.1		mg/kg		3.5-13.5	24-NOV-20
Cadmium (Cd)			118.6		%		70-130	24-NOV-20
Chromium (Cr)			93.0		%		70-130	24-NOV-20
Cobalt (Co)			96.6		%		70-130	24-NOV-20
Copper (Cu)			97.2		%		70-130	24-NOV-20
Lead (Pb)			96.8		%		70-130	24-NOV-20
Molybdenum (Mo)			96.2		%		70-130	24-NOV-20
Nickel (Ni)			99.2		%		70-130	24-NOV-20
Selenium (Se)			0.12		mg/kg		0-0.34	24-NOV-20
Silver (Ag)			87.1		%		70-130	24-NOV-20
Thallium (TI)			0.070		mg/kg		0.029-0.129	24-NOV-20
Uranium (U)			85.0		%		70-130	24-NOV-20
Vanadium (V)			96.1		%		70-130	24-NOV-20
Zinc (Zn)			96.2		%		70-130	24-NOV-20
WG3450325-6 DUP Antimony (Sb)		WG3450325-5 4.96	4.13		ug/g	18	30	24-NOV-20
Arsenic (As)		4.15	3.65		ug/g	13	30	24-NOV-20
Barium (Ba)		583	477		ug/g	20	40	24-NOV-20
Beryllium (Be)		0.15	0.12		ug/g	23	30	24-NOV-20
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	24-NOV-20
Cadmium (Cd)		2.05	1.63		ug/g	23	30	24-NOV-20
Chromium (Cr)		77.5	67.9		ug/g	13	30	24-NOV-20
Cobalt (Co)		5.97	4.89		ug/g	20	30	24-NOV-20
Copper (Cu)		270	238		ug/g	12	30	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 6 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5297165								
WG3450325-6 DUP		WG3450325			ug/g	0.4	40	04 NOV 00
Lead (Pb)		229	185		ug/g	21	40	24-NOV-20
Molybdenum (Mo)		3.92	3.26	1450	ug/g	18	40	24-NOV-20
Nickel (Ni)		50.1	34.0	MES	ug/g	38	30	24-NOV-20
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	24-NOV-20
Silver (Ag)		0.15	0.12		ug/g	27	40	24-NOV-20
Thallium (TI)		<0.050	<0.050	RPD-NA	ug/g	N/A	30	24-NOV-20
Uranium (U)		0.156	0.144		ug/g	7.6	30	24-NOV-20
Vanadium (V)		10.5	8.87		ug/g	17	30	24-NOV-20
Zinc (Zn)		275	229		ug/g	18	30	24-NOV-20
WG3450325-4 LCS Antimony (Sb)			98.8		%		80-120	24-NOV-20
Arsenic (As)			99.5		%		80-120	24-NOV-20
Barium (Ba)			99.2		%		80-120	24-NOV-20
Beryllium (Be)			89.5		%		80-120	24-NOV-20
Boron (B)			84.1		%		80-120	24-NOV-20
Cadmium (Cd)			95.8		%		80-120	24-NOV-20
Chromium (Cr)			98.6		%		80-120	24-NOV-20
Cobalt (Co)			95.6		%		80-120	24-NOV-20
Copper (Cu)			95.0		%		80-120	24-NOV-20
Lead (Pb)			95.0		%		80-120	24-NOV-20
Molybdenum (Mo)			95.5		%		80-120	24-NOV-20
Nickel (Ni)			96.2		%		80-120	24-NOV-20
Selenium (Se)			100.5		%		80-120	24-NOV-20
Silver (Ag)			96.6		%		80-120	24-NOV-20
Thallium (TI)			95.0		%		80-120	24-NOV-20
Uranium (U)			84.1		%		80-120	24-NOV-20
Vanadium (V)			100.2		%		80-120	24-NOV-20
Zinc (Zn)			94.2		%		80-120	24-NOV-20
WG3450325-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	24-NOV-20
Arsenic (As)			<0.10		mg/kg		0.1	24-NOV-20
Barium (Ba)			<0.50		mg/kg		0.5	24-NOV-20
Beryllium (Be)			<0.10		mg/kg		0.1	24-NOV-20
· , ··· · · · · (- ·)			-5.10					27 NO V-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 7 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R529710	65							
WG3450325-1 MB			0.000				0.00	
Cadmium (Cd)			<0.020		mg/kg		0.02	24-NOV-20
Chromium (Cr)			<0.50		mg/kg		0.5	24-NOV-20
Cobalt (Co)			<0.10		mg/kg		0.1	24-NOV-20
Copper (Cu)			<0.50		mg/kg		0.5	24-NOV-20
Lead (Pb)			<0.50		mg/kg		0.5	24-NOV-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	24-NOV-20
Nickel (Ni)			<0.50		mg/kg		0.5	24-NOV-20
Selenium (Se)			<0.20		mg/kg 		0.2	24-NOV-20
Silver (Ag)			<0.10		mg/kg 		0.1	24-NOV-20
Thallium (TI)			<0.050		mg/kg 		0.05	24-NOV-20
Uranium (U)			<0.050		mg/kg 		0.05	24-NOV-20
Vanadium (V)			<0.20		mg/kg 		0.2	24-NOV-20
Zinc (Zn)			<2.0		mg/kg		2	24-NOV-20
Batch R529730								
WG3450279-2 CRI Antimony (Sb)	M	WT-SS-2	104.4		%		70.400	24 NOV 20
Arsenic (As)			114.4		%		70-130	24-NOV-20
Barium (Ba)			111.0		%		70-130	24-NOV-20
Beryllium (Be)			111.3		%		70-130	24-NOV-20
Boron (B)			10.3		mg/kg		70-130	24-NOV-20
Cadmium (Cd)			10.3		mg/kg %		3.5-13.5	24-NOV-20
Chromium (Cr)			114.4		%		70-130	24-NOV-20
Cobalt (Co)			108.9		%		70-130	24-NOV-20
Copper (Cu)			100.9		%		70-130	24-NOV-20
Lead (Pb)					%		70-130	24-NOV-20
			106.8		%		70-130	24-NOV-20
Molybdenum (Mo)			110.2				70-130	24-NOV-20
Nickel (Ni)			108.0		%		70-130	24-NOV-20
Selenium (Se)			0.14		mg/kg		0-0.34	24-NOV-20
Silver (Ag)			103.3		% ma/ka		70-130	24-NOV-20
Thallium (TI)			0.078		mg/kg			24-NOV-20
Uranium (U)			97.4		%		70-130	24-NOV-20
Vanadium (V)			113.5		%		70-130	24-NOV-20
Zinc (Zn)			104.1		%		70-130	24-NOV-20
WG3450279-4 DUI	•	L2530877-11						

Workorder: L2530806 Report Date: 26-NOV-20 Page 8 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5297301								
WG3450279-4 DUP		L2530877-11			,			
Antimony (Sb)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	24-NOV-20
Arsenic (As)		8.4	8.2		ug/g	2.7	30	24-NOV-20
Barium (Ba)		78.8	79.6		ug/g	1.1	40	24-NOV-20
Beryllium (Be)		0.58	0.56		ug/g	4.3	30	24-NOV-20
Boron (B)		12.7	12.2		ug/g	3.4	30	24-NOV-20
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	24-NOV-20
Chromium (Cr)		22.0	21.7		ug/g	1.6	30	24-NOV-20
Cobalt (Co)		11.7	11.2		ug/g	4.9	30	24-NOV-20
Copper (Cu)		17.3	16.9		ug/g	2.2	30	24-NOV-20
Lead (Pb)		9.6	9.7		ug/g	1.1	40	24-NOV-20
Molybdenum (Mo)		3.6	3.5		ug/g	1.4	40	24-NOV-20
Nickel (Ni)		25.2	24.7		ug/g	2.0	30	24-NOV-20
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	24-NOV-20
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	24-NOV-20
Thallium (TI)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	24-NOV-20
Uranium (U)		1.2	1.2		ug/g	0.8	30	24-NOV-20
Vanadium (V)		32.4	32.1		ug/g	1.0	30	24-NOV-20
Zinc (Zn)		51.0	50.8		ug/g	0.4	30	24-NOV-20
WG3450279-3 LCS								
Antimony (Sb)			105.4		%		80-120	24-NOV-20
Arsenic (As)			98.5		%		80-120	24-NOV-20
Barium (Ba)			101.5		%		80-120	24-NOV-20
Beryllium (Be)			96.4		%		80-120	24-NOV-20
Boron (B)			93.1		%		80-120	24-NOV-20
Cadmium (Cd)			97.6		%		80-120	24-NOV-20
Chromium (Cr)			97.5		%		80-120	24-NOV-20
Cobalt (Co)			95.9		%		80-120	24-NOV-20
Copper (Cu)			94.7		%		80-120	24-NOV-20
Lead (Pb)			98.1		%		80-120	24-NOV-20
Molybdenum (Mo)			97.9		%		80-120	24-NOV-20
Nickel (Ni)			95.3		%		80-120	24-NOV-20
Selenium (Se)			97.6		%		80-120	24-NOV-20
Silver (Ag)			98.3		%		80-120	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 9 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R529730	ļ							
WG3450279-3 LCS Thallium (TI)			98.6		%		00.400	24-NOV-20
Uranium (U)			90.0		%		80-120	
Vanadium (V)			99.3		%		80-120 80-120	24-NOV-20
Zinc (Zn)			95.1		%			24-NOV-20
WG3450279-1 MB			55.1		70		80-120	24-NOV-20
Antimony (Sb)			<0.10		mg/kg		0.1	24-NOV-20
Arsenic (As)			<0.10		mg/kg		0.1	24-NOV-20
Barium (Ba)			< 0.50		mg/kg		0.5	24-NOV-20
Beryllium (Be)			<0.10		mg/kg		0.1	24-NOV-20
Boron (B)			<5.0		mg/kg		5	24-NOV-20
Cadmium (Cd)			<0.020		mg/kg		0.02	24-NOV-20
Chromium (Cr)			<0.50		mg/kg		0.5	24-NOV-20
Cobalt (Co)			<0.10		mg/kg		0.1	24-NOV-20
Copper (Cu)			<0.50		mg/kg		0.5	24-NOV-20
Lead (Pb)			<0.50		mg/kg		0.5	24-NOV-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	24-NOV-20
Nickel (Ni)			< 0.50		mg/kg		0.5	24-NOV-20
Selenium (Se)			<0.20		mg/kg		0.2	24-NOV-20
Silver (Ag)			<0.10		mg/kg		0.1	24-NOV-20
Thallium (TI)			< 0.050		mg/kg		0.05	24-NOV-20
Uranium (U)			< 0.050		mg/kg		0.05	24-NOV-20
Vanadium (V)			<0.20		mg/kg		0.2	24-NOV-20
Zinc (Zn)			<2.0		mg/kg		2	24-NOV-20
MOISTURE-WT	Soil							
Batch R529055)							
WG3448408-3 DUP		L2530464-8	15.6		0/	2.0	00	00 NOV 00
% Moisture		16.3	15.6		%	3.8	20	20-NOV-20
WG3448408-2 LCS % Moisture			100.0		%		90-110	20-NOV-20
WG3448408-1 MB % Moisture			<0.25		%		0.25	20-NOV-20
PAH-511-WT	Soil							

Workorder: L2530806 Report Date: 26-NOV-20 Page 10 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

PAH-511-WT Soil	
Batch R5292577	
WG3447820-3 DUP WG3447820-5	
	IOV-20
	IOV-20
	IOV-20
	IOV-20
Anthracene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(a)anthracene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(a)pyrene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(b)fluoranthene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(g,h,i)perylene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(k)fluoranthene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Chrysene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Dibenzo(ah)anthracene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Fluoranthene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Fluorene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Indeno(1,2,3-cd)pyrene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Naphthalene <0.013 <0.013 RPD-NA ug/g N/A 40 20-N	IOV-20
Phenanthrene <0.046 <0.046 RPD-NA ug/g N/A 40 20-N	IOV-20
Pyrene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
WG3447820-2 LCS	
	IOV-20
Fluorene 94.0 % 50-140 20-N	IOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 11 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

PAH-511-WT Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Naphthalene	PAH-511-WT	Soil							
Indemo(1, 2,3-ad)pyrene	Batch R5292577								
Naphthalene 98.1 % 50.140 20.NOV-20 Phenanthrene 101.1 % 50.140 20.NOV-20 Pyrane 97.1 % 50.140 20.NOV-20 WG3447820-1 MB				00.4		0/			
Phenanthrene 101.1 % 50.140 20.NOV-20 Pyrene 97.1 % 50.140 20.NOV-20 WG3447820-1 MB WISHINGAPITHAINE SO-140 20.NOV-20 1-Methylnaphthalene <0.030									
Pyrene 97.1 % 50-140 20-NOV-20									
MG3447820-1 MB									
1-Methylnaphthalene	•			97.1		%		50-140	20-NOV-20
2-Methylnaphthalene				-0 020		a/a		0.02	00 NOV 00
Acenaphthene <0.050	• •								
Acenaphthylene <0.050	• •								
Anthracene									
Benzo(a)anthracene <0.050									
Benzo(a)pyrene <0.050									
Benzo(b)fluoranthene <0.050									
Benzo(g,h,i)perylene <0.050	· //· /								
Benzo(k)fluoranthene <0.050									
Chrysene <0.050 ug/g 0.05 20-NOV-20 Dibenzo(ah)anthracene <0.050									
Dibenzo(ah)anthracene <0.050 ug/g 0.05 20-NOV-20 Fluoranthene <0.050									
Fluoranthene <0.050 ug/g 0.05 20-NOV-20 Fluorene <0.050	-								
Fluorene 									
Indeno(1,2,3-cd)pyrene									
Naphthalene <0.013 ug/g 0.013 20-NOV-20 Phenanthrene <0.046									20-NOV-20
Phenanthrene <0.046 ug/g 0.046 20-NOV-20 Pyrene <0.050									
Pyrene <	•								20-NOV-20
Surrogate: 2-Fluorobiphenyl 83.8 % 50-140 20-NOV-20 Surrogate: p-Terphenyl d14 86.5 % 50-140 20-NOV-20 WG3447820-4 MS WG3447820-5 VG3447820-5 VG3447820-7 VG347820-7 VG347820-	Phenanthrene								
Surrogate: p-Terphenyl d14 86.5 % 50-140 20-NOV-20 WG3447820-4 MS WG3447820-5 WG3447820-5 WG3447820-5 WG3447820-5 So-140 20-NOV-20 1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	•								20-NOV-20
WG3447820-4 MS WG3447820-5 1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	Surrogate: 2-Fluorobiphe	enyl		83.8				50-140	20-NOV-20
1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	Surrogate: p-Terphenyl	d14		86.5		%		50-140	20-NOV-20
2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20			WG3447820-5			0/			
Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Benzo(b)fluoranthene 102.4 % 50-140 20-NOV-20									
	Benzo(b)fluoranthene			102.4		%		50-140	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 12 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5292577								
WG3447820-4 MS		WG3447820-			0/			
Benzo(g,h,i)perylene			87.9		%		50-140	20-NOV-20
Benzo(k)fluoranthene			96.6		%		50-140	20-NOV-20
Chrysene			101.9		%		50-140	20-NOV-20
Dibenzo(ah)anthracene			85.3		%		50-140	20-NOV-20
Fluoranthene			93.9		%		50-140	20-NOV-20
Fluorene			91.7		%		50-140	20-NOV-20
Indeno(1,2,3-cd)pyrene			91.7		%		50-140	20-NOV-20
Naphthalene			86.8		%		50-140	20-NOV-20
Phenanthrene			91.4		%		50-140	20-NOV-20
Pyrene			93.1		%		50-140	20-NOV-20
Batch R5296037								
WG3448261-3 DUP		WG3448261-		DD5 ***			40	00 1101/ 00
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	23-NOV-20
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	23-NOV-20
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(b)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(g,h,i)perylene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(k)fluoranthene		< 0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Chrysene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Dibenzo(ah)anthracene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Fluorene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	23-NOV-20
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	23-NOV-20
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
WG3448261-2 LCS 1-Methylnaphthalene			90.2		%		50-140	20 NOV 20
					%			20-NOV-20
2-Methylnaphthalene			86.2		70		50-140	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 13 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5296037								
WG3448261-2 LCS					0.4			
Acenaphthene			90.5		%		50-140	20-NOV-20
Acenaphthylene			95.8		%		50-140	20-NOV-20
Anthracene			89.1		%		50-140	20-NOV-20
Benzo(a)anthracene			93.9		%		50-140	20-NOV-20
Benzo(a)pyrene			89.2		%		50-140	20-NOV-20
Benzo(b)fluoranthene			85.7		%		50-140	20-NOV-20
Benzo(g,h,i)perylene			94.0		%		50-140	20-NOV-20
Benzo(k)fluoranthene			89.3		%		50-140	20-NOV-20
Chrysene			95.6		%		50-140	20-NOV-20
Dibenzo(ah)anthracene			99.0		%		50-140	20-NOV-20
Fluoranthene			87.0		%		50-140	20-NOV-20
Fluorene			87.8		%		50-140	20-NOV-20
Indeno(1,2,3-cd)pyrene			100.4		%		50-140	20-NOV-20
Naphthalene			88.3		%		50-140	20-NOV-20
Phenanthrene			88.3		%		50-140	20-NOV-20
Pyrene			86.7		%		50-140	20-NOV-20
WG3448261-1 MB 1-Methylnaphthalene			<0.030		ug/g		0.03	20-NOV-20
2-Methylnaphthalene			<0.030		ug/g		0.03	20-NOV-20
Acenaphthene			< 0.050		ug/g		0.05	20-NOV-20
Acenaphthylene			< 0.050		ug/g		0.05	20-NOV-20
Anthracene			< 0.050		ug/g		0.05	20-NOV-20
Benzo(a)anthracene			<0.050		ug/g		0.05	20-NOV-20
Benzo(a)pyrene			< 0.050		ug/g		0.05	20-NOV-20
Benzo(b)fluoranthene			< 0.050		ug/g		0.05	20-NOV-20
Benzo(g,h,i)perylene			< 0.050		ug/g		0.05	20-NOV-20
Benzo(k)fluoranthene			< 0.050		ug/g		0.05	20-NOV-20
Chrysene			< 0.050		ug/g		0.05	20-NOV-20
Dibenzo(ah)anthracene			< 0.050		ug/g		0.05	20-NOV-20
Fluoranthene			< 0.050		ug/g		0.05	20-NOV-20
Fluorene			< 0.050		ug/g		0.05	20-NOV-20
Indeno(1,2,3-cd)pyrene			<0.050		ug/g		0.05	20-NOV-20
Naphthalene			<0.013		ug/g		0.013	20-NOV-20
Phenanthrene			<0.046		ug/g		0.046	20-NOV-20
T Hondina Hono			10.010		∽⊎′ ⊎		0.0.0	20-140 V-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 14 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5296037 WG3448261-1 MB Pyrene			<0.050		ug/g		0.05	20-NOV-20
Surrogate: 2-Fluorobiphe	envl		77.8		%		50-140	20-NOV-20 20-NOV-20
Surrogate: p-Terphenyl of	-		82.8		%		50-140	20-NOV-20 20-NOV-20
WG3448261-4 MS		WG3448261-5	02.0		,,		00 110	20-1107-20
1-Methylnaphthalene		WG5440201-3	94.4		%		50-140	23-NOV-20
2-Methylnaphthalene			89.3		%		50-140	23-NOV-20
Acenaphthene			94.1		%		50-140	23-NOV-20
Acenaphthylene			95.5		%		50-140	23-NOV-20
Anthracene			91.1		%		50-140	23-NOV-20
Benzo(a)anthracene			93.1		%		50-140	23-NOV-20
Benzo(a)pyrene			92.1		%		50-140	23-NOV-20
Benzo(b)fluoranthene			91.9		%		50-140	23-NOV-20
Benzo(g,h,i)perylene			103.1		%		50-140	23-NOV-20
Benzo(k)fluoranthene			90.3		%		50-140	23-NOV-20
Chrysene			99.9		%		50-140	23-NOV-20
Dibenzo(ah)anthracene			110.3		%		50-140	23-NOV-20
Fluoranthene			90.2		%		50-140	23-NOV-20
Fluorene			90.0		%		50-140	23-NOV-20
Indeno(1,2,3-cd)pyrene			103.7		%		50-140	23-NOV-20
Naphthalene			91.8		%		50-140	23-NOV-20
Phenanthrene			93.3		%		50-140	23-NOV-20
Pyrene			90.3		%		50-140	23-NOV-20
Batch R5296510								
WG3448590-3 DUP		WG3448590-5			,			
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	24-NOV-20
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	24-NOV-20
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(b)fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 15 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5296510								
WG3448590-3 DUP Chrysene		WG3448590 -<0.050	5 <0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Dibenzo(ah)anthracene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Fluorene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Indeno(1,2,3-cd)pyrene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	24-NOV-20
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	24-NOV-20
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
WG3448590-2 LCS 1-Methylnaphthalene			90.2		%		50-140	24-NOV-20
2-Methylnaphthalene			85.8		%		50-140	24-NOV-20
Acenaphthene			89.8		%		50-140	24-NOV-20
Acenaphthylene			87.6		%		50-140	24-NOV-20
Anthracene			86.8		%		50-140	24-NOV-20
Benzo(a)anthracene			87.7		%		50-140	24-NOV-20
Benzo(a)pyrene			85.6		%		50-140	24-NOV-20
Benzo(b)fluoranthene			87.7		%		50-140	24-NOV-20
Benzo(g,h,i)perylene			82.7		%		50-140	24-NOV-20
Benzo(k)fluoranthene			92.6		%		50-140	24-NOV-20
Chrysene			97.2		%		50-140	24-NOV-20
Dibenzo(ah)anthracene			84.0		%		50-140	24-NOV-20
Fluoranthene			86.8		%		50-140	24-NOV-20
Fluorene			86.4		%		50-140	24-NOV-20
Indeno(1,2,3-cd)pyrene			84.2		%		50-140	24-NOV-20
Naphthalene			88.4		%		50-140	24-NOV-20
Phenanthrene			90.4		%		50-140	24-NOV-20
Pyrene			87.0		%		50-140	24-NOV-20
WG3448590-1 MB					,			
1-Methylnaphthalene			<0.030		ug/g		0.03	24-NOV-20
2-Methylnaphthalene			<0.030		ug/g		0.03	24-NOV-20
Acenaphthene			<0.050		ug/g		0.05	24-NOV-20
Acenaphthylene			<0.050		ug/g		0.05	24-NOV-20
Anthracene			<0.050		ug/g		0.05	24-NOV-20
Benzo(a)anthracene			<0.050		ug/g		0.05	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 16 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

PAME-511-WT	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MG3448590-1 MB Benzo(a)pyrene	PAH-511-WT	Soil							
Benzo(a)pyrene	Batch R529651	0							
Benzo(b)fluoranthene <0.050				<0.050		ua/a		0.05	24 NOV 20
Benzo(g,hi)perylene <0.050									
Benzo(k)fluoranthene <0.050									
Chrysene <0.050 ug/g 0.05 24-NOV-20 Dibenzo(ah)anthracene <0.050									
Dibenzo(ah)anthracene <0.050 ug/g 0.05 24-NOV-20 Fluoranthene <0.050	, ,								
Fluoranthene	-	Δ							
Fluorene	, ,	C							
Indeno(1,2,3-cd)pyrene									
Naphthalene <0.013		9							
Phenanthrene <0.046 ug/g 0.046 24-NOV-20 Pyrene <0.050		5							
Pyrene <0.050 ug/g 0.05 24-NOV-20 Surrogate: 2-Fluorobiphenyl 80.5 % 50-140 24-NOV-20 Surrogate: p-Terphenyl d14 86.9 % 50-140 24-NOV-20 WG3448590-4 MS WG3448590-5 WG3448590-5 WG3448590-5 S0-140 24-NOV-20 2-Methylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(g)fili)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 98.5									
Surrogate: 2-Fluorobiphenyl 80.5 % 50-140 24-NOV-20 Surrogate: p-Terphenyl d14 86.9 % 50-140 24-NOV-20 WG3448590-4 MS WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 Sol-140 24-NOV-20 Acenaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthalene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Acenaphthylene 98.2 % 50-140 24-NOV-20 Acenaphthylene 98.4 % 50-140 24-NOV-20 Acenaphthylene 94.7									
Surrogate: p-Terphenyl d14 86.9 % 50-140 24-NOV-20 WG3448590-4 MS WG3448590-5 Thethylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(a)hanthracene 98.5 <td>•</td> <td>henyl</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•	henyl							
WG3448590-4 MS YG3448590-5 1-Methylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(a)hanthracene 98.5	-	-							
1-Methylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(a)hanthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20		1014	WG3448500-5	00.5		70		30-140	24-NOV-20
2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 <td< td=""><td></td><td></td><td>VVG3446390-3</td><td>97.3</td><td></td><td>%</td><td></td><td>50-140</td><td>24-NOV-20</td></td<>			VVG3446390-3	97.3		%		50-140	24-NOV-20
Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	2-Methylnaphthalene			92.9		%		50-140	
Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluoranthene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Acenaphthene			97.9		%		50-140	24-NOV-20
Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Acenaphthylene			99.7		%		50-140	24-NOV-20
Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Anthracene			98.2		%		50-140	24-NOV-20
Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(a)anthracene			103.9		%		50-140	24-NOV-20
Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(a)pyrene			96.4		%		50-140	24-NOV-20
Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(b)fluoranthene			97.7		%		50-140	24-NOV-20
Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(g,h,i)perylene			94.7		%		50-140	24-NOV-20
Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(k)fluoranthene			95.2		%		50-140	24-NOV-20
Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Chrysene			103.9		%		50-140	24-NOV-20
Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Dibenzo(ah)anthracen	е		98.5		%		50-140	24-NOV-20
Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Fluoranthene			98.3		%		50-140	24-NOV-20
Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Fluorene			95.7		%		50-140	24-NOV-20
Phenanthrene 97.7 % 50-140 24-NOV-20	Indeno(1,2,3-cd)pyren	е		98.4		%		50-140	24-NOV-20
	Naphthalene			94.9		%		50-140	24-NOV-20
Pyrene 98.3 % 50-140 24-NOV-20	Phenanthrene			97.7		%		50-140	24-NOV-20
	Pyrene			98.3		%		50-140	24-NOV-20

PEST-OC-511-WT Soil

Workorder: L2530806 Report Date: 26-NOV-20 Page 17 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT	Soil							
Batch R5291403								
WG3447048-3 DUP		WG3447048-						
Aldrin a-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
g-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
op-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
pp-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
o,p-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
pp-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
op-DDT		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
pp-DDT		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	20-NOV-20
Dieldrin		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	20-NOV-20
Endosulfan I		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	20-NOV-20
Endosulfan II		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
Endrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
gamma-hexachlorocycloh	nexane	<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Heptachlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
Heptachlor Epoxide		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
Hexachlorobenzene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Hexachlorobutadiene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Hexachloroethane		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Methoxychlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
WG3447048-2 LCS								
Aldrin			116.6		%		50-140	20-NOV-20
a-chlordane			94.5		%		50-140	20-NOV-20
g-chlordane			91.2		%		50-140	20-NOV-20
op-DDD			104.3		%		50-140	20-NOV-20
pp-DDD			105.8		%		50-140	20-NOV-20
o,p-DDE			84.8		%		50-140	20-NOV-20
pp-DDE			104.8		%		50-140	20-NOV-20
op-DDT			89.6		%		50-140	20-NOV-20
pp-DDT			65.8		%		50-140	20-NOV-20
Dieldrin			99.3		%		50-140	20-NOV-20
Endosulfan I			90.9		%		50-140	20-NOV-20
Endosulfan II			101.0		%		50-140	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 18 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

est M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT S	ioil							
Batch R5291403								
WG3447048-2 LCS			4.47.0		0/			
Endrin			147.9	LCS-H	%		50-140	20-NOV-20
gamma-hexachlorocyclohe	xane		83.7		%		50-140	20-NOV-20
Heptachlor			110.8		%		50-140	20-NOV-20
Heptachlor Epoxide			106.3		%		50-140	20-NOV-20
Hexachlorobenzene			85.6		%		50-140	20-NOV-20
Hexachlorobutadiene			79.8		%		50-140	20-NOV-20
Hexachloroethane			79.9		%		50-140	20-NOV-20
Methoxychlor			118.2		%		50-140	20-NOV-20
WG3447048-1 MB Aldrin			<0.020		ug/g		0.02	20-NOV-20
a-chlordane			<0.020		ug/g		0.02	20-NOV-20 20-NOV-20
g-chlordane			<0.020		ug/g ug/g		0.02	20-NOV-20 20-NOV-20
op-DDD			<0.020		ug/g ug/g		0.02	
pp-DDD			<0.020		ug/g ug/g		0.02	20-NOV-20
o,p-DDE			<0.020		ug/g ug/g		0.02	20-NOV-20
pp-DDE			<0.020				0.02	20-NOV-20
op-DDT			<0.020		ug/g		0.02	20-NOV-20
pp-DDT			<0.020		ug/g		0.02	20-NOV-20
Dieldrin			<0.020		ug/g		0.02	20-NOV-20
Endosulfan I			<0.020		ug/g		0.02	20-NOV-20
Endosulfan II			<0.020		ug/g		0.02	20-NOV-20
Endrin			<0.020		ug/g		0.02	20-NOV-20
gamma-hexachlorocyclohe	vono		<0.020		ug/g		0.02	20-NOV-20
,	xane				ug/g		0.01	20-NOV-20
Heptachlor Heptachlor Epoxide			<0.020 <0.020		ug/g		0.02	20-NOV-20
Hexachlorobenzene			<0.020		ug/g		0.02	20-NOV-20
					ug/g			20-NOV-20
Hexachlorobutadiene Hexachloroethane			<0.010 <0.010		ug/g		0.01 0.01	20-NOV-20
Methoxychlor			<0.010		ug/g ug/g		0.01	20-NOV-20
Surrogate: 2-Fluorobipheny	d		66.2		ug/g %		50-140	20-NOV-20
Surrogate: d14-Terphenyl	1				%		50-140	20-NOV-20
		W00447046 7	63.9		70		50-140	20-NOV-20
WG3447048-4 MS Aldrin		WG3447048-5	132.5		%		50-140	20-NOV-20
a-chlordane			93.7		%		50-140	20-NOV-20 20-NOV-20
a omorgano			50.7		,,		JU-14U	20-INO V-20

Qualifier

Workorder: L2530806 Report Date: 26-NOV-20 Page 19 of 21

Units

RPD

Limit

Analyzed

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

Reference

Result

KITCHENER ON N2B 3X9

Matrix

Contact: JEN LAMBKE

Test

PEST-OC-511-WT	Soil							
Batch R5291403	3							
WG3447048-4 MS		WG3447048-5						
g-chlordane			90.7		%		50-140	20-NOV-20
op-DDD			103.6		%		50-140	20-NOV-20
pp-DDD			111.3		%		50-140	20-NOV-20
o,p-DDE			87.5		%		50-140	20-NOV-20
pp-DDE			108.7		%		50-140	20-NOV-20
op-DDT			88.8		%		50-140	20-NOV-20
pp-DDT			65.4		%		50-140	20-NOV-20
Dieldrin			95.1		%		50-140	20-NOV-20
Endosulfan I			89.3		%		50-140	20-NOV-20
Endosulfan II			102.0		%		50-140	20-NOV-20
Endrin			146.9	RRQC	%		50-140	20-NOV-20
gamma-hexachlorocyc	lohexane		90.8		%		50-140	20-NOV-20
Heptachlor			122.7		%		50-140	20-NOV-20
Heptachlor Epoxide			101.9		%		50-140	20-NOV-20
Hexachlorobenzene			93.1		%		50-140	20-NOV-20
Hexachlorobutadiene			83.1		%		50-140	20-NOV-20
Hexachloroethane			82.6		%		50-140	20-NOV-20
Methoxychlor			134.5		%		50-140	20-NOV-20
COMMENTS: RRC have been qualified		ery was above ALS	DQO. Non-	detected sample	results are consid	ered reliable.	Other results,	if reported,
PH-WT	Soil							
Batch R5295057	7							
WG3448241-1 DUP		L2530806-7						
рН		7.60	7.63	J	pH units	0.03	0.3	23-NOV-20
WG3449696-1 LCS			0.05		ml I vonita			
рН			6.95		pH units		6.9-7.1	23-NOV-20
SAR-R511-WT	Soil							
Batch R5296809	9							
WG3450328-4 DUP Calcium (Ca)		WG3450328-3 3.58	3.90		mg/L	0.6	20	24 NOV 22
					•	8.6	30	24-NOV-20
Sodium (Na)		22.5	20.2	DDC ***	mg/L	11	30	24-NOV-20
Magnesium (Mg)		<0.50	<0.50	RPD-NA	mg/L	N/A	30	24-NOV-20
WG3450328-2 IRM Calcium (Ca)		WT SAR4	96.3		%		70-130	24 NOV 20
Sodium (Na)			96.3 87.9		%			24-NOV-20
Soulum (Na)			6.10		/0		70-130	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 20 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SAR-R511-WT	Soil							
Batch R5296809 WG3450328-2 IRM Magnesium (Mg)		WT SAR4	96.6		%		70-130	24-NOV-20
WG3450328-5 LCS Calcium (Ca)			108.7		%		80-120	24-NOV-20
Sodium (Na)			101.6		%		80-120	24-NOV-20
Magnesium (Mg)			102.8		%		80-120	24-NOV-20
WG3450328-1 MB Calcium (Ca)			<0.50		mg/L		0.5	24-NOV-20
Sodium (Na)			<0.50		mg/L		0.5	24-NOV-20
Magnesium (Mg)			<0.50		mg/L		0.5	24-NOV-20

Report Date: 26-NOV-20 Workorder: L2530806

MTE CONSULTANTS INC. (Kitchener) Client:

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Legend:

ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

Internal Reference Material IRM CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

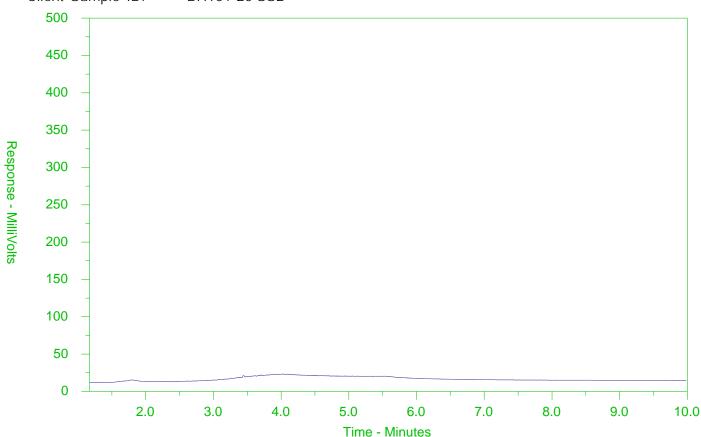
Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
LCS-L	Lab Control Sample recovery was below ALS DQO. Reference Material and/or Matrix Spike results were acceptable Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

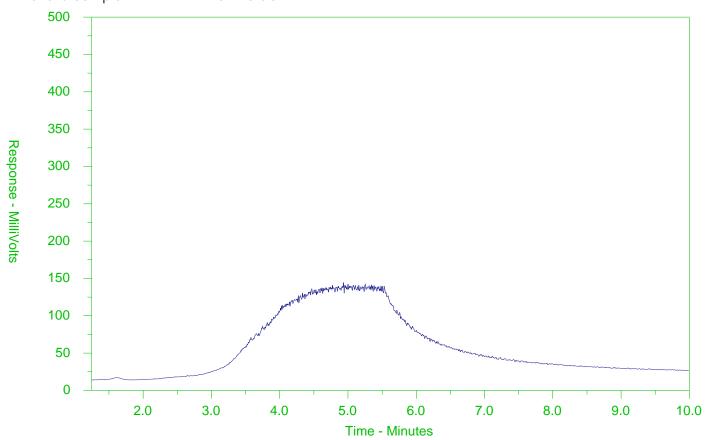

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 21 of 21

ALS Sample ID: L2530806-1 Client Sample ID: BH101-20 SS2

← -F2-	→-	_F3 → F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Jet	◆ Diesel/Jet Fuels →						

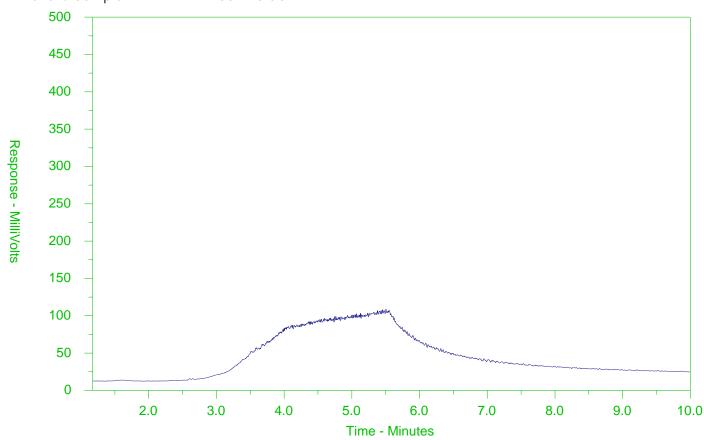

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-2 Client Sample ID: BH102-20 SS1

← -F2-	→-	_F3 → F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Jet	◆ Diesel/Jet Fuels →						

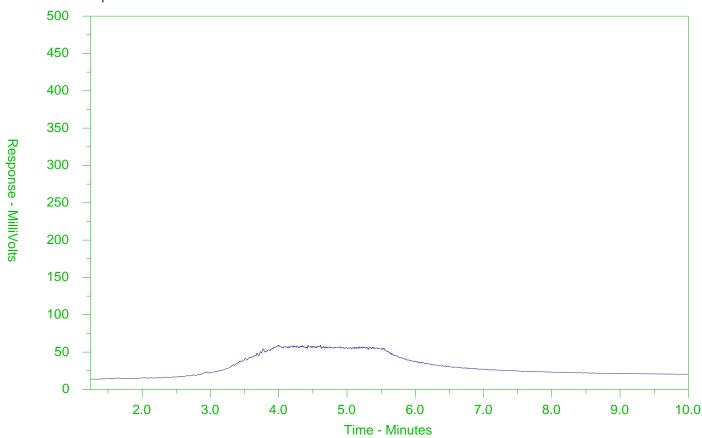

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-3 Client Sample ID: BH1002-20 SS1

← -F2-	→-	_F3 → F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Jet	◆ Diesel/Jet Fuels →						


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-4 Client Sample ID: BH102-20 SS2B

← -F2-	→←	_F3 → F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Jet	◆ Diesel/Jet Fuels →						

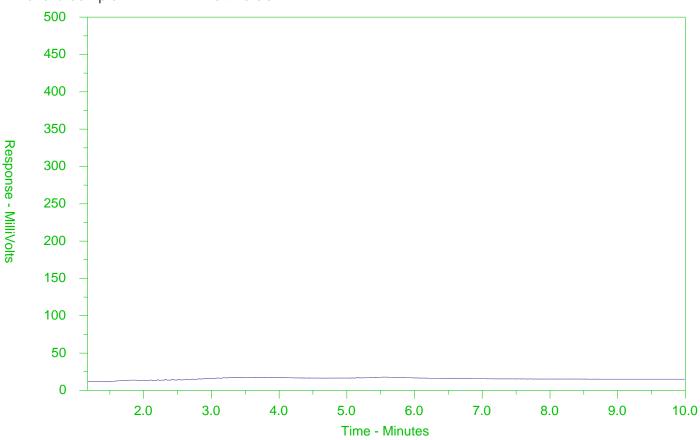
The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-5 Client Sample ID: BH103-20 SS2

← -F2-	→←	_F3 → F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →							
←	-Diesel/Jet	◆ Diesel/Jet Fuels →						

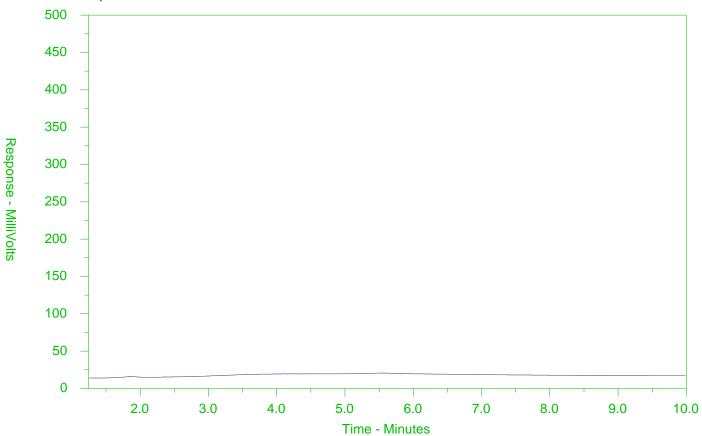

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-6 Client Sample ID: BH104-20 SS2

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

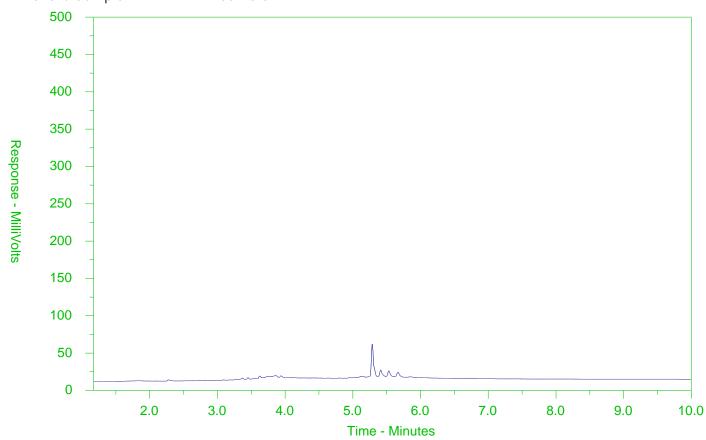

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-7 Client Sample ID: BH104-20 SS3

← -F2-	→ ←	—F3——◆4—F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	e →	← M	otor Oils/Lube Oils/Grease—	-
←	-Diesel/Jet	Fuels→		

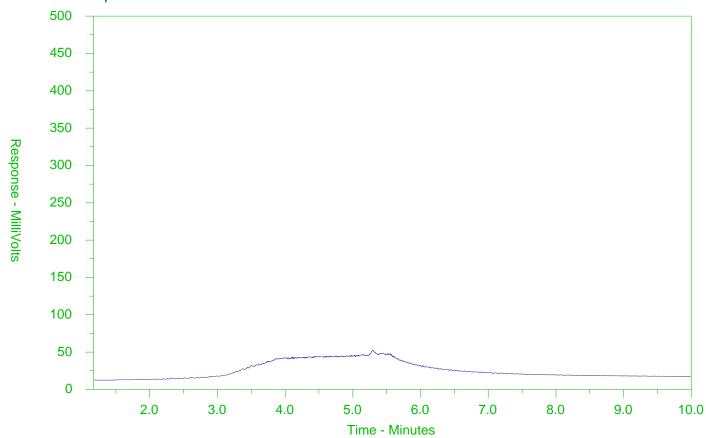

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-8 Client Sample ID: BH105-20 SA1

← -F2-	→←	—F3——►4—F4—	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasoline → ← Mo			otor Oils/Lube Oils/Grease——	-
←	-Diesel/Jet	Fuels→		

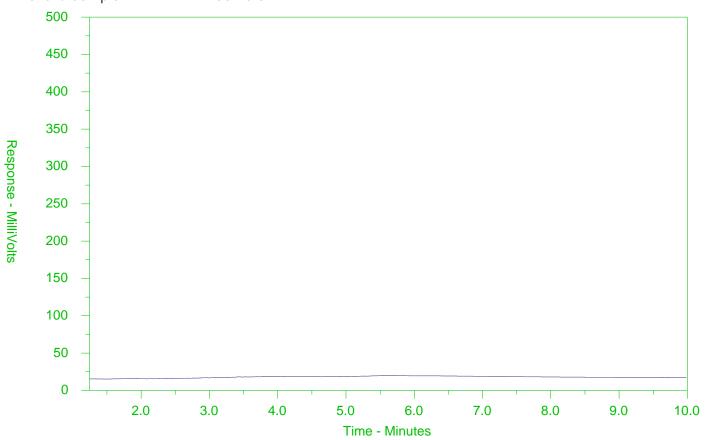

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-9 Client Sample ID: BH106-20 SA1

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

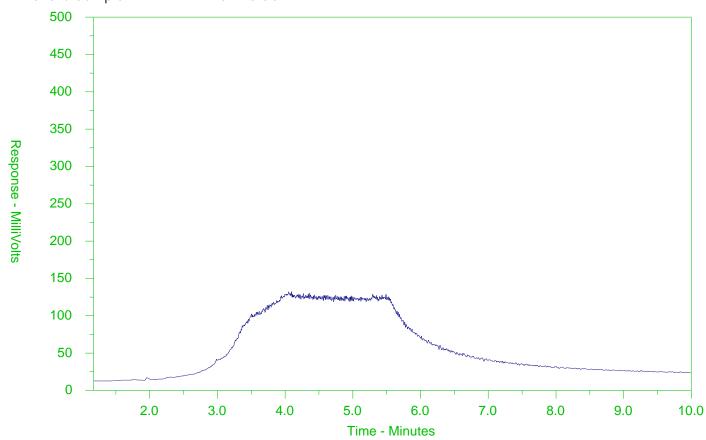

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-10 Client Sample ID: BH106-20 SA2

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

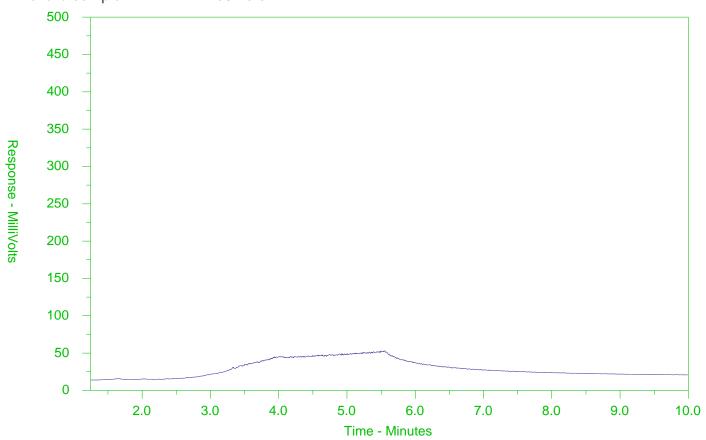

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-11 Client Sample ID: BH107-20 SS1

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-12 Client Sample ID: BH108-20 SA1

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Environmental

Chain of Custody (COC) / Analytical Request Form

омия 17 - 82549**4** з_{ие} Туг(

Canada Toll Fron: 1,300,666,9870.

	www.alcolopa.com					_			
Paper To	Constitutions and advised by reason.	rie i recono	Roport Farmat (Cisur Duran		events again to term series - Contact your All to confirm at ESP TATS (good-arges has spely	4			
aan a y		Jacob Feoral Inc	TOTAL X ROT MILES X	H25,500 -0	Begaller [6] M. Tareard Total Liene, or in Tipother construction with open apply				
len wi	J=16.5 mb+C		As Neport with the state $ \mathbf{N} $ of		\$ 4 day [F4:27] \$ 1 Benimes day [F: 1064] \$ 1 day (F0:200) \$ 3 ago 3m Weesend or Southers heldes it 2 a000.				
Tru-	170-122-30 <u>26</u>	▼ (sitak gen	n er ett ju set mæt i sansk stimb ske		3 Julyy (PO-25%). [] Same Day Weesend or Statutory holiday [t.3 400%]				
	Oper a still a valve valve i septement on the final repu	rt Selectifica forica	. X sw. + on !	· <u>-</u> -	Take (C2-50%) Abstratory opening feet may apply (- 1			
il III-l		€ ality Fix	Hambher mhe Est.	17	Demand Time Resource for an EAR TATE. \$\frac{1}{2}\zeta_{-1}(a_{-1}, \cap 2) \rightarrow do \rightarrow (\cap 1) \rightarrow \chin 1)				
kyMicured:	MATERIAN	1 1947 7			For the order was not expect to certain many bytes may be been reducted made of the contribute.				
hgiji Çiyle		Final bill			Amilyda Berphal				
worke to	$ x = e^{-\frac{1}{2}(\log n)} x - e^{-\frac{1}{2}(\log n)} x $		hivo de Dishit of ac-		in water of a consect of the base of the base of the base.	Π.			
	Dipoliti www. Sepolitic 1 ars 1/2	s "Alexhore is	net Mealler			}			
омун ү	·	Final or Fas	par ware			‡			
ico est		F 1/1 2	7			<u>\$</u>			
	Freject Information		and Gas Recorded Feets (client	.1861	□≗	§			
LS Account # 2		ALTON TO A	204		ON HOLD	. 8			
	7977-100 (Hear (Ladio)	Maria Maria I I I I I I I I I I I I I I I I I I I	Ferning Con-			1 1			
OUARE		Productions							
3C .		Laction.							
ALS Lab Wor	th Order & (Albumbanky): L1.530 T	DO ON MASSONIALE	And 4. Semplor: M	VB D	MUMBER OF FIRST PARCE PA	= = = = = = = = = = = = = = = = = = =			
ALB Rampto & Clab tree cally t	Запоры Селійскій сулас (3 інцентурня дія ра		Gale Timo	Spring Type	NUMBER FACTOR FACTOR FACTOR CAK/EX CAMPI	200810			
ı	BH101 30 STZ		د/(4/4	5-11	3 / / /	\top			
	BH 192-20 SS.		1	i ı		十			
3,	Entout 24 551	·· — — ···							
٠ ٠ ٠	8402 3 BIB		ĺ	ł		十			
<u></u>				- -					
	BH103-24 512			٠. إ		-1			
6	84254-20 556		<u> </u>		<u> </u>	┵-			
₹	[8:7:24-70][S	 _	i		3 . √ <u>1 √ . #</u> √ √	\dashv			
የ	\$#165 - Par \$41		[:]	_3 √ v V , <u> </u>				
. 2	BALLETZO (A)			: 1	3 7 7 7 7 7 7	\Box			
10.	BH LOBERTON SAIR			11	3 2 2 7 7 7 1 1 1				
11	BA 1-7-2- SSI			+ 1 -	- 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 	\top			
15 /12	<u> </u>			++		+;			
12,713					SAMPLE CONCITION AS RECEIVED (Inb use only)	.15			
Printus	g Witter (EW) Samples" (client use)	Special og nardoos, 3, gody Cajpaja (5) e refera	iotenneron "yerokinyo inwarologo tawar B⊄Beniyi	0.4 2 -the	Prozent / TE Cition sections 166 No	<u> </u>			
0 4 M W +4 (3 4 M)	n from a Pegulated Intl System	Front Sample			The Trans. In the Common of Controls cool mass to the St.	Ī			
-1	t. IK-	rever 1 k egene	jęc		Control to sale.	_			
n storeplass for th	io nen calour ripogra , 64° (D)	. Ray 153 Jable 1+2 A	Let t ut∺oner		ANNUL (COOLER TEMPÉRATIONES REPORTED PROFITE DE LA PROFITE				
1 -:	n w j	Ray 152 Jable 12 A Ray 400 1726 2.1	NE - Marke		2.8				
	ارين (ShiPhi NFRELEASE (claim bas)		MITIAL SHIPMENT RECEPTION	lab use color	FUNAL SHUPMENT RECEPTION (sib may only)				
		 , →.							
week for	X/2 15/20/18/20	e ~ (7, (a)	Liane:		Ima Foodyed TY Su Nov 18 12	ዝፍ፣			

MTE CONSULTANTS INC. (Kitchener)

ATTN: JEN LAMBKE

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Date Received: 18-NOV-20

Report Date: 26-NOV-20 13:36 (MT)

Version: FINAL REV. 3

Client Phone: 519-743-6500

Certificate of Analysis

Lab Work Order #: L2530806
Project P.O. #: NOT SUBMITTED

Job Reference: 47877-100 (HEART LAKE)

C of C Numbers: 1

Legal Site Desc:

17-825494

Emily Hansen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 2 of 20

7877-100 (HEART LAKE)	ANALT HOAL GOIDELINE REPORT							Page 2 of 2 26-NOV-20 13:36 (N		
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits		
2530806-1 BH101-20 SS2										
Sampled By: MATT D. on 17-NOV-20										
Matrix: SOIL						#1	#2	#3		
Physical Tests										
Conductivity	1.36		0.0040	mS/cm	24-NOV-20	*0.57	1.4	*0.7		
% Moisture	11.7		0.25	%	20-NOV-20					
Saturated Paste Extractables										
SAR	10.1		0.10	SAR	24-NOV-20	*2.4	12	*5		
Calcium (Ca)	34.5		0.50	mg/L	24-NOV-20					
Magnesium (Mg)	2.40		0.50	mg/L	24-NOV-20					
Sodium (Na)	228		0.50	mg/L	24-NOV-20					
Metals										
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5		
Arsenic (As)	9.7		1.0	ug/g	24-NOV-20	18	18	18		
Barium (Ba)	67.7		1.0	ug/g	24-NOV-20	220	670	390		
Beryllium (Be)	0.73		0.50	ug/g	24-NOV-20	2.5	8	4		
Boron (B)	5.0		5.0	ug/g	24-NOV-20	36	120	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2		
Chromium (Cr)	21.8		1.0	ug/g	24-NOV-20	70	160	160		
Cobalt (Co)	9.9		1.0	ug/g	24-NOV-20	21	80	22		
Copper (Cu)	34.6		1.0	ug/g	24-NOV-20	92	230	140		
Lead (Pb)	10.3		1.0	ug/g	24-NOV-20	120	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9		
Nickel (Ni)	22.2		1.0	ug/g	24-NOV-20	82	270	100		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20		
Thallium (TI)	<0.50 <1.0		0.50	ug/g	24-NOV-20 24-NOV-20	1	3.3	1		
Uranium (U) Vanadium (V)	35.6		1.0 1.0	ug/g	24-NOV-20 24-NOV-20	2.5	33	23 86		
Zinc (Zn)	44.4		5.0	ug/g	24-NOV-20 24-NOV-20	86 290	86 340	340		
Volatile Organic Compounds	44.4		3.0	ug/g	24-1100-20	290	340	340		
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.034	0.02		
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.02	1.9	1.9		
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.03	7.8	0.99		
o-Xylene	<0.020		0.020	ug/g	20-NOV-20	J. <u>_</u>		0.50		
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20					
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9		
Surrogate: 4-Bromofluorobenzene	113.8		50-140	%	20-NOV-20					
Surrogate: 1,4-Difluorobenzene	113.0		50-140	%	20-NOV-20					
Hydrocarbons										
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	25	25		
F1-BTEX	<5.0		5.0	ug/g	20-NOV-20	25	25	25		
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	26	10		
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	300		
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	2800		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	20-NOV-20					
Chrom. to baseline at nC50	YES		00 : : :	No Unit	20-NOV-20					
Surrogate: 2-Bromobenzotrifluoride	85.1		60-140	%	20-NOV-20					
Surrogate: 3,4-Dichlorotoluene	105.3	-	60-140	%	20-NOV-20					

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....

Page 3 of 20 26-NOV-20 13:36 (MT)

Sample Details 26-NOV-20 13:36 (MT)									
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
L2530806-2 BH102-20 SS1									
Sampled By: MATT D. on 17-NOV-20						".4	# 0	# 0	
Matrix: SOIL						<u>#1</u>	#2	#3	
Physical Tests									
% Moisture	10.6		0.25	%	20-NOV-20				
pH	8.00		0.10	pH units	23-NOV-20				
Metals			00	p a					
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	3.7		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	49.6		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	6.9		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	16.9		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	4.6		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	14.8		1.0	ug/g	24-NOV-20	92	230	140	
Lead (Pb)	25.7		1.0	ug/g	24-NOV-20	120	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9	
Nickel (Ni)	9.5		1.0	ug/g	24-NOV-20	82	270	100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	23	
Vanadium (V)	25.2		1.0	ug/g	24-NOV-20	86	86	86	
Zinc (Zn)	79.3		5.0	ug/g	24-NOV-20	290	340	340	
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.05	1.9	1.9	
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	7.8	0.99	
o-Xylene	<0.020		0.020	ug/g	20-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	113.6		50-140	%	20-NOV-20				
Surrogate: 1,4-Difluorobenzene	110.2		50-140	%	20-NOV-20				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	25	25	
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	25	25	
F2 (C10-C16)	<50	DLM	50	ug/g	24-NOV-20	**10	**26	**10	
F3 (C16-C34)	650	DLM	250	ug/g	24-NOV-20	*240	1700	*300	
F4 (C34-C50)	2270	DLM	250	ug/g	24-NOV-20	*120	3300	2800	
F4G-SG (GHH-Silica)	7680		250	ug/g	23-NOV-20	*120	*3300	*2800	
Total Hydrocarbons (C6-C50)	2910		360	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO 74.0		00.110	No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	71.8		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	87.1		60-140	%	20-NOV-20				
L2530806-3 BH1002-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
M						#1	#2	#3	
Matrix: SOIL									

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....

Page 4 of 20 26-NOV-20 13:36 (MT)

47877-100 (HEART LAKE) 26-NOV-20 13:36 (MT) Sample Details									
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	ne Limits	
L2530806-3 BH1002-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Physical Toots									
Physical Tests	0.00		0.05	0,	00 1101/ 00				
% Moisture Metals	8.36		0.25	%	20-NOV-20				
	4.0		4.0		0.4 NOV. 00	4.0	40	-	
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	3.5 52.0		1.0 1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	52.0 <0.50		0.50	ug/g	24-NOV-20 24-NOV-20	220 2.5	670	390 4	
Beryllium (Be) Boron (B)	<0.50 7.1		5.0	ug/g	24-NOV-20 24-NOV-20	2.5 36	8	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20 24-NOV-20		120	1.2	
Chromium (Cr)	18.9		1.0	ug/g	24-NOV-20 24-NOV-20	1.2 70	1.9	160	
` ,	4.6		1.0	ug/g	24-NOV-20 24-NOV-20		160 80	22	
Cobalt (Co)	4.6 15.8		1.0	ug/g		21			
Copper (Cu) Lead (Pb)	26.3		1.0	ug/g	24-NOV-20 24-NOV-20	92 120	230	140 120	
Molybdenum (Mo)	26.3 <1.0		1.0	ug/g	24-NOV-20 24-NOV-20	120 2	120		
Nickel (Ni)	<1.0 10.3		1.0	ug/g	24-NOV-20 24-NOV-20	82	40 270	6.9 100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	o∠ 1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	2.4	
Thallium (TI)	<0.20		0.20	ug/g	24-NOV-20	0.5 1	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	2.5	33	23	
Vanadium (V)	27.2		1.0	ug/g	24-NOV-20 24-NOV-20	2.5 86	86	86	
Zinc (Zn)	67.8		5.0	ug/g ug/g	24-NOV-20 24-NOV-20	290	340	340	
Volatile Organic Compounds	07.0		3.0	ug/g	24-110 7-20	290	340	340	
	-0.0068		0.0068	/	20 NOV 20	0.00	0.004	0.00	
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.034	0.02	
Ethylbenzene Toluene	<0.018 <0.080		0.018 0.080	ug/g	20-NOV-20 20-NOV-20	0.05	1.9	1.9	
o-Xylene	<0.000		0.080	ug/g ug/g	20-NOV-20 20-NOV-20	0.2	7.8	0.99	
m+p-Xylenes	<0.020		0.020	ug/g ug/g	20-NOV-20 20-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	112.2		50-140	%	20-NOV-20	0.00		0.5	
Surrogate: 1,4-Difluorobenzene	106.7		50-140	%	20-NOV-20				
Hydrocarbons			00	, ,	20 20				
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	25	25	
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	25	25	
F2 (C10-C16)	<50	DLM	50	ug/g	24-NOV-20	**10	**26	**10	
F3 (C16-C34)	390	DLM	250	ug/g	24-NOV-20	*240	1700	*300	
F4 (C34-C50)	1390	DLM	250	ug/g	24-NOV-20	*120	3300	2800	
F4G-SG (GHH-Silica)	5620		250	ug/g	23-NOV-20	*120	*3300	*2800	
Total Hydrocarbons (C6-C50)	1780		360	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	85.5		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	93.5		60-140	%	20-NOV-20				
L2530806-4 BH102-20 SS2B									
Sampled By: MATT D. on 17-NOV-20									
						#1	#2	#3	
Matrix: SOIL									
Physical Tests									
% Moisture	20.8		0.25	%	20-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 5 of 20

26-NOV-20 13:36 (MT)

4/8/7-100 (HEART LAKE) 26-NOV-20 13:36 (MT) Sample Details									
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-4 BH102-20 SS2B									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	4.9		1.0	ug/g	24-NOV-20	1.3	18	18	
Barium (Ba)	105		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	220	670	390	
Beryllium (Be)	0.79		0.50	ug/g ug/g	24-NOV-20 24-NOV-20	2.5	8	390	
Boron (B)	6.4		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	26.0		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	8.2		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	42.4		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	92	230	140	
Lead (Pb)	15.5		1.0		24-NOV-20			120	
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	120 2	120 40	6.9	
Nickel (Ni)	20.5		1.0	ug/g	24-NOV-20 24-NOV-20	82		100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	82 1.5	270 5.5	2.4	
	<0.20		0.20	ug/g	24-NOV-20 24-NOV-20				
Silver (Ag) Thallium (TI)	<0.20		0.20	ug/g	24-NOV-20 24-NOV-20	0.5	40	20 1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	1	3.3	23	
Vanadium (V)	34.8		1.0	ug/g	24-NOV-20 24-NOV-20	2.5 86	33 86	86	
	58.9		5.0	ug/g					
Zinc (Zn)	56.9		5.0	ug/g	24-NOV-20	290	340	340	
/olatile Organic Compounds				,					
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.05	1.9	1.9	
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	7.8	0.99	
o-Xylene	<0.020		0.020	ug/g	20-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20	2.05			
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	105.5		50-140	%	20-NOV-20				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	102.5		50-140	%	20-NOV-20				
				,					
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	25	25	
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	25	25	
F2 (C10-C16)	<10		10	ug/g	24-NOV-20	10	26	10	
F2-Naphth	<10		10	ug/g	24-NOV-20		.=		
F3 (C16-C34)	89		50	ug/g	24-NOV-20	240	1700	300	
F3-PAH	89		50	ug/g	24-NOV-20	****			
F4 (C34-C50)	189		50	ug/g	24-NOV-20	*120	3300	2800	
F4G-SG (GHH-Silica)	790		250	ug/g	23-NOV-20	*120	3300	2800	
Total Hydrocarbons (C6-C50)	278		72	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO 74.0		60 440	No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride Surrogate: 3,4-Dichlorotoluene	74.0 93.1		60-140 60-140	% %	24-NOV-20 20-NOV-20				
Polycyclic Aromatic Hydrocarbons	93.1		00-140	70	ZU-INU V-ZU				
	0.050		0.050		00 NOV 00	0.070	4-	0.000	
Acenaphthene	<0.050		0.050	ug/g	20-NOV-20	0.072	15	0.093	
Acenaphthylene	<0.050		0.050	ug/g	20-NOV-20	0.093	0.093	14	
Anthracene	<0.050		0.050	ug/g	20-NOV-20	0.16	0.16	0.16	
Benzo(a)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.36	1	0.5	
Benzo(a)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.3	0.7	0.57	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....

Page 6 of 20 26-NOV-20 13:36 (MT)

Sample Details				26-NOV-20 13:36 (MT					
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-4 BH102-20 SS2B									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Polycyclic Aromatic Hydrocarbons									
Benzo(b)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.47	7	5.7	
Benzo(g,h,i)perylene	<0.050		0.050	ug/g ug/g	20-NOV-20	0.47	13	6.6	
Benzo(k)fluoranthene	<0.050		0.050	ug/g ug/g	20-NOV-20	0.48	7	5.7	
Chrysene	<0.050		0.050	ug/g ug/g	20-NOV-20	2.8	14	7	
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.1	0.7	0.57	
Fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.56	70	0.69	
Fluorene	<0.050		0.050	ug/g	20-NOV-20	0.12	6.8	6.8	
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.23	0.76	0.38	
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	20-NOV-20	0.59	8.7	0.92	
1-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	8.7	0.92	
2-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	8.7	0.92	
Naphthalene	<0.013		0.013	ug/g	20-NOV-20	0.09	1.8	0.52	
Phenanthrene	<0.046		0.046	ug/g	20-NOV-20	0.69	1.0	6.2	
Pyrene	<0.050		0.050	ug/g	20-NOV-20	1	70	70	
Surrogate: 2-Fluorobiphenyl	84.8		50-140	% %	20-NOV-20	•	. •	. •	
Surrogate: p-Terphenyl d14	94.4		50-140	%	20-NOV-20				
L2530806-5 BH103-20 SS2									
Sampled By: MATT D. on 17-NOV-20						#1	#2	#3	
Matrix: SOIL									
Physical Tests									
Conductivity	1.61		0.0040	mS/cm	24-NOV-20	*0.57	*1.4	*0.7	
% Moisture	8.75		0.25	%	20-NOV-20				
Saturated Paste Extractables									
SAR	89.2	SAR:M	0.10	SAR	24-NOV-20	*2.4	*12	*5	
Calcium (Ca)	0.94		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20				
Sodium (Na)	314		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	5.1		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	77.4		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	6.1		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	16.0		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	9.3		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	32.6		1.0	ug/g	24-NOV-20	92	230	140	
Lead (Pb)	7.3		1.0	ug/g	24-NOV-20	120	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9	
Nickel (Ni)	16.8		1.0	ug/g	24-NOV-20	82	270	100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	23	
Vanadium (V)	25.7		1.0	ug/g	24-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 7 of 20

26-NOV-20 13:36 (MT)

47877-100 (HEART LAKE) Sample Details					26-NOV-20 13:36 (MT					
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits		
L2530806-5 BH103-20 SS2										
Sampled By: MATT D. on 17-NOV-20										
Matrix: SOIL						#1	#2	#3		
Metals										
motals						86	86	86		
Zinc (Zn)	42.9		5.0	ug/g	24-NOV-20	290	340	340		
Volatile Organic Compounds	72.0		0.0	ug/g	24 140 7 20	250	340	340		
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.034	0.02		
Ethylbenzene	<0.018		0.0008	ug/g	20-NOV-20	0.02	1.9	1.9		
Toluene	<0.080		0.010	ug/g	20-NOV-20	0.03	7.8	0.99		
o-Xylene	<0.020		0.020	ug/g	20-NOV-20	0.2	7.0	0.99		
m+p-Xylenes	<0.020		0.020	ug/g ug/g	20-NOV-20					
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9		
Surrogate: 4-Bromofluorobenzene	111.1		50-140	%	20-NOV-20	0.00		0.0		
Surrogate: 1,4-Difluorobenzene	106.5		50-140	%	20-NOV-20					
Hydrocarbons				"						
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	25	25		
F1-BTEX	<5.0		5.0	ug/g	23-NOV-20	25	25	25		
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	26	10		
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	300		
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	2800		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20	120	3300	2000		
Chrom. to baseline at nC50	YES		,,,	No Unit	20-NOV-20					
Surrogate: 2-Bromobenzotrifluoride	76.2		60-140	%	20-NOV-20					
Surrogate: 3,4-Dichlorotoluene	98.9		60-140	%	20-NOV-20					
L2530806-6 BH104-20 SS2										
1 ,						#1	#2	#3		
Matrix: SOIL										
Physical Tests										
Conductivity	1.37		0.0040	mS/cm	24-NOV-20	*0.57	1.4	*0.7		
% Moisture	7.47		0.25	%	20-NOV-20					
Saturated Paste Extractables										
SAR	12.6		0.10	SAR	24-NOV-20	*2.4	*12	*5		
Calcium (Ca)	14.4		0.50	mg/L	24-NOV-20					
Magnesium (Mg)	7.69		0.50	mg/L	24-NOV-20					
Sodium (Na)	239		0.50	mg/L	24-NOV-20					
Metals										
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5		
Arsenic (As)	3.6		1.0	ug/g	24-NOV-20	18	18	18		
Barium (Ba)	47.6		1.0	ug/g	24-NOV-20	220	670	390		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4		
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2		
Chromium (Cr)	9.9		1.0	ug/g	24-NOV-20	70	160	160		
Cobalt (Co)	4.9		1.0	ug/g	24-NOV-20	21	80	22		
Copper (Cu)	29.5		1.0	ug/g	24-NOV-20	92	230	140		
Lead (Pb)	8.4		1.0	ug/g	24-NOV-20	120	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9		
Nickel (Ni)	9.5		1.0	ug/g	24-NOV-20	82	270	100		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 8 of 20

26-NOV-20 13:36 (MT)

7877-100 (HEART LAKE) Sample Details				26-NOV-20 13:36 (M					
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
.2530806-6 BH104-20 SS2									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Metals									
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20	
Thallium (TI)	<0.50		0.50		24-NOV-20	0.5	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	3.3 33	23	
Vanadium (V)	18.5		1.0	ug/g ug/g	24-NOV-20	2.5 86	86	86	
Zinc (Zn)	35.1		5.0	-	24-NOV-20 24-NOV-20	290	340	340	
Volatile Organic Compounds	33.1		3.0	ug/g	24-INOV-20	290	340	340	
	-0.0068		0.0000	/	20 NOV 20	0.00	0.004	0.00	
Benzene	<0.0068		0.0068	ug/g	20-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	20-NOV-20	0.05	1.9	1.9	
Toluene	<0.080		0.080	ug/g	20-NOV-20	0.2	7.8	0.99	
o-Xylene	<0.020		0.020	ug/g	20-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	20-NOV-20	0.05	_		
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	120.7		50-140	%	20-NOV-20				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	119.6		50-140	%	20-NOV-20				
•				,	00 1101/ 00				
F1 (C6-C10)	<5.0		5.0	ug/g	20-NOV-20	25	25	25	
F1-BTEX	<5.0		5.0	ug/g	23-NOV-20	25	25	25	
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	26	10	
F2-Naphth	<10		10	ug/g	23-NOV-20				
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	300	
F3-PAH	<50		50	ug/g	23-NOV-20				
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	2800	
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20				
Chrom. to baseline at nC50	YES		00.440	No Unit	20-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	81.3		60-140	%	20-NOV-20				
Surrogate: 3,4-Dichlorotoluene Polycyclic Aromatic Hydrocarbons	79.1		60-140	%	20-NOV-20				
	0.050		0.050		20 NOV 20	0.070	45	0.000	
Acenaphthene	<0.050		0.050	ug/g	20-NOV-20	0.072	15	0.093	
Actions	<0.050		0.050	ug/g	20-NOV-20	0.093	0.093	14	
Anthracene	<0.050		0.050	ug/g	20-NOV-20	0.16	0.16	0.16	
Benzo(a)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.36	1	0.5	
Benzo(a)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.3	0.7	0.57	
Benzo(b)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.47	7	5.7	
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	20-NOV-20	0.68	13	6.6	
Benzo(k)fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.48	7	5.7	
Chrysene	<0.050		0.050	ug/g	20-NOV-20	2.8	14	7	
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	20-NOV-20	0.1	0.7	0.57	
Fluoranthene	<0.050		0.050	ug/g	20-NOV-20	0.56	70	0.69	
Fluorene	<0.050		0.050	ug/g	20-NOV-20	0.12	6.8	6.8	
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	20-NOV-20	0.23	0.76	0.38	
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	23-NOV-20	0.59	8.7	0.92	
1-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	8.7	0.92	
2-Methylnaphthalene	<0.030		0.030	ug/g	20-NOV-20	0.59	8.7	0.92	
Naphthalene	<0.013		0.013	ug/g	20-NOV-20	0.09	1.8	0.59	
Phenanthrene	<0.046		0.046	ug/g	20-NOV-20	0.69	12	6.2	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 9 of 20

26-NOV-20 13:36 (MT)

Sample Details										
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits		
L2530806-6 BH104-20 SS2										
Sampled By: MATT D. on 17-NOV-20						".4	"0	"0		
Matrix: SOIL						#1 	#2	#3	ı	
Polycyclic Aromatic Hydrocarbons										
Pyrene	<0.050		0.050	ug/g	20-NOV-20	1	70	70		
Surrogate: 2-Fluorobiphenyl	81.5		50-140	%	20-NOV-20	•				
Surrogate: p-Terphenyl d14	88.7		50-140	%	20-NOV-20					
L2530806-7 BH104-20 SS3										
Sampled By: MATT D. on 17-NOV-20										
Matrix: SOIL						#1	#2	#3		
Physical Tests										
Conductivity	1.87		0.0040	mS/cm	24-NOV-20	*0.57	*1.4	*0.7		
% Moisture	17.5		0.25	%	20-NOV-20					
pH Saturated Paste Extractables	7.60		0.10	pH units	23-NOV-20					
	40.5		0.40	CVD	24 NOV 20	*0.4	*40	*=		
SAR Calcium (Ca)	40.5 4.11		0.10 0.50	SAR mg/L	24-NOV-20 24-NOV-20	*2.4	*12	*5		
Magnesium (Mg)	0.98		0.50	mg/L	24-NOV-20 24-NOV-20					
Sodium (Na)	352		0.50	mg/L	24-NOV-20					
Metals	002		0.00	1119/2	21110120					
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5		
Arsenic (As)	2.1		1.0	ug/g	24-NOV-20	18	18	18		
Barium (Ba)	20.3		1.0	ug/g	24-NOV-20	220	670	390		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4		
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2		
Chromium (Cr)	6.8		1.0	ug/g	24-NOV-20	70	160	160		
Cobalt (Co)	3.5		1.0	ug/g	24-NOV-20	21	80	22		
Copper (Cu)	19.7		1.0	ug/g	24-NOV-20	92	230	140		
Lead (Pb)	4.8		1.0	ug/g	24-NOV-20	120	120	120		
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9		
Nickel (Ni)	6.9		1.0	ug/g	24-NOV-20	82	270	100		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1		
Uranium (U) Vanadium (V)	<1.0 14.4		1.0 1.0	ug/g	24-NOV-20 24-NOV-20	2.5	33	23		
Zinc (Zn)	22.7		5.0	ug/g ug/g	24-NOV-20 24-NOV-20	86 290	86 340	86 340		
Volatile Organic Compounds	22.1		3.0	ug/g	27-1NOV-20	250	340	340		
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.034	0.02		
Ethylbenzene	<0.008		0.008	ug/g ug/g	19-NOV-20	0.02	1.9	1.9		
Toluene	<0.080		0.010	ug/g	19-NOV-20	0.03	7.8	0.99		
o-Xylene	<0.020		0.020	ug/g	19-NOV-20	٥.٢	7.0	0.55		
m+p-Xylenes	<0.030		0.030	ug/g	19-NOV-20					
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9		
Surrogate: 4-Bromofluorobenzene	116.8		50-140	%	19-NOV-20					
Surrogate: 1,4-Difluorobenzene	113.0		50-140	%	19-NOV-20					
Hydrocarbons										
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	25	25		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 10 of 20

Sample Details Grouping Analyte 2530806-7 BH104-20 SS3 Sampled By: MATT D. on 17-NOV-20 Matrix: SOIL Hydrocarbons F1-BTEX	<5.0 <10	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
Sampled By: MATT D. on 17-NOV-20 Matrix: SOIL Hydrocarbons									
Matrix: SOIL Hydrocarbons									
Matrix: SOIL Hydrocarbons									
Hydrocarbons						#1	#2	#3	
•									
I I-DILA			5.0	ug/g	23-NOV-20	25	25	25	
F2 (C10-C16)			10	ug/g ug/g	20-NOV-20	10	26 26	10	
F3 (C16-C34)	<50		50	ug/g ug/g	20-NOV-20 20-NOV-20	240	1700	300	
F4 (C34-C50)	<50		50	ug/g ug/g	20-NOV-20 20-NOV-20	120	3300	2800	
Total Hydrocarbons (C6-C50)	<72		72	ug/g ug/g	23-NOV-20	120	3300	2000	
Chrom. to baseline at nC50	YES		12	No Unit	20-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	63.8		60-140	%	20-NOV-20				
Surrogate: 3,4-Dichlorotoluene	97.7		60-140	%	19-NOV-20				
.2530806-8 BH105-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
					-				
Physical Tests % Moisture	18.6		0.25	0/	20-NOV-20				
% Moisture Metals	18.6		0.25	%	20-NOV-20				
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	5.2		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	115		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	0.95		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	6.6		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	28.6		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	9.1		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	30.2		1.0	ug/g	24-NOV-20	92	230	140	
Lead (Pb)	12.1		1.0	ug/g	24-NOV-20	120	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9	
Nickel (Ni)	25.2		1.0	ug/g	24-NOV-20	82	270	100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1	
Uranium (U)	1.1		1.0	ug/g	24-NOV-20	2.5	33	23	
Vanadium (V)	39.8		1.0	ug/g	24-NOV-20	86	86	86	
Zinc (Zn)	93.2		5.0	ug/g	24-NOV-20	290	340	340	
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	1.9	1.9	
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	7.8	0.99	
o-Xylene	<0.020		0.020	ug/g	19-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	19-NOV-20	0.05		0.0	
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	118.3		50-140 50-140	%	19-NOV-20				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	113.9		50-140	%	19-NOV-20				
•	.F.O		5 0	110/0	10 NOV 20	25	25	25	
F1 (C6-C10) F1-BTEX	<5.0 <5.0		5.0 5.0	ug/g	19-NOV-20 23-NOV-20	25 25	25 25	25 25	
I-DIEV	<5.0		5.0	ug/g	23-INUV-20	25	25	25	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 11 of 20

7877-100 (HEART LAKE)	, (I (J, (E I)		26-NOV-20 13:36 (M						
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
_2530806-8 BH105-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Hydrocarbons									
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	26	10	
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	300	
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	2800	
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20				
Chrom. to baseline at nC50	YES			No Unit	20-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	76.9		60-140	%	20-NOV-20				
Surrogate: 3,4-Dichlorotoluene	95.2		60-140	%	19-NOV-20				
Organochlorine Pesticides									
Aldrin	<0.020		0.020	ug/g	25-NOV-20	0.05	0.088	0.05	
gamma-hexachlorocyclohexane	<0.010		0.010	ug/g	25-NOV-20	0.01	0.01	0.01	
a-chlordane	<0.020		0.020	ug/g	25-NOV-20				
Chlordane (Total)	<0.028		0.028	ug/g	25-NOV-20	0.05	0.05	0.05	
g-chlordane	<0.020		0.020	ug/g	25-NOV-20				
op-DDD	<0.020		0.020	ug/g	25-NOV-20				
pp-DDD	<0.020		0.020	ug/g	25-NOV-20				
Total DDD	<0.028		0.028	ug/g	25-NOV-20	0.05	4.6	3.3	
o,p-DDE	<0.020		0.020	ug/g	25-NOV-20				
pp-DDE	<0.020		0.020	ug/g	25-NOV-20	0.05	0.50	0.00	
Total DDE	<0.028 <0.020		0.028 0.020	ug/g	25-NOV-20 25-NOV-20	0.05	0.52	0.26	
op-DDT pp-DDT	<0.020		0.020	ug/g	25-NOV-20 25-NOV-20				
Total DDT	<0.020		0.020	ug/g ug/g	25-NOV-20 25-NOV-20	1.4	1.4	1.4	
Dieldrin	<0.020		0.020	ug/g ug/g	25-NOV-20	0.05	0.088	0.05	
Endosulfan I	<0.020		0.020	ug/g ug/g	25-NOV-20	0.03	0.000	0.03	
Endosulfan II	<0.020		0.020	ug/g ug/g	25-NOV-20				
Endosulfan (Total)	<0.028		0.028	ug/g	25-NOV-20	0.04	0.3	0.04	
Endrin	<0.020		0.020	ug/g	25-NOV-20	0.04	0.04	0.04	
Heptachlor	<0.020		0.020	ug/g	25-NOV-20	0.05	0.072	0.072	
Heptachlor Epoxide	<0.020		0.020	ug/g	25-NOV-20	0.05	0.05	0.05	
Hexachlorobenzene	<0.010		0.010	ug/g	25-NOV-20	0.01	0.66	0.52	
Hexachlorobutadiene	<0.010		0.010	ug/g	25-NOV-20	0.01	0.01	0.01	
Hexachloroethane	<0.010		0.010	ug/g	25-NOV-20	0.01	0.13	0.01	
Methoxychlor	<0.020		0.020	ug/g	25-NOV-20	0.05	0.19	0.13	
Surrogate: 2-Fluorobiphenyl	68.8		50-140	%	25-NOV-20	00			
Surrogate: d14-Terphenyl	61.5		50-140	%	25-NOV-20				
2530806-9 BH106-20 SA1									
campled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Physical Tests									
•	0.470		0.0040	m C/	24 NOV 22	0.53			
Conductivity	0.473		0.0040	mS/cm	24-NOV-20	0.57	1.4	0.7	
% Moisture Saturated Paste Extractables	12.8		0.25	%	20-NOV-20				
			0.10	0.5	04.11014.55	45	, -		
SAR	6.54		0.10	SAR	24-NOV-20	*2.4	12	*5	
Calcium (Ca)	13.7		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	0.58		0.50	mg/L	24-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 12 of 20 26-NOV-20 13:36 (MT)

Sample Details							2	26-NOV-20 13	3:36
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed	Guideline Limits			
L2530806-9 BH106-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Saturated Paste Extractables									
Sodium (Na)	90.9		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	3.5		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	53.9		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	5.6		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	15.9		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	6.5		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	31.7		1.0	ug/g	24-NOV-20	92	230	140	
Lead (Pb)	16.4		1.0	ug/g	24-NOV-20	120	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9	
Nickel (Ni)	13.4		1.0	ug/g	24-NOV-20	82	270	100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	23	
Vanadium (V)	21.9		1.0	ug/g	24-NOV-20	86	86	86	
Zinc (Zn)	89.6		5.0	ug/g	24-NOV-20	290	340	340	
Volatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.02	1.9	1.9	
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	7.8	0.99	
o-Xylene	<0.020		0.020	ug/g	19-NOV-20	0.2	7.0	0.55	
m+p-Xylenes	<0.030		0.020	ug/g	19-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	117.3		50-140	ug/g %	19-NOV-20	0.00			
Surrogate: 1,4-Difluorobenzene	112.3		50-140	%	19-NOV-20				
Hydrocarbons				"	.5 .1.5 \ 20				
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	25	25	
F1-BTEX	<5.0 <5.0		5.0	ug/g	24-NOV-20	25 25	25 25	25	
F2 (C10-C16)	<10		10	ug/g	24-NOV-20	10	26	10	
F3 (C16-C34)	<50		50	ug/g	24-NOV-20	240	1700	300	
F4 (C34-C50)	115		50	ug/g ug/g	24-NOV-20	120	3300	2800	
F4 (C34-C30) F4G-SG (GHH-Silica)	610		250		23-NOV-20	*120	3300	2800	
Total Hydrocarbons (C6-C50)	115		72	ug/g	23-NOV-20 24-NOV-20	120	3300	2000	
Chrom. to baseline at nC50	NO		'2	ug/g No Unit	24-NOV-20 24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	81.7		60-140	%	24-NOV-20 24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	97.5		60-140	% %	19-NOV-20				
Organochlorine Pesticides	37.3		00-140	/ /	13 140 7-20				
Aldrin	<0.020		0.020	110/0	25-NOV-20	0.05	0.000	0.05	
		DIM		ug/g		0.05	0.088		
gamma-hexachlorocyclohexane	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	**0.01	**0.01	
a-chlordane	<0.020		0.020	ug/g	25-NOV-20	0.05	0.05	0.05	
Chlordane (Total)	<0.028		0.028	ug/g	25-NOV-20	0.05	0.05	0.05	
g-chlordane	<0.020		0.020	ug/g	25-NOV-20				

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 13 of 20 26-NOV-20 13:36 (MT)

Sample Details							2	26-NOV-20 1	3:36 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelii	ne Limits	
L2530806-9 BH106-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Owen sellerine Besticides									
Organochlorine Pesticides				,					
op-DDD	<0.020		0.020	ug/g	25-NOV-20				
pp-DDD	<0.020		0.020	ug/g	25-NOV-20 25-NOV-20	0.05	4.0	0.0	
Total DDD	<0.028		0.028	ug/g		0.05	4.6	3.3	
o,p-DDE pp-DDE	<0.020 <0.020		0.020 0.020	ug/g	25-NOV-20 25-NOV-20				
Total DDE	<0.020		0.020	ug/g ug/g	25-NOV-20 25-NOV-20	0.05	0.52	0.26	
op-DDT	<0.020		0.020	ug/g	25-NOV-20	0.03	0.52	0.20	
pp-DDT	<0.020		0.020	ug/g	25-NOV-20				
Total DDT	<0.028		0.028	ug/g	25-NOV-20	1.4	1.4	1.4	
Dieldrin	<0.020		0.020	ug/g	25-NOV-20	0.05	0.088	0.05	
Endosulfan I	<0.020		0.020	ug/g	25-NOV-20	0.00	0.000	0.00	
Endosulfan II	<0.020		0.020	ug/g	25-NOV-20				
Endosulfan (Total)	<0.028		0.028	ug/g	25-NOV-20	0.04	0.3	0.04	
Endrin	<0.020		0.020	ug/g	25-NOV-20	0.04	0.04	0.04	
Heptachlor	<0.020		0.020	ug/g	25-NOV-20	0.05	0.072	0.072	
Heptachlor Epoxide	<0.020		0.020	ug/g	25-NOV-20	0.05	0.05	0.05	
Hexachlorobenzene	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	0.66	0.52	
Hexachlorobutadiene	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	**0.01	**0.01	
Hexachloroethane	<0.050	DLM	0.050	ug/g	25-NOV-20	**0.01	0.13	**0.01	
Methoxychlor	<0.020		0.020	ug/g	25-NOV-20	0.05	0.19	0.13	
Surrogate: 2-Fluorobiphenyl	67.8		50-140	%	25-NOV-20	0.00	00	00	
Surrogate: d14-Terphenyl	58.3		50-140	%	25-NOV-20				
L2530806-10 BH106-20 SA2									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Physical Tests									
Conductivity	0.985		0.0040	mS/cm	24-NOV-20	*0.57	1.4	*0.7	
% Moisture	20.6		0.25	%	20-NOV-20				
pH	7.34		0.10	pH units	23-NOV-20				
Saturated Paste Extractables									
SAR	24.3	SAR:M	0.10	SAR	24-NOV-20	*2.4	*12	*5	
Calcium (Ca)	4.48		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20				
Sodium (Na)	187		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	2.0		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	15.8		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	7.7		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	3.1		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	13.1		1.0	ug/g	24-NOV-20	92	230	140	
Lead (Pb)	3.8		1.0	ug/g	24-NOV-20	120	120	120	
	1	1	1		1	l .		1	1

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 14 of 20 26-NOV-20 13:36 (MT)

47877-100 (HEART LAKE) Sample Details		26								
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits		
L2530806-10 BH106-20 SA2										
Sampled By: MATT D. on 17-NOV-20										
Matrix: SOIL						#1	#2	#3		
Metals										
Molybdenum (Mo)	<1.0		1.0	ug/g	24-NOV-20	2	40	6.9		
Nickel (Ni)	6.1		1.0	ug/g	24-NOV-20	82	270	100		
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4		
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20		
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1		
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	23		
Vanadium (V)	16.5		1.0	ug/g	24-NOV-20	86	86	86		
Zinc (Zn)	19.3		5.0	ug/g	24-NOV-20	290	340	340		
Volatile Organic Compounds										
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.034	0.02		
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	1.9	1.9		
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	7.8	0.99		
o-Xylene	<0.020		0.020	ug/g	19-NOV-20					
m+p-Xylenes	< 0.030		0.030	ug/g	19-NOV-20					
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9		
Surrogate: 4-Bromofluorobenzene	112.3		50-140	%	19-NOV-20					
Surrogate: 1,4-Difluorobenzene	107.9		50-140	%	19-NOV-20					
Hydrocarbons										
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	25	25		
F1-BTEX	<5.0		5.0	ug/g	23-NOV-20	25	25	25		
F2 (C10-C16)	<10		10	ug/g	20-NOV-20	10	26	10		
F3 (C16-C34)	<50		50	ug/g	20-NOV-20	240	1700	300		
F4 (C34-C50)	<50		50	ug/g	20-NOV-20	120	3300	2800		
Total Hydrocarbons (C6-C50)	<72		72	ug/g	23-NOV-20					
Chrom. to baseline at nC50	YES		00.440	No Unit	20-NOV-20					
Surrogate: 2-Bromobenzotrifluoride	72.7		60-140 60-140	% %	20-NOV-20					
Surrogate: 3,4-Dichlorotoluene	83.1		60-140	70	19-NOV-20					
L2530806-11 BH107-20 SS1										
Sampled By: MATT D. on 17-NOV-20							""	"0		
Matrix: SOIL						#1 	#2	#3		
Physical Tests										
Conductivity	0.127		0.0040	mS/cm	24-NOV-20	0.57	1.4	0.7		
% Moisture	9.13		0.25	%	20-NOV-20	0.07	1	0.7		
Saturated Paste Extractables	00		0.20	,,,	20 110 1 20					
SAR	1.86	SAR:M	0.10	SAR	24-NOV-20	2.4	12	5		
Calcium (Ca)	5.85	0,	0.50	mg/L	24-NOV-20	2.7	12			
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20					
Sodium (Na)	16.3		0.50	mg/L	24-NOV-20					
Metals										
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5		
Arsenic (As)	2.6		1.0	ug/g	24-NOV-20	18	18	18		
Barium (Ba)	32.4		1.0	ug/g	24-NOV-20	220	670	390		
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4		
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	120		
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 15 of 20 26-NOV-20 13:36 (MT)

7877-100 (HEART LAKE)							2	26-NOV-20 13	3:36 (M
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
.2530806-11 BH107-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Metals									
Chromium (Cr)	17.4		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	3.7		1.0	-	24-NOV-20	21	80	22	
` '	42.8		1.0	ug/g	24-NOV-20 24-NOV-20	92		140	
Copper (Cu) Lead (Pb)	25.7		1.0	ug/g	24-NOV-20 24-NOV-20		230	120	
• •	<1.0		1.0	ug/g		120	120	1	
Molybdenum (Mo)	8.7		1.0	ug/g	24-NOV-20	2	40	6.9	
Nickel (Ni)				ug/g	24-NOV-20	82	270	100	
Selenium (Se)	<1.0		1.0	ug/g	24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20	ug/g	24-NOV-20	0.5	40	20	
Thallium (TI)	<0.50		0.50	ug/g	24-NOV-20	1	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20	2.5	33	23	
Vanadium (V)	20.9		1.0	ug/g	24-NOV-20	86	86	86	
Zinc (Zn)	66.0		5.0	ug/g	24-NOV-20	290	340	340	
olatile Organic Compounds									
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	1.9	1.9	
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	7.8	0.99	
o-Xylene	<0.020		0.020	ug/g	19-NOV-20				
m+p-Xylenes	<0.030		0.030	ug/g	19-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	137.4		50-140	%	19-NOV-20				
Surrogate: 1,4-Difluorobenzene	135.1		50-140	%	19-NOV-20				
lydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	25	25	
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	25	25	
F2 (C10-C16)	<20	DLM	20	ug/g	24-NOV-20	**10	26	**10	
F2-Naphth	<20		20	ug/g	24-NOV-20				
F3 (C16-C34)	410	DLM	100	ug/g	24-NOV-20	*240	1700	*300	
F3-PAH	410		100	ug/g	24-NOV-20				
F4 (C34-C50)	830	DLM	100	ug/g	24-NOV-20	*120	3300	2800	
F4G-SG (GHH-Silica)	3040		250	ug/g	23-NOV-20	*120	3300	*2800	
Total Hydrocarbons (C6-C50)	1240		140	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	81.0		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	88.8		60-140	%	19-NOV-20				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	24-NOV-20	0.072	15	0.093	
Acenaphthylene	<0.050		0.050	ug/g	24-NOV-20	0.093	0.093	14	
Anthracene	<0.050		0.050	ug/g	24-NOV-20	0.16	0.16	0.16	
Benzo(a)anthracene	<0.050		0.050	ug/g	24-NOV-20	0.36	1	0.5	
Benzo(a)pyrene	<0.050		0.050	ug/g	24-NOV-20	0.3	0.7	0.57	
Benzo(b)fluoranthene	<0.050		0.050	ug/g	24-NOV-20	0.47	7	5.7	
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	24-NOV-20	0.68	13	6.6	
Benzo(k)fluoranthene	<0.050		0.050	ug/g	24-NOV-20	0.48	7	5.7	
Chrysene	0.055		0.050	ug/g	24-NOV-20	2.8	14	7	
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	24-NOV-20	0.1	0.7	0.57	
Fluoranthene	<0.050		0.050	ug/g	24-NOV-20	0.56	70	0.69	
	-5.000	1	0.000	∣ ∽ອ,ອ	20	0.00	, , ,	0.00	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....
Page 16 of 20
26-NOV-20 13:36 (MT)

7877-100 (HEART LAKE) Sample Details	26-NOV								
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-11 BH107-20 SS1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2	#3	
Polycyclic Aromatic Hydrocarbons									
Fluorene	<0.050		0.050	ug/g	24-NOV-20	0.12	6.8	6.8	
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	24-NOV-20	0.23	0.76	0.38	
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	24-NOV-20	0.59	8.7	0.92	
1-Methylnaphthalene	<0.030		0.030	ug/g	24-NOV-20	0.59	8.7	0.92	
2-Methylnaphthalene	<0.030		0.030	ug/g	24-NOV-20	0.59	8.7	0.92	
Naphthalene	<0.013		0.013	ug/g	24-NOV-20	0.09	1.8	0.59	
Phenanthrene	<0.046		0.046	ug/g	24-NOV-20	0.69	12	6.2	
Pyrene	<0.050		0.050	ug/g	24-NOV-20	1	70	70	
Surrogate: 2-Fluorobiphenyl	78.4		50-140	%	24-NOV-20	•	70	10	
Surrogate: p-Terphenyl d14	92.8		50-140	% %	24-NOV-20				
	32.0		00 140	/0					
L2530806-12 BH108-20 SA1									
Sampled By: MATT D. on 17-NOV-20						11.4	" 0	"0	
Matrix: SOIL						#1	#2	#3	
Physical Tests									
Conductivity	0.363		0.0040	mS/cm	24-NOV-20	0.57	1.4	0.7	
% Moisture	14.8		0.25	%	20-NOV-20				
Saturated Paste Extractables									
SAR	13.9	SAR:M	0.10	SAR	24-NOV-20	*2.4	*12	*5	
Calcium (Ca)	2.01		0.50	mg/L	24-NOV-20				
Magnesium (Mg)	<0.50		0.50	mg/L	24-NOV-20				
Sodium (Na)	71.8		0.50	mg/L	24-NOV-20				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	2.4		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	24.8		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	<0.50		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	<5.0		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	<0.50		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	10.6		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	4.0		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	15.9		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	92	230	140	
Lead (Pb)	12.6		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	120	120	120	
Molybdenum (Mo)	<1.0		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	2	40	6.9	
Nickel (Ni)	8.4		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	82	270	100	
Selenium (Se)	<1.0		1.0	ug/g ug/g	24-NOV-20 24-NOV-20	1.5	5.5	2.4	
Silver (Ag)	<0.20		0.20		24-NOV-20 24-NOV-20	0.5	3.5 40	2.4	
Thallium (TI)	<0.20		0.20	ug/g	24-NOV-20 24-NOV-20	0.5 1	3.3	1	
Uranium (U)	<1.0		1.0	ug/g	24-NOV-20 24-NOV-20	2.5		23	
Vanadium (V)	15.0		1.0	ug/g	24-NOV-20 24-NOV-20		33		
` ,			5.0	ug/g		86	86	86	
Zinc (Zn) Volatile Organic Compounds	48.8		5.0	ug/g	24-NOV-20	290	340	340	
	40,0000		0.0068	110/0	10 NOV 20	0.00	0.004	0.00	
Benzene	<0.0068		0.0068	ug/g	19-NOV-20	0.02	0.034	0.02	
Ethylbenzene	<0.018		0.018	ug/g	19-NOV-20	0.05	1.9	1.9	
Toluene	<0.080		0.080	ug/g	19-NOV-20	0.2	7.8	0.99	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

47877-100 (HEART LAKE)

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD.... Page 17 of 20 26-NOV-20 13:36 (MT)

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
2530806-12 BH108-20 SA1									
ampled By: MATT D. on 17-NOV-20						44	#0	#0	
Matrix: SOIL						#1	#2	#3	1
/olatile Organic Compounds									
o-Xylene	<0.020		0.020	ug/g	19-NOV-20				
m+p-Xylenes	< 0.030		0.030	ug/g	19-NOV-20				
Xylenes (Total)	<0.050		0.050	ug/g	20-NOV-20	0.05	3	0.9	
Surrogate: 4-Bromofluorobenzene	110.1		50-140	%	19-NOV-20				
Surrogate: 1,4-Difluorobenzene	106.8		50-140	%	19-NOV-20				
lydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	19-NOV-20	25	25	25	
F1-BTEX	<5.0		5.0	ug/g	24-NOV-20	25	25	25	
F2 (C10-C16)	<10		10	ug/g	24-NOV-20	10	26	10	
F3 (C16-C34)	56		50	ug/g	24-NOV-20	240	1700	300	
F4 (C34-C50)	126		50	ug/g	24-NOV-20	*120	3300	2800	
F4G-SG (GHH-Silica)	550		250	ug/g	23-NOV-20	*120	3300	2800	
Total Hydrocarbons (C6-C50)	181		72	ug/g	24-NOV-20				
Chrom. to baseline at nC50	NO			No Unit	24-NOV-20				
Surrogate: 2-Bromobenzotrifluoride	66.5		60-140	%	24-NOV-20				
Surrogate: 3,4-Dichlorotoluene	89.2		60-140	%	19-NOV-20				
2530806-13 BH108-20 SA2									
ampled By: MATT D. on 17-NOV-20									
						#1	#2	#3	
Matrix: SOIL									
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	24-NOV-20	1.3	40	7.5	
Arsenic (As)	6.1		1.0	ug/g	24-NOV-20	18	18	18	
Barium (Ba)	122		1.0	ug/g	24-NOV-20	220	670	390	
Beryllium (Be)	0.62		0.50	ug/g	24-NOV-20	2.5	8	4	
Boron (B)	6.8		5.0	ug/g	24-NOV-20	36	120	120	
Cadmium (Cd)	1.07		0.50	ug/g	24-NOV-20	1.2	1.9	1.2	
Chromium (Cr)	15.9		1.0	ug/g	24-NOV-20	70	160	160	
Cobalt (Co)	4.7		1.0	ug/g	24-NOV-20	21	80	22	
Copper (Cu)	35.7		1.0	ug/g	24-NOV-20	92	230	140	
Lead (Pb)	15.4		1.0	ug/g	24-NOV-20	120	120	120	
	1.2		1.0	ug/g	24-NOV-20	2	40	6.9	
Molybdenum (Mo)				,	104 11014 00	00	270	100	
Molybdenum (Mo) Nickel (Ni)	15.2		1.0	ug/g	24-NOV-20	82	210		
• • •	15.2 1.6		1.0 1.0	ug/g ug/g	24-NOV-20 24-NOV-20	*1.5	5.5	2.4	
Nickel (Ni)	1								
Nickel (Ni) Selenium (Se)	1.6		1.0	ug/g	24-NOV-20	*1.5	5.5	2.4	
Nickel (Ni) Selenium (Se) Silver (Ag)	1.6 <0.20		1.0 0.20	ug/g ug/g	24-NOV-20 24-NOV-20	*1.5 0.5	5.5 40	2.4 20	
Nickel (Ni) Selenium (Se) Silver (Ag) Thallium (TI)	1.6 <0.20 <0.50		1.0 0.20 0.50	ug/g ug/g ug/g	24-NOV-20 24-NOV-20 24-NOV-20	*1.5 0.5 1	5.5 40 3.3	2.4 20 1	

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 406/19 - Excess Soils - 19 November 2019 = [Suite] - ON-406-T1/T3.1-SOIL-RPIICC

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Sample Parameter Qualifier key listed:

Qualifier Description SAR:M Reported SAR represents a maximum value. Actual SAR may be lower if both Ca and Mg were detectable. DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Methods Listed (if applicable):

mothodo ziotod (ii ap	piloubio).		
ALS Test Code	Matrix	Test Description	Method Reference***
BTX-511-HS-WT	Soil	BTEX-O.Reg 153/04 (July 2011)	SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CHLORDANE-T-CALC-Soil Chlordane Total sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

DDD-DDE-DDT-CALC-WT Soil DDD, DDE, DDT sums **CALCULATION**

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

EC-WT Soil Conductivity (EC) **MOEE E3138**

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

ENDOSULFAN-T-CALC-Endosulfan Total sums **CALCULATION**

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending on the sample matrix and analyzed by GC/MS.

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

F4G SG-O.Reg 153/04 (July

MOE DECPH-E3398/CCME TIER 1

2011)
F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

MET-200.2-CCMS-WT

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

METHYLNAPS-CALC-WT Soil

ABN-Calculated Parameters

SW846 8270

MOISTURE-WT PAH-511-WT

Soil Soil

PAH-O.Reg 153/04 (July 2011)

CCME PHC in Soil - Tier 1 (mod)

% Moisture SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking techniqueis used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PEST-OC-511-WT

Soil

OC Pesticides-O.Reg 153/04

SW846 8270 (511)

(July 2011)
Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-WT

Soil

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

Reference Information

SAR-R511-WT

Soil

SAR-O.Reg 153/04 (July 2011)

SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

17-825494

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO ONTARIO, CANADA	,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2530806 Report Date: 26-NOV-20 Page 1 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R5	290437							
WG3447892-4 Benzene	DUP	WG3447892-3 < 0.0068	<0.0068	RPD-NA	ug/g	N/A	40	19-NOV-20
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	19-NOV-20
m+p-Xylenes		<0.030	< 0.030	RPD-NA	ug/g	N/A	40	19-NOV-20
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	19-NOV-20
Toluene		<0.080	<0.080	RPD-NA	ug/g	N/A	40	19-NOV-20
WG3447892-2 Benzene	LCS		110.8		%		70-130	19-NOV-20
Ethylbenzene			102.8		%		70-130	19-NOV-20
m+p-Xylenes			103.9		%		70-130	19-NOV-20
o-Xylene			105.9		%		70-130	19-NOV-20
Toluene			107.6		%		70-130	19-NOV-20
WG3447892-1 Benzene	МВ		<0.0068		ug/g		0.0068	19-NOV-20
Ethylbenzene			<0.018		ug/g		0.018	19-NOV-20
m+p-Xylenes			<0.030		ug/g		0.03	19-NOV-20
o-Xylene			<0.020		ug/g		0.02	19-NOV-20
Toluene			<0.080		ug/g		0.08	19-NOV-20
Surrogate: 1,4-I	Difluorobenzene		121.1		%		50-140	19-NOV-20
Surrogate: 4-Br	omofluorobenzene		126.4		%		50-140	19-NOV-20
WG3447892-5	MS	WG3447892-3						
Benzene			103.8		%		60-140	19-NOV-20
Ethylbenzene			94.9		%		60-140	19-NOV-20
m+p-Xylenes			96.7		%		60-140	19-NOV-20
o-Xylene			98.2		%		60-140	19-NOV-20
Toluene			100.3		%		60-140	19-NOV-20
Batch R5	290765							
WG3447145-4 Benzene	DUP	WG3447145-3 < 0.0068	<0.0068	RPD-NA	ug/g	N/A	40	20-NOV-20
Ethylbenzene		<0.018	<0.018	RPD-NA	ug/g	N/A	40	20-NOV-20
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	20-NOV-20 20-NOV-20
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20 20-NOV-20
Toluene		<0.020	<0.080	RPD-NA	ug/g	N/A	40	20-NOV-20 20-NOV-20
WG3447145-2	LCS	10.000	~0.000	NED-INA	~g/g	IN/A	40	20-INO V-20
Benzene	LUG		108.6		%		70-130	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 2 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT		Soil							
Batch R5 WG3447145-2 Ethylbenzene	290765 LCS			86.0		%		70-130	20-NOV-20
m+p-Xylenes				90.6		%		70-130	20-NOV-20
o-Xylene				87.0		%		70-130	20-NOV-20
Toluene				91.4		%		70-130	20-NOV-20
WG3447145-1 Benzene	MB			<0.0068		ug/g		0.0068	20-NOV-20
Ethylbenzene				<0.018		ug/g		0.018	20-NOV-20
m+p-Xylenes				<0.030		ug/g		0.03	20-NOV-20
o-Xylene				<0.020		ug/g		0.02	20-NOV-20
Toluene				<0.080		ug/g		80.0	20-NOV-20
Surrogate: 1,4-l	Difluorob	enzene		113.4		%		50-140	20-NOV-20
Surrogate: 4-Br	omofluor	obenzene		97.1		%		50-140	20-NOV-20
WG3447145-5 Benzene	MS		WG3447145-3	110.8		%		60-140	20-NOV-20
Ethylbenzene				87.6		%		60-140	20-NOV-20
m+p-Xylenes				91.7		%		60-140	20-NOV-20
o-Xylene				82.3		%		60-140	20-NOV-20
Toluene				93.7		%		60-140	20-NOV-20
EC-WT		Soil							
Batch R5	296958								
WG3450328-4 Conductivity	DUP		WG3450328-3 0.242	0.228		mS/cm	6.0	20	24-NOV-20
WG3450328-2 Conductivity	IRM		WT SAR4	89.1		%		70-130	24-NOV-20
WG3450689-1 Conductivity	LCS			99.1		%		90-110	24-NOV-20
WG3450328-1 Conductivity	МВ			<0.0040		mS/cm		0.004	24-NOV-20
F1-HS-511-WT		Soil							
	290437								
WG3447892-4 F1 (C6-C10)	DUP		WG3447892-3 <5.0	<5.0	RPD-NA	ug/g	N/A	30	19-NOV-20
WG3447892-2 F1 (C6-C10)	LCS			88.6		%		80-120	19-NOV-20
WG3447892-1	MB							-	-

Workorder: L2530806 Report Date: 26-NOV-20 Page 3 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT	Soil							
Batch R	5290437							
WG3447892-1 F1 (C6-C10)	MB		<5.0		ug/g		5	19-NOV-20
Surrogate: 3,4-	Dichlorotoluene		108.0		%		60-140	19-NOV-20
WG3447892-6 F1 (C6-C10)	MS	L2531070-2	86.9		%		60-140	19-NOV-20
Batch R	5290765							
WG3447145-4 F1 (C6-C10)	DUP	WG3447145 -<5.0	< 5.0	RPD-NA	ug/g	N/A	30	20-NOV-20
WG3447145-2 F1 (C6-C10)	LCS		99.4		%		80-120	20-NOV-20
WG3447145-1 F1 (C6-C10)	МВ		<5.0		ug/g		5	20-NOV-20
Surrogate: 3,4-	Dichlorotoluene		116.2		%		60-140	20-NOV-20
WG3447145-6	MS	L2530464-5	07.5		0/		00.440	
F1 (C6-C10)			97.5		%		60-140	20-NOV-20
F2-F4-511-WT	Soil							
	5291582		_					
WG3447829-3 F2 (C10-C16)	DUP	WG3447829 - <10	·5 <10	RPD-NA	ug/g	N/A	30	20-NOV-20
F3 (C16-C34)		<50	<50	RPD-NA	ug/g	N/A	30	20-NOV-20
F4 (C34-C50)		<50	<50	RPD-NA	ug/g	N/A	30	20-NOV-20
WG3447829-2 F2 (C10-C16)	LCS		103.9		%		80-120	20-NOV-20
F3 (C16-C34)			104.3		%		80-120	20-NOV-20
F4 (C34-C50)			104.8		%		80-120	20-NOV-20
WG3447829-1 F2 (C10-C16)	МВ		<10		ug/g		10	20-NOV-20
F3 (C16-C34)			<50		ug/g		50	20-NOV-20
F4 (C34-C50)			<50		ug/g		50	20-NOV-20
Surrogate: 2-Bi	romobenzotrifluoride		96.3		%		60-140	20-NOV-20
WG3447829-4 F2 (C10-C16)	MS	WG3447829-	·5 99.4		%		60-140	20-NOV-20
F3 (C16-C34)			101.4		%		60-140	20-NOV-20
F4 (C34-C50)			102.1		%		60-140	20-NOV-20
,								 _

Workorder: L2530806 Report Date: 26-NOV-20 Page 4 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F2-F4-511-WT		Soil							
Batch R5	292716								
WG3447843-7	DUP		WG3447843-6						
F2 (C10-C16)			<10	<10	RPD-NA	ug/g	N/A	30	23-NOV-20
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	23-NOV-20
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	23-NOV-20
WG3447843-2 F2 (C10-C16)	LCS			89.3		%		80-120	20-NOV-20
F3 (C16-C34)				85.0		%		80-120	20-NOV-20
F4 (C34-C50)				68.3	LCS-L	%		80-120	20-NOV-20
WG3447843-1 F2 (C10-C16)	MB			<10		ug/g		10	20-NOV-20
F3 (C16-C34)				<50		ug/g		50	20-NOV-20
F4 (C34-C50)				<50		ug/g		50	20-NOV-20
Surrogate: 2-Br	omobenz	otrifluoride		89.1		%		60-140	20-NOV-20
WG3447843-8	MS	-otimaonao	WG3447843-6			,0		00 110	20-110 7-20
F2 (C10-C16)	IVIO		VV G 344 / 643-6	97.0		%		60-140	23-NOV-20
F3 (C16-C34)				88.6		%		60-140	23-NOV-20
F4 (C34-C50)				75.0		%		60-140	23-NOV-20
Batch R5	296980								
WG3450219-3	DUP		WG3450219-	5					
F2 (C10-C16)	-		<10	<10	RPD-NA	ug/g	N/A	30	24-NOV-20
F3 (C16-C34)			<50	<50	RPD-NA	ug/g	N/A	30	24-NOV-20
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	30	24-NOV-20
WG3450219-2 F2 (C10-C16)	LCS			100.6		%		80-120	24-NOV-20
F3 (C16-C34)				106.0		%		80-120	24-NOV-20
F4 (C34-C50)				110.9		%		80-120	24-NOV-20
WG3450219-1	МВ			<10					
F2 (C10-C16)						ug/g		10	24-NOV-20
F3 (C16-C34)				<50		ug/g		50	24-NOV-20
F4 (C34-C50)		(-:11)		<50		ug/g		50	24-NOV-20
Surrogate: 2-Br		zotrifluoride		81.1		%		60-140	24-NOV-20
WG3450219-4 F2 (C10-C16)	MS		WG3450219-	5 98.3		%		60-140	24-NOV-20
F3 (C16-C34)				102.0		%		60-140	24-NOV-20
F4 (C34-C50)				107.2		%		60-140	24-NOV-20
E4G-ADD-511-WT		Soil							

F4G-ADD-511-WT Soil

Workorder: L2530806 Report Date: 26-NOV-20 Page 5 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F4G-ADD-511-WT	Soil							
Batch R5297134 WG3451247-2 LCS F4G-SG (GHH-Silica)			65.3		%		60-140	23-NOV-20
WG3451247-1 MB F4G-SG (GHH-Silica)			<250		ug/g		250	23-NOV-20
MET-200.2-CCMS-WT	Soil							
Batch R5297165 WG3450325-2 CRM Antimony (Sb)		WT-SS-2	89.8		%		70-130	24-NOV-20
Arsenic (As)			96.5		%		70-130	24-NOV-20
Barium (Ba)			98.0		%		70-130	24-NOV-20
Beryllium (Be)			93.1		%		70-130	24-NOV-20
Boron (B)			7.1		mg/kg		3.5-13.5	24-NOV-20
Cadmium (Cd)			118.6		%		70-130	24-NOV-20
Chromium (Cr)			93.0		%		70-130	24-NOV-20
Cobalt (Co)			96.6		%		70-130	24-NOV-20
Copper (Cu)			97.2		%		70-130	24-NOV-20
Lead (Pb)			96.8		%		70-130	24-NOV-20
Molybdenum (Mo)			96.2		%		70-130	24-NOV-20
Nickel (Ni)			99.2		%		70-130	24-NOV-20
Selenium (Se)			0.12		mg/kg		0-0.34	24-NOV-20
Silver (Ag)			87.1		%		70-130	24-NOV-20
Thallium (TI)			0.070		mg/kg		0.029-0.129	24-NOV-20
Uranium (U)			85.0		%		70-130	24-NOV-20
Vanadium (V)			96.1		%		70-130	24-NOV-20
Zinc (Zn)			96.2		%		70-130	24-NOV-20
WG3450325-6 DUP Antimony (Sb)		WG3450325-5 4.96	4.13		ug/g	18	30	24-NOV-20
Arsenic (As)		4.15	3.65		ug/g	13	30	24-NOV-20
Barium (Ba)		583	477		ug/g	20	40	24-NOV-20
Beryllium (Be)		0.15	0.12		ug/g	23	30	24-NOV-20
Boron (B)		<5.0	<5.0	RPD-NA	ug/g	N/A	30	24-NOV-20
Cadmium (Cd)		2.05	1.63		ug/g	23	30	24-NOV-20
Chromium (Cr)		77.5	67.9		ug/g	13	30	24-NOV-20
Cobalt (Co)		5.97	4.89		ug/g	20	30	24-NOV-20
Copper (Cu)		270	238		ug/g	12	30	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 6 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5297165								
WG3450325-6 DUP		WG3450325			ug/g	04	40	04 NOV 00
Lead (Pb)		229	185		ug/g	21	40	24-NOV-20
Molybdenum (Mo)		3.92	3.26	1450	ug/g	18	40	24-NOV-20
Nickel (Ni)		50.1	34.0	MES	ug/g	38	30	24-NOV-20
Selenium (Se)		<0.20	<0.20	RPD-NA	ug/g	N/A	30	24-NOV-20
Silver (Ag)		0.15	0.12		ug/g	27	40	24-NOV-20
Thallium (TI)		<0.050	<0.050	RPD-NA	ug/g	N/A	30	24-NOV-20
Uranium (U)		0.156	0.144		ug/g	7.6	30	24-NOV-20
Vanadium (V)		10.5	8.87		ug/g	17	30	24-NOV-20
Zinc (Zn)		275	229		ug/g	18	30	24-NOV-20
WG3450325-4 LCS Antimony (Sb)			98.8		%		80-120	24-NOV-20
Arsenic (As)			99.5		%		80-120	24-NOV-20
Barium (Ba)			99.2		%		80-120	24-NOV-20
Beryllium (Be)			89.5		%		80-120	24-NOV-20
Boron (B)			84.1		%		80-120	24-NOV-20
Cadmium (Cd)			95.8		%		80-120	24-NOV-20
Chromium (Cr)			98.6		%		80-120	24-NOV-20
Cobalt (Co)			95.6		%		80-120	24-NOV-20
Copper (Cu)			95.0		%		80-120	24-NOV-20
Lead (Pb)			95.0		%		80-120	24-NOV-20
Molybdenum (Mo)			95.5		%		80-120	24-NOV-20
Nickel (Ni)			96.2		%		80-120	24-NOV-20
Selenium (Se)			100.5		%		80-120	24-NOV-20
Silver (Ag)			96.6		%		80-120	24-NOV-20
Thallium (TI)			95.0		%		80-120	24-NOV-20
Uranium (U)			84.1		%		80-120	24-NOV-20
Vanadium (V)			100.2		%		80-120	24-NOV-20
Zinc (Zn)			94.2		%		80-120	24-NOV-20
WG3450325-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	24-NOV-20
Arsenic (As)			<0.10		mg/kg		0.1	24-NOV-20
Barium (Ba)			<0.50		mg/kg		0.5	24-NOV-20
Beryllium (Be)			<0.10		mg/kg		0.1	24-NOV-20
· , ··· · · · · (- ·)			-5.10					27 140 V-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 7 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R52971	65							
WG3450325-1 MB			0.000				0.00	
Cadmium (Cd)			<0.020		mg/kg		0.02	24-NOV-20
Chromium (Cr)			<0.50		mg/kg		0.5	24-NOV-20
Cobalt (Co)			<0.10		mg/kg		0.1	24-NOV-20
Copper (Cu)			<0.50		mg/kg		0.5	24-NOV-20
Lead (Pb)			<0.50		mg/kg		0.5	24-NOV-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	24-NOV-20
Nickel (Ni)			<0.50		mg/kg		0.5	24-NOV-20
Selenium (Se)			<0.20		mg/kg 		0.2	24-NOV-20
Silver (Ag)			<0.10		mg/kg 		0.1	24-NOV-20
Thallium (TI)			<0.050		mg/kg 		0.05	24-NOV-20
Uranium (U)			<0.050		mg/kg 		0.05	24-NOV-20
Vanadium (V)			<0.20		mg/kg 		0.2	24-NOV-20
Zinc (Zn)			<2.0		mg/kg		2	24-NOV-20
Batch R52973								
WG3450279-2 CR Antimony (Sb)	M	WT-SS-2	104.4		%		70.400	24 NOV 20
Arsenic (As)			114.4		%		70-130	24-NOV-20
Barium (Ba)			111.0		%		70-130	24-NOV-20
Beryllium (Be)			111.3		%		70-130	24-NOV-20
Boron (B)			10.3		mg/kg		70-130	24-NOV-20
Cadmium (Cd)			10.3		mg/kg %		3.5-13.5	24-NOV-20
Chromium (Cr)			114.4		%		70-130	24-NOV-20
Cobalt (Co)			108.9		%		70-130	24-NOV-20
Copper (Cu)			100.9		%		70-130	24-NOV-20
Lead (Pb)			109.2		%		70-130	24-NOV-20
Molybdenum (Mo)			110.2		%		70-130	24-NOV-20
Nickel (Ni)			108.0				70-130	24-NOV-20
					%		70-130	24-NOV-20
Selenium (Se)			0.14		mg/kg		0-0.34	24-NOV-20
Silver (Ag)			103.3		% ma/ka		70-130	24-NOV-20
Thallium (TI)			0.078		mg/kg		0.029-0.129	
Uranium (U)			97.4		%		70-130	24-NOV-20
Vanadium (V)			113.5		%		70-130	24-NOV-20
Zinc (Zn)			104.1		%		70-130	24-NOV-20
WG3450279-4 DU	P	L2530877-11						

Workorder: L2530806 Report Date: 26-NOV-20 Page 8 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R5297301								
WG3450279-4 DUP		L2530877-11						
Antimony (Sb)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	24-NOV-20
Arsenic (As)		8.4	8.2		ug/g	2.7	30	24-NOV-20
Barium (Ba)		78.8	79.6		ug/g	1.1	40	24-NOV-20
Beryllium (Be)		0.58	0.56		ug/g	4.3	30	24-NOV-20
Boron (B)		12.7	12.2		ug/g	3.4	30	24-NOV-20
Cadmium (Cd)		<0.50	< 0.50	RPD-NA	ug/g	N/A	30	24-NOV-20
Chromium (Cr)		22.0	21.7		ug/g	1.6	30	24-NOV-20
Cobalt (Co)		11.7	11.2		ug/g	4.9	30	24-NOV-20
Copper (Cu)		17.3	16.9		ug/g	2.2	30	24-NOV-20
Lead (Pb)		9.6	9.7		ug/g	1.1	40	24-NOV-20
Molybdenum (Mo)		3.6	3.5		ug/g	1.4	40	24-NOV-20
Nickel (Ni)		25.2	24.7		ug/g	2.0	30	24-NOV-20
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	24-NOV-20
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	24-NOV-20
Thallium (TI)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	24-NOV-20
Uranium (U)		1.2	1.2		ug/g	0.8	30	24-NOV-20
Vanadium (V)		32.4	32.1		ug/g	1.0	30	24-NOV-20
Zinc (Zn)		51.0	50.8		ug/g	0.4	30	24-NOV-20
WG3450279-3 LCS								
Antimony (Sb)			105.4		%		80-120	24-NOV-20
Arsenic (As)			98.5		%		80-120	24-NOV-20
Barium (Ba)			101.5		%		80-120	24-NOV-20
Beryllium (Be)			96.4		%		80-120	24-NOV-20
Boron (B)			93.1		%		80-120	24-NOV-20
Cadmium (Cd)			97.6		%		80-120	24-NOV-20
Chromium (Cr)			97.5		%		80-120	24-NOV-20
Cobalt (Co)			95.9		%		80-120	24-NOV-20
Copper (Cu)			94.7		%		80-120	24-NOV-20
Lead (Pb)			98.1		%		80-120	24-NOV-20
Molybdenum (Mo)			97.9		%		80-120	24-NOV-20
Nickel (Ni)			95.3		%		80-120	24-NOV-20
Selenium (Se)			97.6		%		80-120	24-NOV-20
Silver (Ag)			98.3		%		80-120	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 9 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WT	Soil							
Batch R529730								
WG3450279-3 LCS Thallium (TI)			98.6		%		00.400	24-NOV-20
Uranium (U)			90.0		%		80-120	
Vanadium (V)			99.3		%		80-120 80-120	24-NOV-20
Zinc (Zn)			95.1		%			24-NOV-20
WG3450279-1 MB			55.1		70		80-120	24-NOV-20
Antimony (Sb)			<0.10		mg/kg		0.1	24-NOV-20
Arsenic (As)			<0.10		mg/kg		0.1	24-NOV-20
Barium (Ba)			<0.50		mg/kg		0.5	24-NOV-20
Beryllium (Be)			<0.10		mg/kg		0.1	24-NOV-20
Boron (B)			<5.0		mg/kg		5	24-NOV-20
Cadmium (Cd)			<0.020		mg/kg		0.02	24-NOV-20
Chromium (Cr)			<0.50		mg/kg		0.5	24-NOV-20
Cobalt (Co)			<0.10		mg/kg		0.1	24-NOV-20
Copper (Cu)			<0.50		mg/kg		0.5	24-NOV-20
Lead (Pb)			<0.50		mg/kg		0.5	24-NOV-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	24-NOV-20
Nickel (Ni)			<0.50		mg/kg		0.5	24-NOV-20
Selenium (Se)			<0.20		mg/kg		0.2	24-NOV-20
Silver (Ag)			<0.10		mg/kg		0.1	24-NOV-20
Thallium (TI)			< 0.050		mg/kg		0.05	24-NOV-20
Uranium (U)			<0.050		mg/kg		0.05	24-NOV-20
Vanadium (V)			<0.20		mg/kg		0.2	24-NOV-20
Zinc (Zn)			<2.0		mg/kg		2	24-NOV-20
MOISTURE-WT	Soil							
Batch R5290559)							
WG3448408-3 DUP % Moisture		L2530464-8 16.3	15.6		%	3.8	20	20-NOV-20
WG3448408-2 LCS % Moisture			100.0		%		90-110	20-NOV-20
WG3448408-1 MB % Moisture			<0.25		%		0.25	20-NOV-20
PAH-511-WT	Soil							-

Workorder: L2530806 Report Date: 26-NOV-20 Page 10 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

PAH-511-WT Soil	
Batch R5292577	
WG3447820-3 DUP WG3447820-5	
	IOV-20
	IOV-20
	IOV-20
	IOV-20
Anthracene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(a)anthracene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(a)pyrene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(b)fluoranthene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(g,h,i)perylene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Benzo(k)fluoranthene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Chrysene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Dibenzo(ah)anthracene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Fluoranthene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Fluorene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Indeno(1,2,3-cd)pyrene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
Naphthalene <0.013 <0.013 RPD-NA ug/g N/A 40 20-N	IOV-20
Phenanthrene <0.046 <0.046 RPD-NA ug/g N/A 40 20-N	IOV-20
Pyrene <0.050 <0.050 RPD-NA ug/g N/A 40 20-N	IOV-20
WG3447820-2 LCS	
	IOV-20
Fluorene 94.0 % 50-140 20-N	IOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 11 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

PAH-511-WT Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
No.2447820-2 LCS Indenot(1,2,3-c)lp/jerner 98,4	PAH-511-WT	Soil							
Indemo(1, 2,3-cd)pyrene	Batch R5292577								
Naphthalene 98.1 % 50.140 20.NOV-20 Phenanthrene 101.1 % 50.140 20.NOV-20 Pyrane 97.1 % 50.140 20.NOV-20 WG3447820-1 MB				00.4		0/			
Phenanthrene 101.1 % 50.140 20.NOV-20 Pyrene 97.1 % 50.140 20.NOV-20 WG3447820-1 MB 4 50.140 20.NOV-20 1-Methylnaphthalene <0.030 ug/g 0.03 20.NOV-20 2-Methylnaphthalene <0.050 ug/g 0.05 20.NOV-20 Acenaphthylene <0.050 ug/g 0.05 20.NOV-20 Benzo(a)aphyrene <0.050 ug/g 0.05 20.NOV-20 Benzo(a)phyrene <0.050 ug/g 0.05 20.NOV-20 Benzo(ghl)perylene <0.050 ug/g 0.05 20.NOV-20 Benzo(ghl)perylene <0.050 ug/g 0.05 20.NOV-20 Chrysene <0.050 ug/g 0.05 20.NOV-20	, , , , , , , , , , , , , , , , , , , ,								
Pyrene									
MG3447820-1 MB									
1-Methylnaphthalene	•			97.1		%		50-140	20-NOV-20
2-Methylnaphthalene <0.030				-0 020		.ua/a		0.02	00 NOV 00
Acenaphthene <0.050	• •								
Acenaphthylene <0.050	• •								
Anthracene									
Benzo(a)anthracene <0.050									
Benzo(a)pyrene <0.050									
Benzo(b)fluoranthene <0.050									
Benzo(g,h,i)perylene <0.050	(//)								
Benzo(k)fluoranthene <0.050									
Chrysene <0.050 ug/g 0.05 20-NOV-20 Dibenzo(ah)anthracene <0.050									
Dibenzo(ah)anthracene <0.050 ug/g 0.05 20-NOV-20 Fluoranthene <0.050									
Fluoranthene <0.050 ug/g 0.05 20-NOV-20 Fluorene <0.050	-								
Fluorene 									
Indeno(1,2,3-cd)pyrene									
Naphthalene <0.013 ug/g 0.013 20-NOV-20 Phenanthrene <0.046									20-NOV-20
Phenanthrene <0.046 ug/g 0.046 20-NOV-20 Pyrene <0.050									
Pyrene < 0.050 ug/g 0.05 20-NOV-20 Surrogate: 2-Fluorobiphenyl 83.8 % 50-140 20-NOV-20 Surrogate: p-Terphenyl d14 86.5 % 50-140 20-NOV-20 WG3447820-4 MS WG3447820-5 1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 95.3 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	•								20-NOV-20
Surrogate: 2-Fluorobiphenyl 83.8 % 50-140 20-NOV-20 Surrogate: p-Terphenyl d14 86.5 % 50-140 20-NOV-20 WG3447820-4 MS WG3447820-5 1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	Phenanthrene								
Surrogate: p-Terphenyl d14 86.5 % 50-140 20-NOV-20 WG3447820-4 MS WG3447820-5 WG3447820-5 WG3447820-5 WG3447820-5 S0-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	•								20-NOV-20
WG3447820-4 MS WG3447820-5 1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	Surrogate: 2-Fluorobiphe	enyl		83.8				50-140	20-NOV-20
1-Methylnaphthalene 90.2 % 50-140 20-NOV-20 2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20	Surrogate: p-Terphenyl	d14		86.5		%		50-140	20-NOV-20
2-Methylnaphthalene 84.6 % 50-140 20-NOV-20 Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20			WG3447820-5			0/		E0	
Acenaphthene 93.0 % 50-140 20-NOV-20 Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Acenaphthylene 91.7 % 50-140 20-NOV-20 Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Anthracene 94.5 % 50-140 20-NOV-20 Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Benzo(a)anthracene 102.8 % 50-140 20-NOV-20 Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Benzo(a)pyrene 95.3 % 50-140 20-NOV-20									
Benzo(b)fluoranthene 102.4 % 50-140 20-NOV-20	. ,,,,								
	Benzo(b)fluoranthene			102.4		%		50-140	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 12 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5292577								
WG3447820-4 MS		WG3447820-			0/			
Benzo(g,h,i)perylene			87.9		%		50-140	20-NOV-20
Benzo(k)fluoranthene			96.6		%		50-140	20-NOV-20
Chrysene			101.9		%		50-140	20-NOV-20
Dibenzo(ah)anthracene			85.3		%		50-140	20-NOV-20
Fluoranthene			93.9		%		50-140	20-NOV-20
Fluorene			91.7		%		50-140	20-NOV-20
Indeno(1,2,3-cd)pyrene			91.7		%		50-140	20-NOV-20
Naphthalene			86.8		%		50-140	20-NOV-20
Phenanthrene			91.4		%		50-140	20-NOV-20
Pyrene			93.1		%		50-140	20-NOV-20
Batch R5296037								
WG3448261-3 DUP		WG3448261-		DD2 ***	/~		40	00 NOV 55
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	23-NOV-20
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	23-NOV-20
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(b)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Chrysene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Dibenzo(ah)anthracene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Fluorene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Indeno(1,2,3-cd)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	23-NOV-20
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	23-NOV-20
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	23-NOV-20
WG3448261-2 LCS 1-Methylnaphthalene			90.2		%		50-140	20 NOV 20
					%			20-NOV-20
2-Methylnaphthalene			86.2		70		50-140	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 13 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5296037								
WG3448261-2 LCS			00.5		0/			
Acenaphthene			90.5		%		50-140	20-NOV-20
Acenaphthylene			95.8		%		50-140	20-NOV-20
Anthracene			89.1		%		50-140	20-NOV-20
Benzo(a)anthracene			93.9		%		50-140	20-NOV-20
Benzo(a)pyrene			89.2		%		50-140	20-NOV-20
Benzo(b)fluoranthene			85.7		%		50-140	20-NOV-20
Benzo(g,h,i)perylene			94.0		%		50-140	20-NOV-20
Benzo(k)fluoranthene			89.3		%		50-140	20-NOV-20
Chrysene			95.6		%		50-140	20-NOV-20
Dibenzo(ah)anthracene			99.0		%		50-140	20-NOV-20
Fluoranthene			87.0		%		50-140	20-NOV-20
Fluorene			87.8		%		50-140	20-NOV-20
Indeno(1,2,3-cd)pyrene			100.4		%		50-140	20-NOV-20
Naphthalene			88.3		%		50-140	20-NOV-20
Phenanthrene			88.3		%		50-140	20-NOV-20
Pyrene			86.7		%		50-140	20-NOV-20
WG3448261-1 MB								
1-Methylnaphthalene			<0.030		ug/g		0.03	20-NOV-20
2-Methylnaphthalene			<0.030		ug/g		0.03	20-NOV-20
Acenaphthene			<0.050		ug/g		0.05	20-NOV-20
Acenaphthylene			< 0.050		ug/g		0.05	20-NOV-20
Anthracene			< 0.050		ug/g		0.05	20-NOV-20
Benzo(a)anthracene			< 0.050		ug/g		0.05	20-NOV-20
Benzo(a)pyrene			<0.050		ug/g		0.05	20-NOV-20
Benzo(b)fluoranthene			<0.050		ug/g		0.05	20-NOV-20
Benzo(g,h,i)perylene			<0.050		ug/g		0.05	20-NOV-20
Benzo(k)fluoranthene			<0.050		ug/g		0.05	20-NOV-20
Chrysene			< 0.050		ug/g		0.05	20-NOV-20
Dibenzo(ah)anthracene			<0.050		ug/g		0.05	20-NOV-20
Fluoranthene			<0.050		ug/g		0.05	20-NOV-20
Fluorene			<0.050		ug/g		0.05	20-NOV-20
Indeno(1,2,3-cd)pyrene			<0.050		ug/g		0.05	20-NOV-20
Naphthalene			<0.013		ug/g		0.013	20-NOV-20
Phenanthrene			<0.046		ug/g		0.046	20-NOV-20
			-		5.5		-	_0 20

Workorder: L2530806 Report Date: 26-NOV-20 Page 14 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test N	Matrix F	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5296037 WG3448261-1 MB Pyrene			<0.050		ug/g		0.05	20-NOV-20
Surrogate: 2-Fluorobipheny	vI		77.8		%		50-140	20-NOV-20 20-NOV-20
Surrogate: p-Terphenyl d14			82.8		%		50-140	20-NOV-20 20-NOV-20
WG3448261-4 MS		WG3448261-5	02.0		70		00 110	20-110-1-20
1-Methylnaphthalene		WG3440201-3	94.4		%		50-140	23-NOV-20
2-Methylnaphthalene			89.3		%		50-140	23-NOV-20
Acenaphthene			94.1		%		50-140	23-NOV-20
Acenaphthylene			95.5		%		50-140	23-NOV-20
Anthracene			91.1		%		50-140	23-NOV-20
Benzo(a)anthracene			93.1		%		50-140	23-NOV-20
Benzo(a)pyrene			92.1		%		50-140	23-NOV-20
Benzo(b)fluoranthene			91.9		%		50-140	23-NOV-20
Benzo(g,h,i)perylene			103.1		%		50-140	23-NOV-20
Benzo(k)fluoranthene			90.3		%		50-140	23-NOV-20
Chrysene			99.9		%		50-140	23-NOV-20
Dibenzo(ah)anthracene			110.3		%		50-140	23-NOV-20
Fluoranthene			90.2		%		50-140	23-NOV-20
Fluorene			90.0		%		50-140	23-NOV-20
Indeno(1,2,3-cd)pyrene			103.7		%		50-140	23-NOV-20
Naphthalene			91.8		%		50-140	23-NOV-20
Phenanthrene			93.3		%		50-140	23-NOV-20
Pyrene			90.3		%		50-140	23-NOV-20
Batch R5296510								
WG3448590-3 DUP		WG3448590-5						
1-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	24-NOV-20
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	24-NOV-20
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(a)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(a)pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(b)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 15 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R5296510								
WG3448590-3 DUP Chrysene		WG3448590 -<0.050	5 <0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Dibenzo(ah)anthracene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Fluoranthene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Fluorene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Indeno(1,2,3-cd)pyrene		<0.050	< 0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
Naphthalene		<0.013	<0.013	RPD-NA	ug/g	N/A	40	24-NOV-20
Phenanthrene		<0.046	<0.046	RPD-NA	ug/g	N/A	40	24-NOV-20
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	24-NOV-20
WG3448590-2 LCS 1-Methylnaphthalene			90.2		%		50-140	24-NOV-20
2-Methylnaphthalene			85.8		%		50-140	24-NOV-20
Acenaphthene			89.8		%		50-140	24-NOV-20
Acenaphthylene			87.6		%		50-140	24-NOV-20
Anthracene			86.8		%		50-140	24-NOV-20
Benzo(a)anthracene			87.7		%		50-140	24-NOV-20
Benzo(a)pyrene			85.6		%		50-140	24-NOV-20
Benzo(b)fluoranthene			87.7		%		50-140	24-NOV-20
Benzo(g,h,i)perylene			82.7		%		50-140	24-NOV-20
Benzo(k)fluoranthene			92.6		%		50-140	24-NOV-20
Chrysene			97.2		%		50-140	24-NOV-20
Dibenzo(ah)anthracene			84.0		%		50-140	24-NOV-20
Fluoranthene			86.8		%		50-140	24-NOV-20
Fluorene			86.4		%		50-140	24-NOV-20
Indeno(1,2,3-cd)pyrene			84.2		%		50-140	24-NOV-20
Naphthalene			88.4		%		50-140	24-NOV-20
Phenanthrene			90.4		%		50-140	24-NOV-20
Pyrene			87.0		%		50-140	24-NOV-20
WG3448590-1 MB					,			
1-Methylnaphthalene			<0.030		ug/g		0.03	24-NOV-20
2-Methylnaphthalene			<0.030		ug/g		0.03	24-NOV-20
Acenaphthene			<0.050		ug/g		0.05	24-NOV-20
Acenaphthylene			<0.050		ug/g		0.05	24-NOV-20
Anthracene			<0.050		ug/g		0.05	24-NOV-20
Benzo(a)anthracene			<0.050		ug/g		0.05	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 16 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

PAME-511-WT	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MG3448590-1 MB Benzo(a)pyrene	PAH-511-WT	Soil							
Benzo(a)pyrene	Batch R529651	0							
Benzo(b)fluoranthene <0.050				<0.050		ua/a		0.05	24 NOV 20
Benzo(g,hi)perylene <0.050									
Benzo(k)fluoranthene <0.050									
Chrysene <0.050 ug/g 0.05 24-NOV-20 Dibenzo(ah)anthracene <0.050									
Dibenzo(ah)anthracene <0.050 ug/g 0.05 24-NOV-20 Fluoranthene <0.050	, ,								
Fluoranthene	-	Δ							
Fluorene	, ,	C							
Indeno(1,2,3-cd)pyrene									
Naphthalene <0.013		9							
Phenanthrene <0.046 ug/g 0.046 24-NOV-20 Pyrene <0.050		5							
Pyrene <0.050 ug/g 0.05 24-NOV-20 Surrogate: 2-Fluorobiphenyl 80.5 % 50-140 24-NOV-20 Surrogate: p-Terphenyl d14 86.9 % 50-140 24-NOV-20 WG3448590-4 MS WG3448590-5 WG3448590-5 WG3448590-5 S0-140 24-NOV-20 2-Methylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 98.5 %									
Surrogate: 2-Fluorobiphenyl 80.5 % 50-140 24-NOV-20 Surrogate: p-Terphenyl d14 86.9 % 50-140 24-NOV-20 WG3448590-4 MS WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 WG3448590-5 Sol-140 24-NOV-20 Acenaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthalene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Acenaphthylene 98.2 % 50-140 24-NOV-20 Acenaphthylene 98.4 % 50-140 24-NOV-20 Acenaphthylene 94.7									
Surrogate: p-Terphenyl d14 86.9 % 50-140 24-NOV-20 WG3448590-4 MS WG3448590-5 Thethylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(a)hanthracene 98.5 <td>•</td> <td>henyl</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•	henyl							
WG3448590-4 MS YG3448590-5 1-Methylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(a)hanthracene 98.5	-	-							
1-Methylnaphthalene 97.3 % 50-140 24-NOV-20 2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(a)hanthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20		1414	WG3448500-5	00.5		70		30-140	24-NOV-20
2-Methylnaphthalene 92.9 % 50-140 24-NOV-20 Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 <td< td=""><td></td><td></td><td>VVG3446390-3</td><td>97.3</td><td></td><td>%</td><td></td><td>50-140</td><td>24-NOV-20</td></td<>			VVG3446390-3	97.3		%		50-140	24-NOV-20
Acenaphthene 97.9 % 50-140 24-NOV-20 Acenaphthylene 99.7 % 50-140 24-NOV-20 Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	2-Methylnaphthalene			92.9		%		50-140	
Anthracene 98.2 % 50-140 24-NOV-20 Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluoranthene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Acenaphthene			97.9		%		50-140	24-NOV-20
Benzo(a)anthracene 103.9 % 50-140 24-NOV-20 Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Acenaphthylene			99.7		%		50-140	24-NOV-20
Benzo(a)pyrene 96.4 % 50-140 24-NOV-20 Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Anthracene			98.2		%		50-140	24-NOV-20
Benzo(b)fluoranthene 97.7 % 50-140 24-NOV-20 Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(a)anthracene			103.9		%		50-140	24-NOV-20
Benzo(g,h,i)perylene 94.7 % 50-140 24-NOV-20 Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(a)pyrene			96.4		%		50-140	24-NOV-20
Benzo(k)fluoranthene 95.2 % 50-140 24-NOV-20 Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(b)fluoranthene			97.7		%		50-140	24-NOV-20
Chrysene 103.9 % 50-140 24-NOV-20 Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(g,h,i)perylene			94.7		%		50-140	24-NOV-20
Dibenzo(ah)anthracene 98.5 % 50-140 24-NOV-20 Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Benzo(k)fluoranthene			95.2		%		50-140	24-NOV-20
Fluoranthene 98.3 % 50-140 24-NOV-20 Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Chrysene			103.9		%		50-140	24-NOV-20
Fluorene 95.7 % 50-140 24-NOV-20 Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Dibenzo(ah)anthracen	е		98.5		%		50-140	24-NOV-20
Indeno(1,2,3-cd)pyrene 98.4 % 50-140 24-NOV-20 Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Fluoranthene			98.3		%		50-140	24-NOV-20
Naphthalene 94.9 % 50-140 24-NOV-20 Phenanthrene 97.7 % 50-140 24-NOV-20	Fluorene			95.7		%		50-140	24-NOV-20
Phenanthrene 97.7 % 50-140 24-NOV-20	Indeno(1,2,3-cd)pyren	е		98.4		%		50-140	24-NOV-20
	Naphthalene			94.9		%		50-140	24-NOV-20
Pyrene 98.3 % 50-140 24-NOV-20	Phenanthrene			97.7		%		50-140	24-NOV-20
	Pyrene			98.3		%		50-140	24-NOV-20

PEST-OC-511-WT Soil

Workorder: L2530806 Report Date: 26-NOV-20 Page 17 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT	Soil							
Batch R5291403								
WG3447048-3 DUP		WG3447048-						
Aldrin a-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
g-chlordane		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
op-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
pp-DDD		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
o,p-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
pp-DDE		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
op-DDT		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
pp-DDT		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	20-NOV-20
Dieldrin		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	20-NOV-20
Endosulfan I		<0.020	<0.020	RPD-NA	ug/g ,	N/A	40	20-NOV-20
Endosulfan II		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
Endrin		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
gamma-hexachlorocycloh	nexane	<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Heptachlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
Heptachlor Epoxide		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
Hexachlorobenzene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Hexachlorobutadiene		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Hexachloroethane		<0.010	<0.010	RPD-NA	ug/g	N/A	40	20-NOV-20
Methoxychlor		<0.020	<0.020	RPD-NA	ug/g	N/A	40	20-NOV-20
WG3447048-2 LCS								
Aldrin			116.6		%		50-140	20-NOV-20
a-chlordane			94.5		%		50-140	20-NOV-20
g-chlordane			91.2		%		50-140	20-NOV-20
op-DDD			104.3		%		50-140	20-NOV-20
pp-DDD			105.8		%		50-140	20-NOV-20
o,p-DDE			84.8		%		50-140	20-NOV-20
pp-DDE			104.8		%		50-140	20-NOV-20
op-DDT			89.6		%		50-140	20-NOV-20
pp-DDT			65.8		%		50-140	20-NOV-20
Dieldrin			99.3		%		50-140	20-NOV-20
Endosulfan I			90.9		%		50-140	20-NOV-20
Endosulfan II			101.0		%		50-140	20-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 18 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

est M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PEST-OC-511-WT S	ioil							
Batch R5291403								
WG3447048-2 LCS			4.47.0		0/			
Endrin			147.9	LCS-H	%		50-140	20-NOV-20
gamma-hexachlorocyclohe	xane		83.7		%		50-140	20-NOV-20
Heptachlor			110.8		%		50-140	20-NOV-20
Heptachlor Epoxide			106.3		%		50-140	20-NOV-20
Hexachlorobenzene			85.6		%		50-140	20-NOV-20
Hexachlorobutadiene			79.8		%		50-140	20-NOV-20
Hexachloroethane			79.9		%		50-140	20-NOV-20
Methoxychlor			118.2		%		50-140	20-NOV-20
WG3447048-1 MB Aldrin			<0.020		ug/g		0.02	20-NOV-20
a-chlordane			<0.020		ug/g		0.02	20-NOV-20 20-NOV-20
g-chlordane			<0.020		ug/g ug/g		0.02	20-NOV-20 20-NOV-20
op-DDD			<0.020		ug/g ug/g		0.02	
pp-DDD			<0.020		ug/g ug/g		0.02	20-NOV-20
o,p-DDE			<0.020		ug/g ug/g		0.02	20-NOV-20
pp-DDE			<0.020				0.02	20-NOV-20
op-DDT			<0.020		ug/g		0.02	20-NOV-20
pp-DDT			<0.020		ug/g		0.02	20-NOV-20
Dieldrin			<0.020		ug/g		0.02	20-NOV-20
Endosulfan I			<0.020		ug/g		0.02	20-NOV-20
Endosulfan II			<0.020		ug/g		0.02	20-NOV-20
Endrin			<0.020		ug/g		0.02	20-NOV-20
gamma-hexachlorocyclohe	vono		<0.020		ug/g		0.02	20-NOV-20
,	xane				ug/g		0.01	20-NOV-20
Heptachlor Heptachlor Epoxide			<0.020 <0.020		ug/g		0.02	20-NOV-20
Hexachlorobenzene			<0.020		ug/g		0.02	20-NOV-20
					ug/g			20-NOV-20
Hexachlorobutadiene Hexachloroethane			<0.010 <0.010		ug/g		0.01 0.01	20-NOV-20
Methoxychlor			<0.010		ug/g ug/g		0.01	20-NOV-20
Surrogate: 2-Fluorobipheny	d		66.2		ug/g %		50-140	20-NOV-20
Surrogate: d14-Terphenyl	1				%		50-140	20-NOV-20
		W00447046 7	63.9		70		50-140	20-NOV-20
WG3447048-4 MS Aldrin		WG3447048-5	132.5		%		50-140	20-NOV-20
a-chlordane			93.7		%		50-140	20-NOV-20 20-NOV-20
a omordano			50.7		,,		JU-14U	20-INO V-20

Qualifier

Workorder: L2530806 Report Date: 26-NOV-20 Page 19 of 21

Units

RPD

Limit

Analyzed

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

Reference

Result

KITCHENER ON N2B 3X9

Matrix

Contact: JEN LAMBKE

Test

PEST-OC-511-WT	Soil							
Batch R5291403	3							
WG3447048-4 MS		WG3447048-5						
g-chlordane			90.7		%		50-140	20-NOV-20
op-DDD			103.6		%		50-140	20-NOV-20
pp-DDD			111.3		%		50-140	20-NOV-20
o,p-DDE			87.5		%		50-140	20-NOV-20
pp-DDE			108.7		%		50-140	20-NOV-20
op-DDT			88.8		%		50-140	20-NOV-20
pp-DDT			65.4		%		50-140	20-NOV-20
Dieldrin			95.1		%		50-140	20-NOV-20
Endosulfan I			89.3		%		50-140	20-NOV-20
Endosulfan II			102.0		%		50-140	20-NOV-20
Endrin			146.9	RRQC	%		50-140	20-NOV-20
gamma-hexachlorocyc	lohexane		90.8		%		50-140	20-NOV-20
Heptachlor			122.7		%		50-140	20-NOV-20
Heptachlor Epoxide			101.9		%		50-140	20-NOV-20
Hexachlorobenzene			93.1		%		50-140	20-NOV-20
Hexachlorobutadiene			83.1		%		50-140	20-NOV-20
Hexachloroethane			82.6		%		50-140	20-NOV-20
Methoxychlor			134.5		%		50-140	20-NOV-20
COMMENTS: RRC have been qualified		ery was above ALS	DQO. Non-	detected sample	results are consid	ered reliable.	Other results,	if reported,
PH-WT	Soil							
Batch R5295057	7							
WG3448241-1 DUP		L2530806-7						
рН		7.60	7.63	J	pH units	0.03	0.3	23-NOV-20
WG3449696-1 LCS			0.05		ml I vonita			
рН			6.95		pH units		6.9-7.1	23-NOV-20
SAR-R511-WT	Soil							
Batch R5296809	9							
WG3450328-4 DUP Calcium (Ca)		WG3450328-3 3.58	3.90		mg/L	0.6	20	24 NOV 22
					•	8.6	30	24-NOV-20
Sodium (Na)		22.5	20.2	DDC ***	mg/L	11	30	24-NOV-20
Magnesium (Mg)		<0.50	<0.50	RPD-NA	mg/L	N/A	30	24-NOV-20
WG3450328-2 IRM Calcium (Ca)		WT SAR4	96.3		%		70-130	24 NOV 20
Sodium (Na)			96.3 87.9		%			24-NOV-20
Soulum (Na)			6.10		/0		70-130	24-NOV-20

Workorder: L2530806 Report Date: 26-NOV-20 Page 20 of 21

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SAR-R511-WT	Soil							
Batch R5296809 WG3450328-2 IRM Magnesium (Mg)		WT SAR4	96.6		%		70-130	24-NOV-20
WG3450328-5 LCS Calcium (Ca)			108.7		%		80-120	24-NOV-20
Sodium (Na)			101.6		%		80-120	24-NOV-20
Magnesium (Mg)			102.8		%		80-120	24-NOV-20
WG3450328-1 MB Calcium (Ca)			<0.50		mg/L		0.5	24-NOV-20
Sodium (Na)			<0.50		mg/L		0.5	24-NOV-20
Magnesium (Mg)			<0.50		mg/L		0.5	24-NOV-20

Report Date: 26-NOV-20 Workorder: L2530806

MTE CONSULTANTS INC. (Kitchener) Client:

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Legend:

ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

Average Desorption Efficiency ADE

Method Blank MB

Internal Reference Material IRM CRM Certified Reference Material CCV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

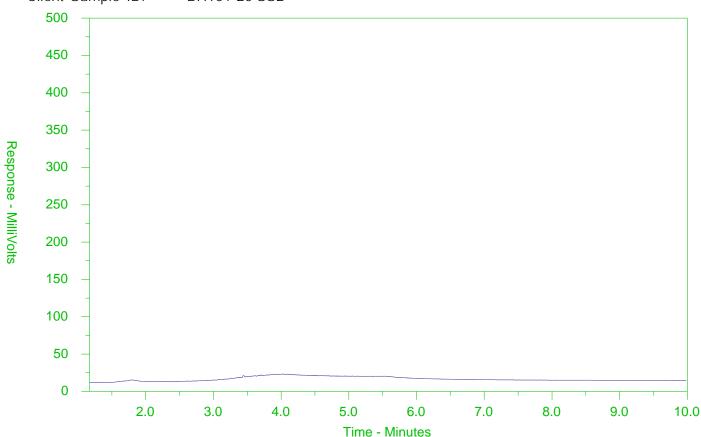
Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
LCS-L	Lab Control Sample recovery was below ALS DQO. Reference Material and/or Matrix Spike results were acceptable Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

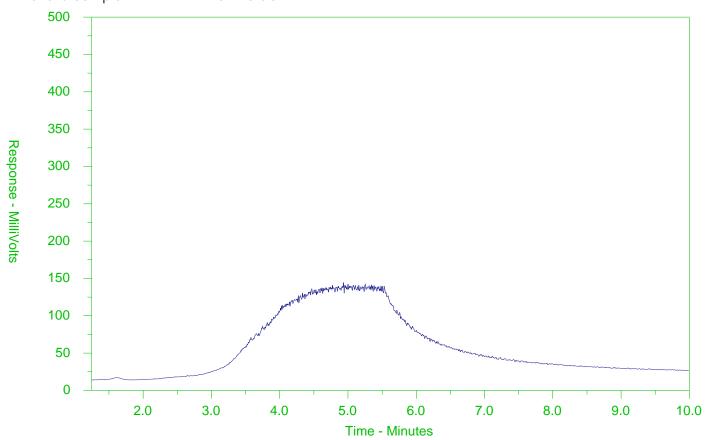

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 21 of 21

ALS Sample ID: L2530806-1 Client Sample ID: BH101-20 SS2

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

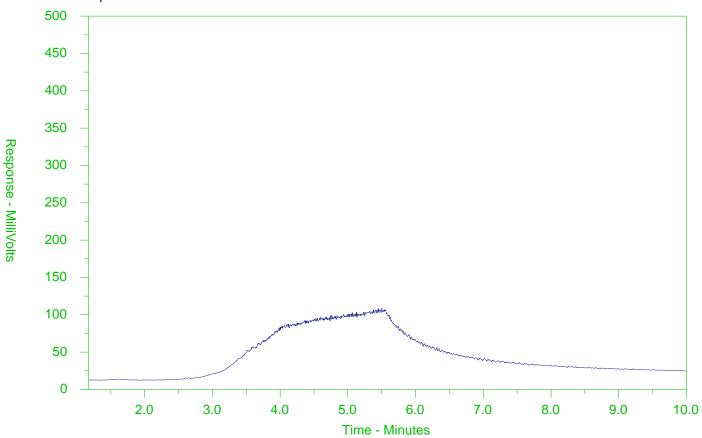

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-2 Client Sample ID: BH102-20 SS1

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

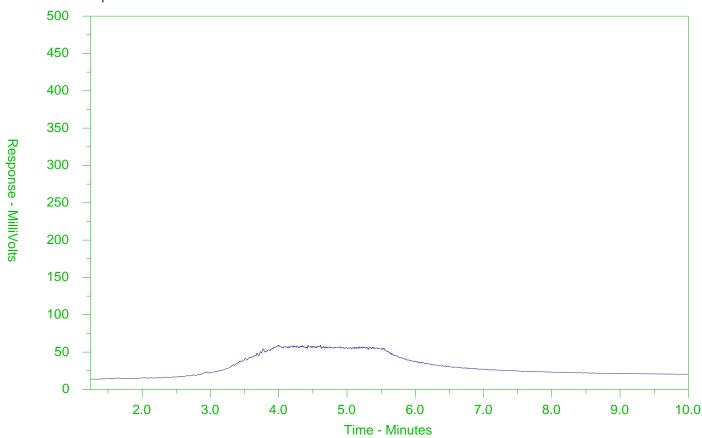

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-3 Client Sample ID: BH1002-20 SS1

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-4 Client Sample ID: BH102-20 SS2B

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

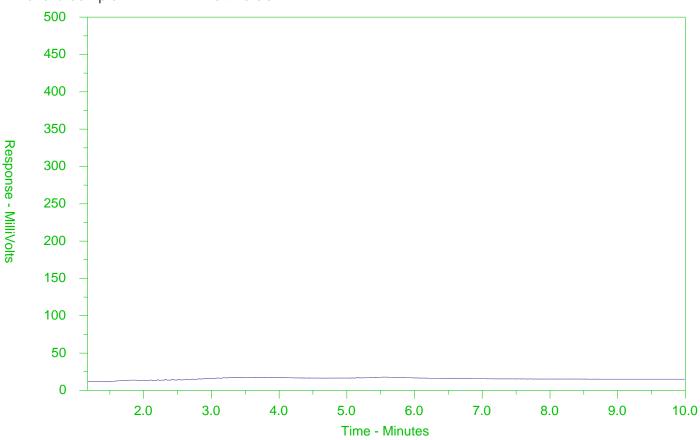
The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-5 Client Sample ID: BH103-20 SS2

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

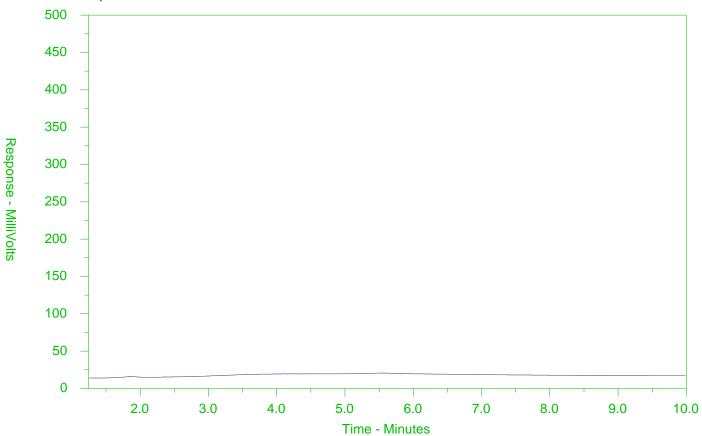

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-6 Client Sample ID: BH104-20 SS2

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

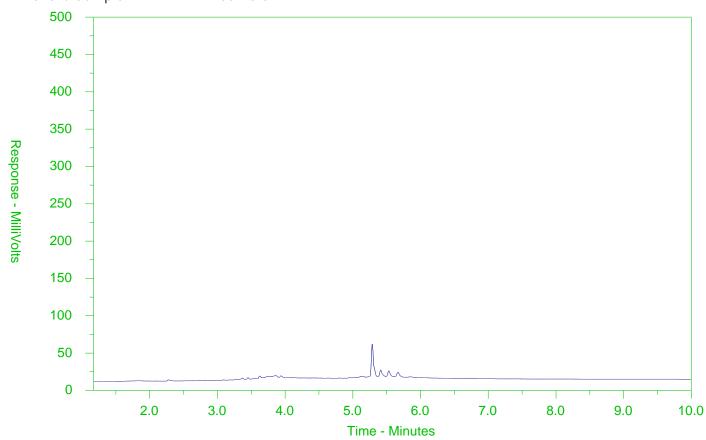

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-7 Client Sample ID: BH104-20 SS3

← -F2-	→ ←	—F3——◆4—F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →				
←	← Diesel/Jet Fuels →				

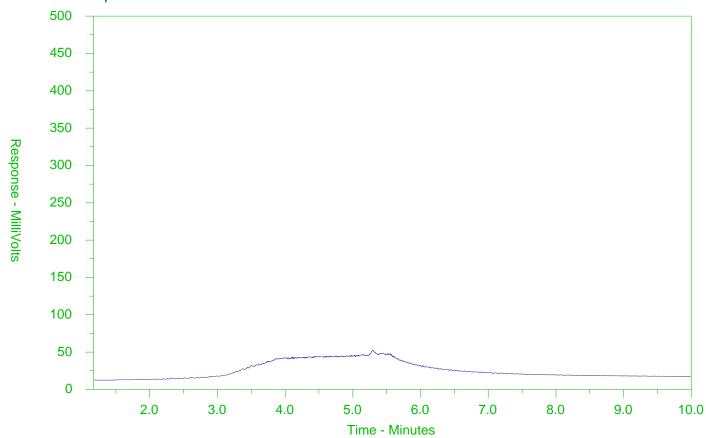

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-8 Client Sample ID: BH105-20 SA1

← -F2-	→ ←	_F3 F4_	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →				
←	← Diesel/Jet Fuels →				

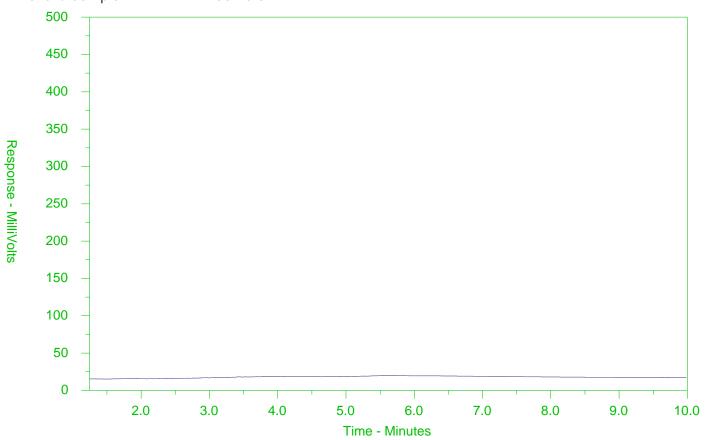

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-9 Client Sample ID: BH106-20 SA1

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

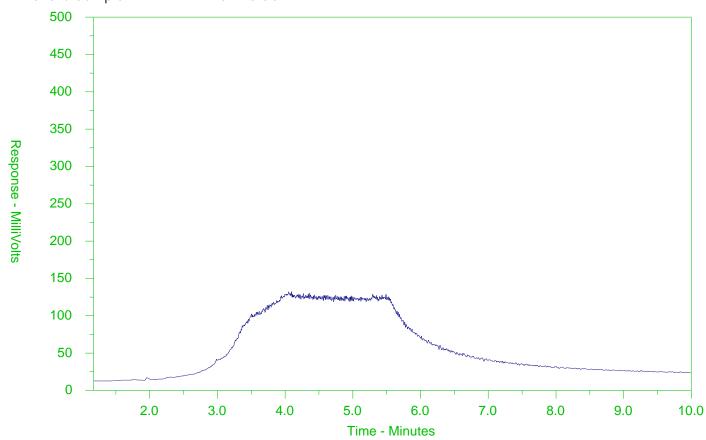

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-10 Client Sample ID: BH106-20 SA2

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease — →				
←	← Diesel/Jet Fuels →				

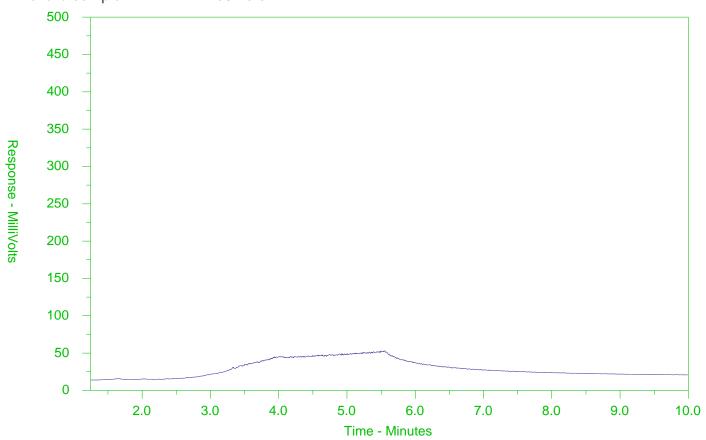

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-11 Client Sample ID: BH107-20 SS1

← -F2-	→←	_F3F4-	→		
nC10	nC16	nC34	nC50		
174°C	287°C	481°C	575°C		
346°F	549°F	898°F	1067°F		
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →				
←	← Diesel/Jet Fuels →				


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-12 Client Sample ID: BH108-20 SA1

← -F2-	→-	_F3 → F4-	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067°F						
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →								
•	-Diesel/Jet	◆ Diesel/Jet Fuels →							

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Environmental

Chain of Custody (COC) / Analytical Request Form

омия 17 - 82549**4** з_{ие} Туг(

Canada Toll Fron: 1,300,666,9870.

	www.alcolopa.com					_
Paper To	Constitutions and advised by reason.	rie i recono	Roport Farmat (Cisur Duran		events again to term series - Contact your All to confirm at ESP TATS (good-arges has spely	4
aan a y		Jacob Feoral Inc	TOTAL X ROT MILES X	H25,500 -0	Begaller [6] M. Tareard Fot Turner of Nill province construction with open apply	
len wi	J=16.5 mb+C		As Neport with the state $ \mathbf{N} $ of		\$ 4 day [F4.27.] \$ 1 Business day [F - 100%] \$ 1 July (F0.40%) \$ 5 and 3 or Weeken for Stauther holder in 2 and 5.	-
Tru-	170-122-30 <u>26</u>	▼ (sitak gen	ministration (mark stank stank size)		3 3 anio Day Weesend or Statutory holiday [£2 400%]	
	Oper a still a valve valve i septement on the final repu	rt Selectifica forica	. X sw. + on !	· <u>-</u> -	Take (C2-50%) Abstratory opening feet may apply (- 1
il III-l		€ ality Fix	Hambles mit Est.	17	Demand Time Resource for an EAR TATE. \$\frac{1}{2}\zeta_{-1}(a_{-1}, \cap 2) \rightarrow do \rightarrow (\cap 1) \rightarrow \chin 1)	
kyMicured:	MARKINE	1 1947 7			For the order was not expect to certain many bytes may be been reducted many of the constitutes.	
hgiji Çiyle		Final bill			Amilyda Berphal	
worke to	$ x = e^{-\frac{1}{2}(\log n)} x - e^{-\frac{1}{2}(\log n)} x $		hivo de Dishit of ac-		in water of a consection of tenderal formation of the same	Π.
	Dipoliti www. Sepolitic 1 ars 1/2	s "Alexhore is	net - Massall ent			}
омун ү	·	Final or Fas	par ware			‡
ered		F 1/1 2	7			<u>\$</u>
	Freject Information		and Gas Recorded Feets (client	.1861	□≗	§
LS Account # 2		ALTON TO A	204		ON HOLD	. 8
	7977-100 (Hear (Ladio)	Maria Maria I I I I I I I I I I I I I I I I I I I	Ferning Con-			1 1
OUARE		Productions				
3C .		Laction.				
ALS Lab Wor	th Order & (Albumbanky): L1.530 T	DO ON MASSONIALE	And 4. Semplor: M	VB D	MUMBER OF FIRST PARCE PA	= = = = = = = = = = = = = = = = = = =
ALB Rampto & Clab tree cally t	Sample Dentification and Quinternation at a pa		Gale Timo	Spring Type	NUMBER FACTOR FACTOR FACTOR CAK/EX CAMPI	200810
ı	BH101 30 STZ		د/(4/4	5-11	3 / / /	\top
	BH 192-20 SS.		1	i ı		十
3,	Entout 24 551	·· — — ···				
٠ ٠ ٠	8402 3 BIB		ĺ	ł		十
<u></u>				- -		
	BH103-24 5/2			٠. إ		-1
6	84154-20 556		<u> </u>		<u> </u>	┵-
₹	[8:7:24-70][S	 _	i		3 . √ <u>1 √ . #</u> √ √	\dashv
የ	\$#165 - Par \$41		[:]	_3 √ v V , <u> </u>	
. 2	BALLETZO (A)			: 1	3 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	\Box
10.	BRIDE SU SAZ			11	3 2 2 7 7 7 1 1 1	
11	BA 1-7-2- SSI			+ 1	- 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 	\top
15 /12	<u> </u>			++		+;
12,713					SAMPLE CONCITION AS RECEIVED (Inb use only)	.15
Printus	g Witter (EW) Samples" (client use)	Special og nardoos, 3, gody Cajpaja (5) e refera	iotenneron "yerokinyo inwarologo tawar B⊄Beniyi	0.4 2 -the	Prozent / TE Cition sections 166 No	<u> </u>
0 4 W T W +4 33481	n from a Pegulated Intl System	Front Sample			The Trans. In the Common of Controls cool mass to the St.	Ī
-1	t. IK-	rever 1 k egene	jęc		Control to sale.	_
n storeplass for th	io nen calour ripogra , 64° (D)	. Ray 153 Jable 1+2 A	Let t ut∺oner		ANNUL (COOLER TEMPÉRATIONES REPORTED PROFITE DE LA PROFITE	
1 -:	n w j	Ray 152 Julie 12 A Ray 400 1726 2.1	NE - Marke		2.8	
	ارين (ShiPhi NFRELEASE (claim bas)		MITIAL SHIPMENT RECEPTION	lab use color	FUNAL SHUPMENT RECEPTION (sib may only)	
		 , →.				
week for	X/2 15/20/18/20	e ~ (7, (a)	Liane:		Ima Foodyed TY Su Nov 18 12	ዝፍ፣

MTE CONSULTANTS INC. (Kitchener)

ATTN: JEN LAMBKE

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Date Received: 18-NOV-20

Report Date: 03-DEC-20 08:24 (MT)

Version: FINAL REV. 5

Client Phone: 519-743-6500

Certificate of Analysis

Lab Work Order #: L2530806
Project P.O. #: NOT SUBMITTED

Job Reference: 47877-100 (HEART LAKE)

C of C Numbers: 17-825494

Legal Site Desc:

Comments: ADDITIONAL 26-NOV-20 14:08

Emily Hansen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

PIONT SOLUTIONS BIGHT PARTIES

47877-100 (HEART LAKE)

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....

Page 2 of 6 03-DEC-20 08:24 (MT)

Sample Details								03-DEC-20 0	o.∠4 (IVI I)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L2530806-8 BH105-20 SA1									
Sampled By: MATT D. on 17-NOV-20						#1	#2		
Matrix: SOIL						#1	#2		
Sample Preparation									
Initial pH	9.07		0.10	pH units	28-NOV-20				
Final pH	8.43		0.10	pH units	28-NOV-20				
SPLP Metals									
Antimony (Sb)	<5.0		5.0	ug/L	30-NOV-20				
Arsenic (As)	<5.0		5.0	ug/L	30-NOV-20				
Barium (Ba)	<100		100	ug/L	30-NOV-20	4600	4600		
Beryllium (Be)	<2.0		2.0	ug/L	30-NOV-20	11	11		
Boron (B)	<500		500	ug/L	30-NOV-20				
Cadmium (Cd)	<0.10		0.10	ug/L	30-NOV-20		0.5		
Chromium (Cr)	<5.0		5.0	ug/L	30-NOV-20	130	130		
Cobalt (Co)	<2.0		2.0	ug/L	30-NOV-20	10	10		
Copper (Cu)	<10		10	ug/L	30-NOV-20	14	14		
Lead (Pb)	<2.0		2.0	ug/L	30-NOV-20				
Molybdenum (Mo)	<10		10	ug/L	30-NOV-20		1500		
Nickel (Ni)	<20		20	ug/L	30-NOV-20	78	78		
Selenium (Se)	<1.0		1.0	ug/L	30-NOV-20	10	10		
Silver (Ag)	<0.25		0.25	ug/L	30-NOV-20	0.3	0.3		
Thallium (TI)	<0.80		0.80	ug/L	30-NOV-20		80		
Uranium (U)	<15		15	ug/L	30-NOV-20	20	20		
Vanadium (V)	<5.0		5.0	ug/L	30-NOV-20				
Zinc (Zn)	<30		30	ug/L	30-NOV-20	180	180		
L2530806-12 BH108-20 SA1									
Sampled By: MATT D. on 17-NOV-20									
Matrix: SOIL						#1	#2		
Sample Preparation									
Initial pH	9.54		0.10	pH units	28-NOV-20				
Final pH	8.92		0.10	pH units	28-NOV-20				
SPLP Metals									
Antimony (Sb)	<5.0		5.0	ug/L	30-NOV-20				
Arsenic (As)	<5.0		5.0	ug/L	30-NOV-20				
Barium (Ba)	<100		100	ug/L	30-NOV-20	4600	4600		
Beryllium (Be)	<2.0		2.0	ug/L	30-NOV-20	11	11		
Boron (B)	<500		500	ug/L	30-NOV-20				
Cadmium (Cd)	<0.10		0.10	ug/L	30-NOV-20		0.5		
Chromium (Cr)	<5.0		5.0	ug/L	30-NOV-20	130	130		
Cobalt (Co)	<2.0		2.0	ug/L	30-NOV-20	10	10		
Copper (Cu)	<10		10	ug/L	30-NOV-20	14	14		
Lead (Pb)	<2.0		2.0	ug/L	30-NOV-20				
Molybdenum (Mo)	<10		10	ug/L	30-NOV-20		1500		
Nickel (Ni)	<20		20	ug/L	30-NOV-20	78	78		
Selenium (Se)	<1.0		1.0	ug/L	30-NOV-20	10	10		
Silver (Ag)	<0.25		0.25	ug/L	30-NOV-20	0.3	0.3		
Thallium (TI)	<0.80		0.80	ug/L	30-NOV-20		80		
Uranium (U)	<15		15	ug/L	30-NOV-20	20	20		
Vanadium (V)	<5.0		5.0	ug/L	30-NOV-20				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2530806 CONTD....

Page 3 of 6 3-DEC-20 08:24 (MT)

877-100 (HEART LAKE) Sample Details								03-DEC-20 0	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
2530806-12 BH108-20 SA1									
sampled By: MATT D. on 17-NOV-20						#1	#2		
Matrix: SOIL						π i	πΔ		
SPLP Metals									
Zinc (Zn)	<30		30	ug/L	30-NOV-20	180	180		
2530806-13 BH108-20 SA2									
sampled By: MATT D. on 17-NOV-20									
flatrix: SOIL						<u>#1</u>	#2		
Sample Preparation									
Initial pH	7.30		0.10	pH units	28-NOV-20				
Final pH	7.79		0.10	pH units	28-NOV-20				
SPLP Metals									
Antimony (Sb)	<5.0		5.0	ug/L	30-NOV-20				
Arsenic (As)	<5.0		5.0	ug/L	30-NOV-20				
Barium (Ba)	<100		100	ug/L	30-NOV-20	4600	4600		
Beryllium (Be) Boron (B)	<2.0 <500		2.0 500	ug/L	30-NOV-20 30-NOV-20	11	11		
Cadmium (Cd)	<0.10		0.10	ug/L ug/L	30-NOV-20 30-NOV-20		0.5		
Chromium (Cr)	<5.0		5.0	ug/L	30-NOV-20	130	130		
Cobalt (Co)	<2.0		2.0	ug/L	30-NOV-20	10	10		
Copper (Cu)	<10		10	ug/L	30-NOV-20	14	14		
Lead (Pb)	<2.0		2.0	ug/L	30-NOV-20				
Molybdenum (Mo)	<10		10	ug/L	30-NOV-20		1500		
Nickel (Ni)	<20		20	ug/L	30-NOV-20	78	78		
Selenium (Se)	<1.0		1.0	ug/L	30-NOV-20	10	10		
Silver (Ag)	<0.25		0.25	ug/L	30-NOV-20	0.3	0.3		
Thallium (TI)	<0.80		0.80	ug/L	30-NOV-20		80		
Uranium (U)	<15		15	ug/L	30-NOV-20	20	20		
Vanadium (V) Zinc (Zn)	<5.0 <30		5.0 30	ug/L ug/L	30-NOV-20 30-NOV-20	180	180		
Zine (Zii)	\\ \		30	ug/L	30-110 7-20	100	100		

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference***

BTX-511-HS-WT Soil BTEX-O.Reg 153/04 (July 2011) SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

CHLORDANE-T-CALC- Soil Chlordane Total sums CALCULATION

WT

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

DDD-DDE-DDT-CALC-WT Soil DDD, DDE, DDT sums CALCULATION

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

EC-WT Soil Conductivity (EC) MOEE E3138

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

ENDOSULFAN-T-CALC- Soil Endosulfan Total sums CALCULATION

MIT

Aqueous sample is extracted by liquid/liquid extraction with a solvent mix. After extraction, a number of clean up techniques may be applied, depending

on the sample matrix and analyzed by GC/MS.

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC, Pub #1310, Dec 2001-S

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from soil with 1:1 hexane:acetone using a rotary extractor. Extracts are treated with silica gel to remove polar organic interferences. F2, F3, & F4 are analyzed by GC-FID. F4G-sg is analyzed gravimetrically.

Notes:

- 1. F2 (C10-C16): Sum of all hydrocarbons that elute between nC10 and nC16.
- 2. F3 (C16-C34): Sum of all hydrocarbons that elute between nC16 and nC34.
- 3. F4 (C34-C50): Sum of all hydrocarbons that elute between nC34 and nC50.
- 4. F4G: Gravimetric Heavy Hydrocarbons
- 5. F4G-sq: Gravimetric Heavy Hydrocarbons (F4G) after silica gel treatment.
- 6. Where both F4 (C34-C50) and F4G-sg are reported for a sample, the larger of the two values is used for comparison against the relevant CCME guideline for F4.
- 7. F4G-sq cannot be added to the C6 to C50 hydrocarbon results to obtain an estimate of total extractable hydrocarbons.
- 8. This method is validated for use.
- 9. Data from analysis of validation and quality control samples is available upon request.
- 10. Reported results are expressed as milligrams per dry kilogram, unless otherwise indicated.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

F4G SG-O.Reg 153/04 (July

MOE DECPH-E3398/CCME TIER 1

2011)
F4G, gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

LEACH-MSPLP-WT

Waste

Modified SPLP Extraction

F9003

A Sample (100g) of soil is leached for 18 +/- 2 hours with 2.0 liters of splp leaching fluid #2 (pH = 5). For the analysis of metals, the leachate is filtered through a 0.45um filter using a metals free filtering system prior to digestion and analysis.

MET-200.2-CCMS-WT

Soil

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). For tests intended to support Ontario regulations, the <2mm fraction is ground to pass through a 0.355 mm sieve. Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

MET-SPLP-WT

Waste

SPLP Leachable Metals

EPA 200.8

An extract produced by the Synthetic Precipitation Leaching Procedure (SPLP) as per EPA 1312 or Ontario MECP E9003 is analyzed by Collision/Reaction Cell ICPMS. The extract is filtered through a 0.6 to 0.8 micron glass fibre filter for Method 1312 or through a 0.45um filter for Method F9003.

METHYLNAPS-CALC-WT Soil

ABN-Calculated Parameters

SW846 8270

MOISTURE-WT

Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

PAH-511-WT

Soil

PAH-O.Reg 153/04 (July 2011)

SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking technique sused to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Results for benzo(b) fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PEST-OC-511-WT

Soil

OC Pesticides-O.Reg 153/04

SW846 8270 (511)

(July 2011)

Soil sample is extracted in a solvent, after extraction a number of clean up techniques may be applied, depending on the sample matrix and analyzed by

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2530806 CONTD.... Page 6 of 6 03-DEC-20 08:24 (MT)

Reference Information

PH-WT Soil pH MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT Soil SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES. The concentrations of Na, Ca and Mg are reported as per CALA requirements for calculated parameters. These individual parameters are not for comparison to any guideline.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer Concentrations

e Isomer CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

17-825494

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO ONTARIO, CANADA	,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2530806 Report Date: 03-DEC-20 Page 1 of 4

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-WT	Waste							
Batch R5299718	8							
WG3453778-4 DUP		WG3453778-		555	/1			
Antimony (Sb)		<5.0	<5.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Arsenic (As)		<5.0	<5.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Barium (Ba)		<100	<100	RPD-NA	ug/L	N/A	25	30-NOV-20
Beryllium (Be)		<2.0	<2.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Boron (B)		<500	<500	RPD-NA	ug/L	N/A	25	30-NOV-20
Cadmium (Cd)		<0.10	<0.10	RPD-NA	ug/L	N/A	25	30-NOV-20
Chromium (Cr)		<5.0	<5.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Cobalt (Co)		<2.0	<2.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Copper (Cu)		<10	<10	RPD-NA	ug/L	N/A	25	30-NOV-20
Lead (Pb)		<2.0	<2.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Molybdenum (Mo)		<10	<10	RPD-NA	ug/L	N/A	25	30-NOV-20
Nickel (Ni)		<20	<20	RPD-NA	ug/L	N/A	25	30-NOV-20
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Silver (Ag)		<0.25	<0.25	RPD-NA	ug/L	N/A	25	30-NOV-20
Thallium (TI)		<0.80	<0.80	RPD-NA	ug/L	N/A	25	30-NOV-20
Uranium (U)		<15	<15	RPD-NA	ug/L	N/A	25	30-NOV-20
Vanadium (V)		<5.0	<5.0	RPD-NA	ug/L	N/A	25	30-NOV-20
Zinc (Zn)		<30	<30	RPD-NA	ug/L	N/A	25	30-NOV-20
WG3453778-2 LCS								
Antimony (Sb)			107.3		%		70-130	30-NOV-20
Arsenic (As)			99.2		%		70-130	30-NOV-20
Barium (Ba)			102.9		%		70-130	30-NOV-20
Beryllium (Be)			94.9		%		70-130	30-NOV-20
Boron (B)			102.5		%		70-130	30-NOV-20
Cadmium (Cd)			100.2		%		70-130	30-NOV-20
Chromium (Cr)			99.6		%		70-130	30-NOV-20
Cobalt (Co)			100.5		%		70-130	30-NOV-20
Copper (Cu)			96.5		%		70-130	30-NOV-20
Lead (Pb)			98.7		%		70-130	30-NOV-20
Molybdenum (Mo)			103.6		%		70-130	30-NOV-20
Nickel (Ni)			98.0		%		70-130	30-NOV-20
Selenium (Se)			96.7		%		70-130	30-NOV-20
Silver (Ag)			102.2		%		70-130	30-NOV-20
1								

Workorder: L2530806 Report Date: 03-DEC-20 Page 2 of 4

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-WT	Waste							
Batch R5299718								
WG3453778-2 LCS Thallium (TI)			100.2		%		70 400	20 NOV 22
Uranium (U)			95.8		%		70-130 70-130	30-NOV-20
Vanadium (V)			100.8		%			30-NOV-20
Zinc (Zn)			97.7		%		70-130	30-NOV-20 30-NOV-20
WG3453778-1 MB			31.1		70		70-130	30-NOV-20
Antimony (Sb)			<5.0		ug/L		5	30-NOV-20
Arsenic (As)			<5.0		ug/L		5	30-NOV-20
Barium (Ba)			<100		ug/L		100	30-NOV-20
Beryllium (Be)			<2.0		ug/L		2	30-NOV-20
Boron (B)			<500		ug/L		500	30-NOV-20
Cadmium (Cd)			<0.10		ug/L		0.1	30-NOV-20
Chromium (Cr)			<5.0		ug/L		5	30-NOV-20
Cobalt (Co)			<2.0		ug/L		2	30-NOV-20
Copper (Cu)			<10		ug/L		10	30-NOV-20
Lead (Pb)			<2.0		ug/L		2	30-NOV-20
Molybdenum (Mo)			<10		ug/L		10	30-NOV-20
Nickel (Ni)			<20		ug/L		20	30-NOV-20
Selenium (Se)			<1.0		ug/L		1	30-NOV-20
Silver (Ag)			<0.25		ug/L		0.25	30-NOV-20
Thallium (TI)			<0.80		ug/L		8.0	30-NOV-20
Uranium (U)			<15		ug/L		15	30-NOV-20
Vanadium (V)			<5.0		ug/L		5	30-NOV-20
Zinc (Zn)			<30		ug/L		30	30-NOV-20
WG3453778-5 MS		WG3453778-3						
Antimony (Sb)			108.7		%		50-140	30-NOV-20
Arsenic (As)			101.3		%		50-140	30-NOV-20
Barium (Ba)			109.2		%		50-140	30-NOV-20
Beryllium (Be)			99.6		%		50-140	30-NOV-20
Boron (B)			110.8		%		50-140	30-NOV-20
Cadmium (Cd)			98.6		%		50-140	30-NOV-20
Chromium (Cr)			100.9		%		50-140	30-NOV-20
Cobalt (Co)			104.0		%		50-140	30-NOV-20
Copper (Cu)			97.8		%		50-140	30-NOV-20
Lead (Pb)			106.2		%		50-140	30-NOV-20

Workorder: L2530806

Report Date: 03-DEC-20

Page 3 of 4

Client:

MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-SPLP-WT	Waste							
Batch R5299718 WG3453778-5 MS		WG3453778-3						
Molybdenum (Mo)			107.0		%		50-140	30-NOV-20
Nickel (Ni)			100.3		%		50-140	30-NOV-20
Selenium (Se)			98.9		%		50-140	30-NOV-20
Silver (Ag)			126.1		%		50-140	30-NOV-20
Thallium (TI)			102.6		%		50-140	30-NOV-20
Uranium (U)			100.2		%		70-130	30-NOV-20
Vanadium (V)			103.6		%		50-140	30-NOV-20
Zinc (Zn)			97.7		%		50-140	30-NOV-20

Workorder: L2530806 Report Date: 03-DEC-20

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

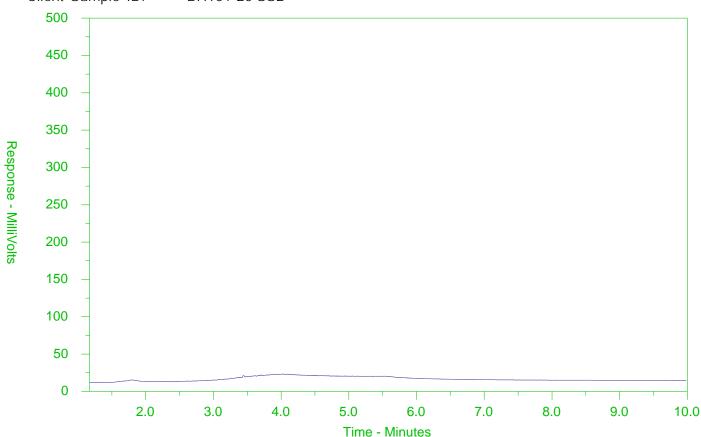
Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

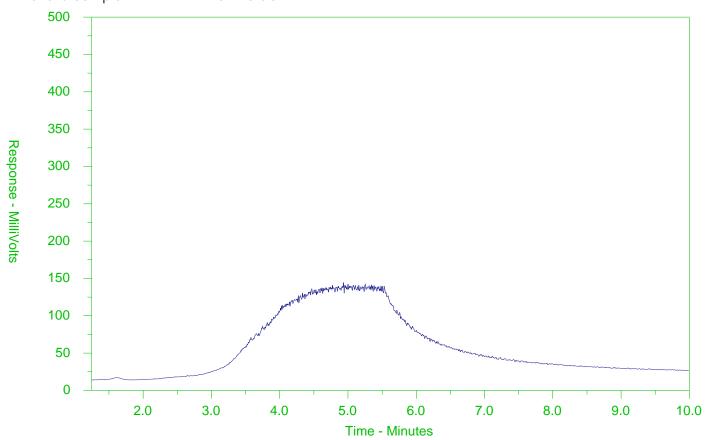

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 4 of 4

ALS Sample ID: L2530806-1 Client Sample ID: BH101-20 SS2

← -F2-	→-	_F3 → F4-	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067°F						
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →								
•	-Diesel/Jet	◆ Diesel/Jet Fuels →							

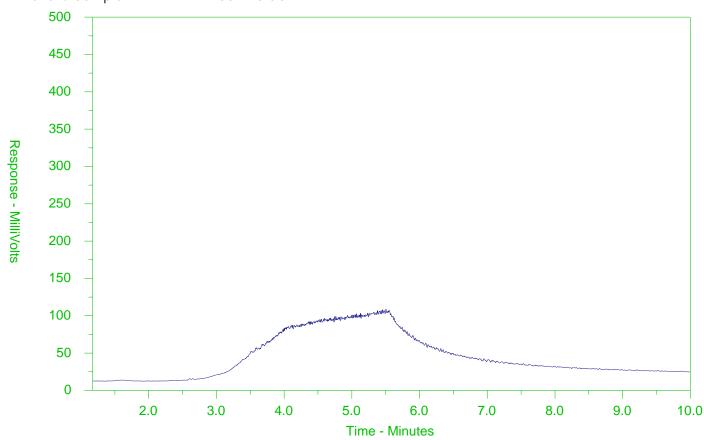

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-2 Client Sample ID: BH102-20 SS1

← -F2-	→-	_F3 → F4-	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067°F						
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →								
•	-Diesel/Jet	◆ Diesel/Jet Fuels →							

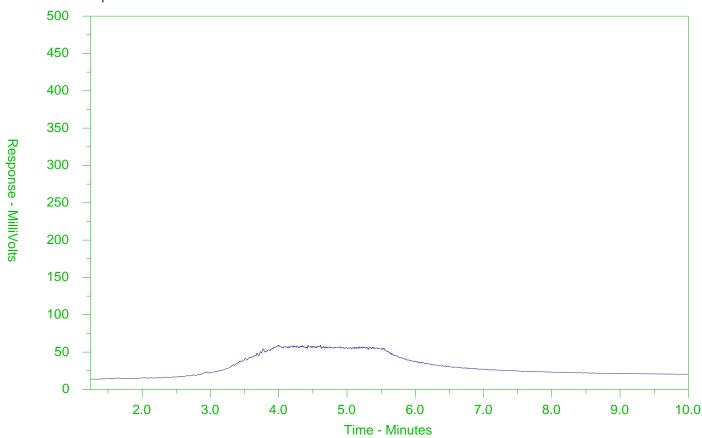

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-3 Client Sample ID: BH1002-20 SS1

← -F2-	→-	_F3 → F4-	→						
nC10	nC16	nC34	nC50						
174°C	287°C	481°C	575°C						
346°F	549°F	898°F	1067°F						
Gasolin	Gasoline → Motor Oils/Lube Oils/Grease →								
•	-Diesel/Jet	◆ Diesel/Jet Fuels →							


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-4 Client Sample ID: BH102-20 SS2B

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
•	-Diesel/Jet	Fuels→		

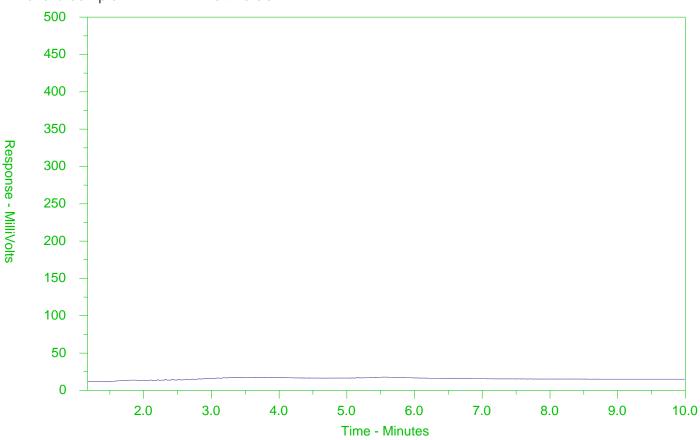
The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-5 Client Sample ID: BH103-20 SS2

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
•	-Diesel/Jet	Fuels→		

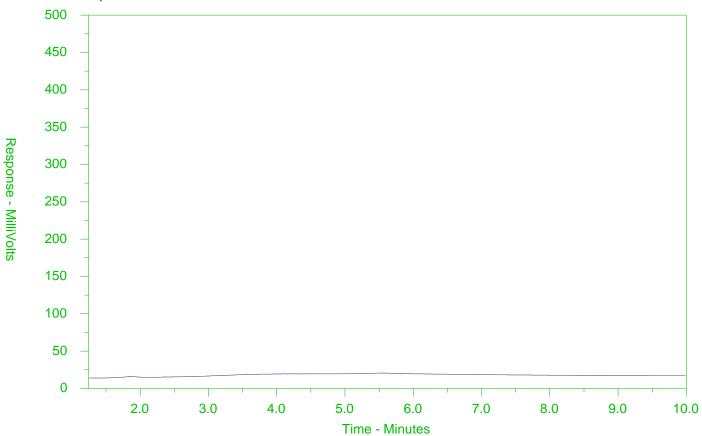

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-6 Client Sample ID: BH104-20 SS2

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
•	-Diesel/Jet	Fuels→		

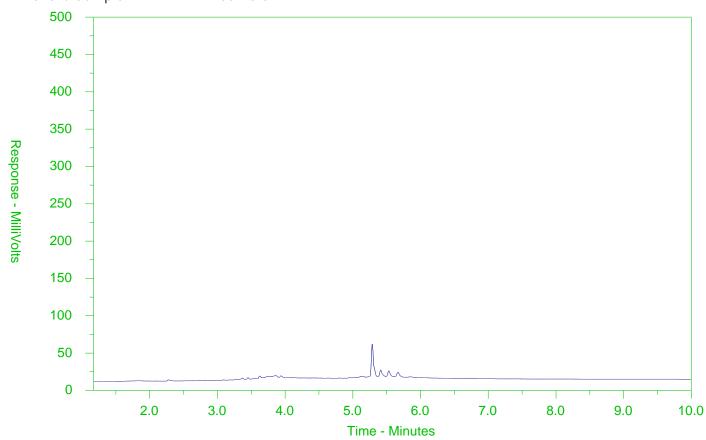

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-7 Client Sample ID: BH104-20 SS3

← -F2-	→ ←	—F3——◆4—F4-	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	e →	← M	otor Oils/Lube Oils/Grease—	-				
←	← Diesel/Jet Fuels→							

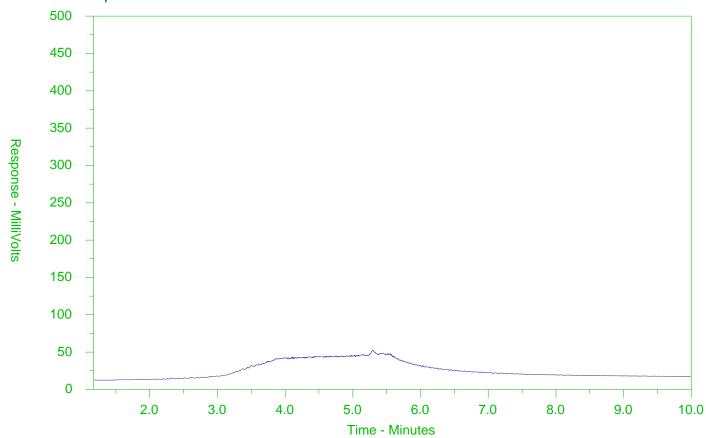

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-8 Client Sample ID: BH105-20 SA1

← -F2-	→←	_F3 F4_	→					
nC10	nC16	nC34	nC50					
174°C	287°C	481°C	575°C					
346°F	549°F	898°F	1067°F					
Gasolin	ie →	← Mo	otor Oils/Lube Oils/Grease——	-				
←	◆ Diesel/Jet Fuels →							

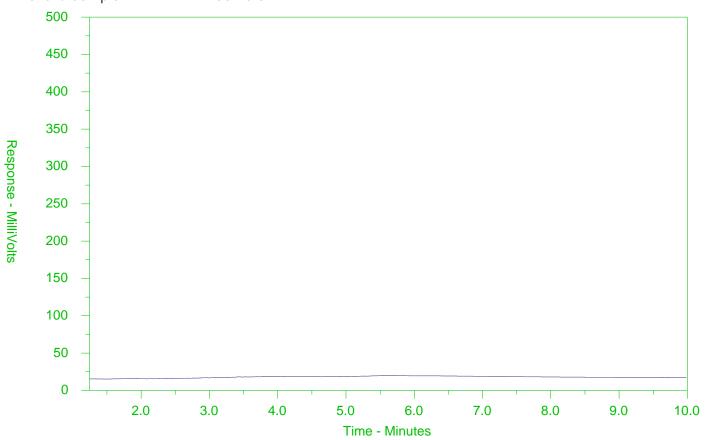

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-9 Client Sample ID: BH106-20 SA1

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
•	-Diesel/Jet	Fuels→		

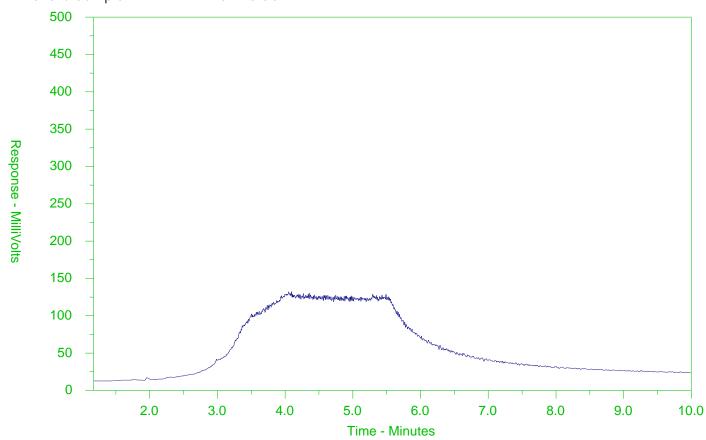

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-10 Client Sample ID: BH106-20 SA2

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
•	-Diesel/Jet	Fuels→		

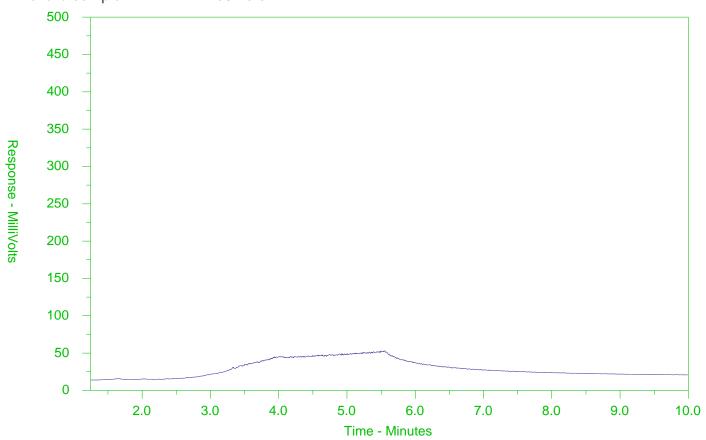

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-11 Client Sample ID: BH107-20 SS1

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

ALS Sample ID: L2530806-12 Client Sample ID: BH108-20 SA1

← -F2-	→←	_F3 → F4-	→	
nC10	nC16	nC34	nC50	
174°C	287°C	481°C	575°C	
346°F	549°F	898°F	1067°F	
Gasolin	ie →	← Mo	tor Oils/Lube Oils/Grease	-
←	-Diesel/Jet	Fuels→		

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor and the scale at the left.

Environmental

Chain of Custody (COC) / Analytical Request Form

омия 17 - 82549**4** з_{ие} Туг(

Canada Toll Fron: 1,300,666,9870.

	www.alcolopa.com					_			
Paper To	Constitutions and advised by reason.	rie i recono	Roport Farmat (Cisur Duran		every service corn serve - Contact your Altria confirm a LESP TATS more target hay spely;				
aan a y		Jacob Feoral Inc	TOTAL X ROT MILES X	H25,500 -0	Begaler [6] M Toward College of Sill projections assembly observed.				
len wi	J=21.5 mb+C		As Neport with the state $ \mathbf{N} $ of		\$ 4 day [F4.27.] \$ 1 Business day [F - 100%] \$ 1 July (F0.40%) \$ 5 and 3 or Weeken for Stauther holder in 2 and 5.	-			
Tru-	170-122-30 <u>26</u>	▼ (sitak gen	n er ett ju set mæt i sansk stimb ske		3 3 anio Day Weesend or Statutory holiday [£2 400%]				
	Oper a still a valve valve i septement on the final repu	rt Selectifica forica	. X sw. + on !	· <u>-</u> -	Take (C2-50%) Abstratory opening feet may apply (- 1			
il III-l		€ ality Fix	Hambher mh Est.	17	Demand Time Resource for an EAR TATE. \$\frac{1}{2}\zeta_{-1}(a_{-1}, \cap 2) \rightarrow do \rightarrow (\cap 1) \rightarrow \chin 1)				
kyMicured:	MARKINE	1 1947 7			For the order was not expect to certain many bytes may be been reducted many of the constitutes.				
hgiji Çiyle		Final bill			Amilyda Berphal				
worke to	$ x = e^{-\frac{1}{2}(\log n)} x - e^{-\frac{1}{2}(\log n)} x $		hivo de Dishit of ac-		in water of a consect of the base of the base of the base.	Π.			
	Dipoliti www. Sepolitic 1 ars 1/2	s "Alexhore is	net Mealler			}			
омун ү	·	Final or Fas	par ware			‡			
ered		F 1/1 2	7			<u>\$</u>			
	Freject Information		and Gas Recorded Feets (client	.1861	□≗	§			
LS Account # 2		ALTON TO A	204		ON HOLD	. 8			
	7977-100 (Hear (Ladio)	Maria Maria I I I I I I I I I I I I I I I I I I I	Ferning Con-			1 1			
OUARE		Productions							
3C .		Laction.							
ALS Lab Wor	th Order & (Albumbanky): L1.530 T	DO ON MASSONIALE	And 4. Semplor: M	VB D	MUMBER OF FIRST PARCE PA	= = = = = = = = = = = = = = = = = = =			
ALB Rampto & Clab tree cally t	Sample Dentification and Quinternation at a pa		Gale Timo	Spring Type	NUMBER FACTOR FACTOR FACTOR CAK/EX CAMPI	200810			
ı	BH101 30 STZ		د/(4/4	5-11	3 / / /	\top			
	BH 192-20 SS.		1	i ı		十			
3,	Entout 24 551	·· — — ···							
٠ ٠ ٠	8402 3 BIB		ĺ	ł		十			
<u></u>				- -					
	BH103-24 5/2			٠. إ		-1			
6	84154-20 556		<u> </u>		<u> </u>	┵-			
₹	[8:7:24-70][S	 _	i			\dashv			
የ	\$#165 - Par \$41		[:]	_3 √ v V , <u> </u>				
. 2	BALLETZO (A)			: 1	3 7 7 7 7 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1	\Box			
10.	BRIDE SU SAZ			11	3 2 2 7 7 7 1 1 1				
11	BA 1-7-2- SSI			+ 1	- 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 	\top			
15 /12	\$## # # # # # # # # # # # # # # # # # #			++		+;			
12,713					SAMPLE CONCITION AS RECEIVED (Inb use only)	.15			
Printus	g Witter (EW) Samples" (client use)	Special og nardoos, 3, gody Cajpaja (5) e refera	ioten neronity ereking ur harutage. Stander B⊡Den ye	0.4 2 -the	Prozent / TE Cition sections 166 No	<u> </u>			
0 4 W T W +4 33481	n from a Pegulated Intl System	Front Sample			The Trans. In the Common of Controls cool mass to the St.	Ī			
-1	t. IK-	rever 1 k egene	jęc		Control to sale.	_			
n storeplass for th	io nen calour ripogra , 64° (D)	. Ray 153 Jable 1+2 A	Let t ut∺oner		ANNUL (COOLER TEMPÉRATIONES REPORTED PROFITE DE LA PROFITE				
1 -:	n w j	Ray 152 Julie 12 A Ray 400 1726 2.1	NE - Marke		2.8				
	ارين (ShiPhi NFRELEASE (claim bas)		MITIAL SHIPMENT RECEPTION	lab use color	FUNAL SHUPMENT RECEPTION (sib may only)				
		 , →.							
week for	X/2 15/20/18/20	e ~ (7, (a)	Liane:		Ima Foodyed TY Su Nov 18 12	ዝፍ፣			

MTE CONSULTANTS INC. (Kitchener)

ATTN: JEN LAMBKE

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Date Received: 27-NOV-20

Report Date: 03-DEC-20 14:18 (MT)

Version: FINAL

Client Phone: 519-743-6500

Certificate of Analysis

Lab Work Order #: L2534350
Project P.O. #: NOT SUBMITTED

Job Reference: 47877-100 (HEART LAKE TCLP)

C of C Numbers: Legal Site Desc:

Emily Hansen Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

ANALYTICAL GUIDELINE REPORT

L2534350 CONTD....

Page 2 of 4

877-100 (HEART LAKE TCLP)	ANALYTICAL GUIDELINE REPORT					Page 2 of 4 03-DEC-20 14:18 (MT)		
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits	
2534350-1 BH102-20 SS1								
Sampled By: MATT D. on 17-NOV-20								
Aatrix: SOIL						#1		
Sample Preparation								
Initial pH	9.60		0.10	pH units	01-DEC-20			
Final pH	5.78		0.10	pH units	01-DEC-20			
CLP Extractables	3.76		0.10	pri units	01-DEC-20			
	.0.00000		0.00000	/1	00 DEC 00			
Arcelor 1242	<0.00020		0.00020	mg/L	02-DEC-20			
Aroclor 1248	<0.00020 <0.00020		0.00020	mg/L	02-DEC-20			
Aroclor 1254			0.00020	mg/L	02-DEC-20 02-DEC-20			
Aroclor 1260	<0.00020		0.00020 0.10	mg/L		00		
Cyanide, Weak Acid Diss	<0.10			mg/L	01-DEC-20	20		
Fluoride (F)	<10		10	mg/L	02-DEC-20	150.0		
Nitrate and Nitrite as N	<4.0		4.0	mg/L	02-DEC-20	1000		
Nitrate-N	<2.0		2.0	mg/L	02-DEC-20			
Nitrite-N	<2.0		2.0	mg/L	02-DEC-20			
Total PCBs	<0.00040		0.00040	mg/L	02-DEC-20	0.3		
TCLP Metals								
Arsenic (As)	<0.050		0.050	mg/L	01-DEC-20	2.5		
Barium (Ba)	<0.50		0.50	mg/L	01-DEC-20	100		
Boron (B)	<2.5		2.5	mg/L	01-DEC-20	500		
Cadmium (Cd)	<0.0050		0.0050	mg/L	01-DEC-20	0.5		
Chromium (Cr)	<0.050		0.050	mg/L	01-DEC-20	5.0		
Lead (Pb)	<0.025		0.025	mg/L	01-DEC-20	5.0		
Mercury (Hg)	<0.00010		0.00010	mg/L	01-DEC-20	0.1		
Selenium (Se)	<0.025		0.025	mg/L	01-DEC-20	1.0		
Silver (Ag)	<0.0050		0.0050	mg/L	01-DEC-20	5.0		
Uranium (U)	<0.25		0.25	mg/L	01-DEC-20	10		
TCLP VOCs								
1,1-Dichloroethylene	<0.025		0.025	mg/L	02-DEC-20	1.4		
1,2-Dichlorobenzene	<0.025		0.025	mg/L	02-DEC-20	20.0		
1,2-Dichloroethane	<0.025		0.025	mg/L	02-DEC-20	0.5		
1,4-Dichlorobenzene	<0.025		0.025	mg/L	02-DEC-20	0.5		
Benzene	<0.025		0.025	•	02-DEC-20 02-DEC-20			
				mg/L		0.5		
Carbon tetrachloride	<0.025		0.025	mg/L	02-DEC-20 02-DEC-20	0.5		
Chloroform	<0.025		0.025	mg/L		8		
Chloroform	<0.10		0.10	mg/L	02-DEC-20	10		
Dichloromethane	<0.50		0.50	mg/L	02-DEC-20	5.0		
Methyl Ethyl Ketone	<1.0		1.0	mg/L	02-DEC-20	200.0		
Tetrachloroethylene	<0.025		0.025	mg/L	02-DEC-20	3		
Trichloroethylene	<0.025		0.025	mg/L	02-DEC-20	5		
Vinyl chloride	<0.050		0.050	mg/L	02-DEC-20	0.2		
Surrogate: 4-Bromofluorobenzene /olatile Organic Compounds	108.7		70-130	%	02-DEC-20			
Surrogate: 1,4-Difluorobenzene Polychlorinated Biphenyls	97.2		70-130	%	02-DEC-20			
Surrogate: Decachlorobiphenyl	85.4		50-150	%	02-DEC-20			
	55.∓	1	55 100	/ / /	02 220 20		I I	1
Surrogate: Tetrachloro-m-xylene	87.5		50-150	%	02-DEC-20			

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Methods Listed (if applicable):

ALS Test Code Test Description Method Reference*** Matrix **CN-TCLP-WT** Waste Cyanide for O. Reg 347 APHA 4500CN I

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from APHA Method 4500-CN I. "Weak Acid Dissociable Cyanide". Weak Acid Dissociable (WAD) cyanide is determined by in-line sample distillation with final determination by colourimetric analysis.

F-TCLP-WT

Fluoride (F) for O. Reg 347

EPA 300.1

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from EPA 300.1 and is analyzed by Ion Chromatography with conductivity and/or UV detection.

HG-TCLP-WT

Waste

Mercury (CVAA) for O.Reg 347 EPA 1631E

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using atomic absorption spectrophotometry (EPA 1631E).

LEACH-TCLP-WT

Waste

Leachate Procedure for Reg 347 EPA 1311

Inorganic and Semi-Volatile Organic contaminants are leached from waste samples in strict accordance with US EPA Method 1311, "Toxicity Characteristic Leaching Procedure" (TCLP). Test results are reported in leachate concentration units (normally mg/L).

MET-TCLP-WT

O.Reg 347 TCLP Leachable

EPA 6020B

Metals

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modifed from EPA Method 6020B).

N2N3-TCLP-WT

Waste

Nitrate/Nitrite-N for O. Reg 347

EPA 300.1

This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C" SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fiber filter. The extract is then analyzed using procedures adapted from EPA 300.1 and is analyzed by Ion Chromatography with conductivity and/or UV detection.

PCB-TCLP-WT VOC-TCLP-WT Waste Waste PCBs for O. Reg 347 VOC for O. Reg 347

SW846 8270 SW846 8260

A sample of waste is leached in a zero headspace extractor at 30-2 rpm for 18-2.0 hours with the appropriate leaching solution. After tumbling the leachate is analyzed directly by headspace technology, followed by GC/MS using internal standard quantitation.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location Laboratory Definition Code Laboratory Location WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Workorder: L2534350 Report Date: 03-DEC-20 Page 1 of 6

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CN-TCLP-WT	Waste							
Batch R5301851								
WG3454803-3 DUP Cyanide, Weak Acid D	iss	L2533745-1 <0.10	<0.10	RPD-NA	mg/L	N/A	50	01-DEC-20
WG3454803-2 LCS Cyanide, Weak Acid D	iss		104.3		%		70-130	01-DEC-20
WG3454803-1 MB Cyanide, Weak Acid D	iss		<0.10		mg/L		0.1	01-DEC-20
WG3454803-4 MS Cyanide, Weak Acid D	iss	L2533745-1	102.8		%		50-140	01-DEC-20
F-TCLP-WT	Waste							
Batch R5304756	;							
WG3455760-3 DUP Fluoride (F)		L2533745-1 <10	<10	RPD-NA	mg/L	N/A	30	02-DEC-20
WG3455760-2 LCS Fluoride (F)			96.7		%		70-130	02-DEC-20
WG3455760-1 MB Fluoride (F)			<10		mg/L		10	02-DEC-20
WG3455760-4 MS Fluoride (F)		L2533745-1	95.6		%		50-150	02-DEC-20
HG-TCLP-WT	Waste							
Batch R5300328	3							
WG3454617-3 DUP Mercury (Hg)		L2533073-1 <0.00010	<0.00010	RPD-NA	mg/L	N/A	50	01-DEC-20
WG3454617-2 LCS Mercury (Hg)			101.0		%		70-130	01-DEC-20
WG3454617-1 MB Mercury (Hg)			<0.00010		mg/L		0.0001	01-DEC-20
WG3454617-4 MS Mercury (Hg)		L2533073-1	104.7		%		50-140	01-DEC-20
MET-TCLP-WT	Waste							
Batch R5300521	l							
WG3454645-4 DUP		WG3454645-3						
Silver (Ag)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	01-DEC-20
Arsenic (As)		<0.050	<0.050	RPD-NA	mg/L	N/A	50	01-DEC-20
Boron (B)		<2.5	<2.5	RPD-NA	mg/L	N/A	50	01-DEC-20
Barium (Ba)		0.69	0.68		mg/L	1.1	50	01-DEC-20
Cadmium (Cd)		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	01-DEC-20
Chromium (Cr)		<0.050	<0.050	RPD-NA	mg/L	N/A	50	01-DEC-20

Workorder: L2534350 Report Date: 03-DEC-20 Page 2 of 6

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TCLP-WT		Waste							
Batch R5	300521								
WG3454645-4 Lead (Pb)	DUP		WG3454645-3 < 0.025	<0.025	RPD-NA	mg/L	N/A	50	01-DEC-20
Selenium (Se)			<0.025	<0.025	RPD-NA	mg/L	N/A	50	01-DEC-20
Uranium (U)			<0.25	<0.25	RPD-NA	mg/L	N/A	50	01-DEC-20
WG3454645-2 Silver (Ag)	LCS			97.4		%		70-130	01-DEC-20
Arsenic (As)				96.6		%		70-130	01-DEC-20
Boron (B)				95.9		%		70-130	01-DEC-20
Barium (Ba)				98.5		%		70-130	01-DEC-20
Cadmium (Cd)				96.7		%		70-130	01-DEC-20
Chromium (Cr)				97.0		%		70-130	01-DEC-20
Lead (Pb)				93.9		%		70-130	01-DEC-20
Selenium (Se)				93.1		%		70-130	01-DEC-20
Uranium (U)				91.2		%		70-130	01-DEC-20
WG3454645-1 Silver (Ag)	MB			<0.0050		mg/L		0.005	01-DEC-20
Arsenic (As)				< 0.050		mg/L		0.05	01-DEC-20
Boron (B)				<2.5		mg/L		2.5	01-DEC-20
Barium (Ba)				<0.50		mg/L		0.5	01-DEC-20
Cadmium (Cd)				<0.0050		mg/L		0.005	01-DEC-20
Chromium (Cr)				<0.050		mg/L		0.05	01-DEC-20
Lead (Pb)				<0.025		mg/L		0.025	01-DEC-20
Selenium (Se)				<0.025		mg/L		0.025	01-DEC-20
Uranium (U)				<0.25		mg/L		0.25	01-DEC-20
WG3454645-5 Silver (Ag)	MS		WG3454645-3	126.2		%		50-140	
Arsenic (As)				107.8		%			01-DEC-20
Boron (B)				113.5		%		50-140 50-140	01-DEC-20 01-DEC-20
Barium (Ba)				108.3		%		50-140	01-DEC-20 01-DEC-20
Cadmium (Cd)				105.5		%		50-140	01-DEC-20 01-DEC-20
Chromium (Cr)				106.5		%		50-140	01-DEC-20
Lead (Pb)				108.3		%		50-140	01-DEC-20
Selenium (Se)				104.4		%		50-140	01-DEC-20
Uranium (U)				104.0		%		50-140	01-DEC-20
N2N3-TCLP-WT		Waste						00 140	3. 520 20

Workorder: L2534350 Report Date: 03-DEC-20 Page 3 of 6

MTE CONSULTANTS INC. (Kitchener) Client:

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
N2N3-TCLP-WT		Waste							
WG3455760-3	304756 DUP		L2533745-1						
Nitrate-N			<2.0	<2.0	RPD-NA	mg/L	N/A	25	02-DEC-20
Nitrite-N			<2.0	<2.0	RPD-NA	mg/L	N/A	25	02-DEC-20
WG3455760-2 Nitrate-N	LCS			97.8		%		70-130	02-DEC-20
Nitrite-N				99.1		%		70-130	02-DEC-20
WG3455760-1 Nitrate-N	MB			<2.0		mg/L		2	02-DEC-20
Nitrite-N				<2.0		mg/L		2	02-DEC-20
WG3455760-4	MS		L2533745-1			-			-
Nitrate-N				99.2		%		50-150	02-DEC-20
Nitrite-N				100.1		%		50-150	02-DEC-20
PCB-TCLP-WT		Waste							
Batch R5	302841								
WG3454963-6	DUP		WG3454963-3	-0.00000	DDC 114	ma/l	N1/6	50	00 PF0 C5
Aroclor 1242			<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	02-DEC-20
Aroclor 1248 Aroclor 1254			<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	02-DEC-20
			<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	02-DEC-20
Aroclor 1260	1.00		<0.00020	<0.00020	RPD-NA	mg/L	N/A	50	02-DEC-20
WG3454963-2 Aroclor 1242	LCS			85.4		%		65-130	02-DEC-20
Aroclor 1248				82.7		%		65-130	02-DEC-20
Aroclor 1254				84.6		%		65-130	02-DEC-20
Aroclor 1260				79.5		%		65-130	02-DEC-20
WG3454963-1 Aroclor 1242	MB			<0.00020		mg/L		0.0002	02-DEC-20
Aroclor 1248				<0.00020		mg/L		0.0002	02-DEC-20
Aroclor 1254				<0.00020		mg/L		0.0002	02-DEC-20
Aroclor 1260				<0.00020		mg/L		0.0002	02-DEC-20
Surrogate: Decachlorob		phenyl		102.4		%		50-150	02-DEC-20
Surrogate: Tetrachloro-r		n-xylene		89.3		%		50-150	02-DEC-20
WG3454963-8 Aroclor 1242	MB			<0.00020		mg/L		0.0002	02-DEC-20
Aroclor 1248				<0.00020		mg/L		0.0002	02-DEC-20
Aroclor 1254				<0.00020		mg/L		0.0002	02-DEC-20
Aroclor 1260				<0.00020		mg/L		0.0002	02-DEC-20

Workorder: L2534350 Report Date: 03-DEC-20 Page 4 of 6

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

PCB-TCLP-WT	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
Might Mig	PCB-TCLP-WT	Waste								
Surrogate: Decarbinorbiphenyl 94.6 % 50.150 02-DEC-20 Surrogate: Tetrachloror-m-xylene 93.9 % 50.150 02-DEC-20 WG3454963-7 MS WG3454983-3 78.2 % 50.150 02-DEC-20 Aroclor 1284 76.7 % 50.150 02-DEC-20 Aroclor 1280 76.7 % 50.150 02-DEC-20 Aroclor 1280 WSte VEX.	Batch R53028	41								
Surrogate: Tetrachloro-m-xylene 93.9 % 60-150 02-DEC-20 WG3454965-7 MS				0.4.0		0/		50.450		
WG344963-7 MS WG3454963-3 Rac % 50-150 02-DEC-20 Arcolor 1264 76.7 % 50-150 02-DEC-20 Arcolor 1260 71.6 % 50-150 02-DEC-20 VOC-TCLP-WT Waste Batch R5301919 WG3455082-1 LCS 1,1-Dichloroelhylene 121.9 % 70-130 02-DEC-20 1,2-Dichloroelhane 103.2 % 70-130 02-DEC-20 1,2-Dichloroelhane 111.1 % 70-130 02-DEC-20 1,4-Dichloroelhane 112.1 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 60-140 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloroethylene 110.7 % 70-130 02-DEC-20 <th co<="" td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_								
Aroclor 1242						%		50-150	02-DEC-20	
Aroclor 1254			WG3454963-3			%		50-150	02-DFC-20	
Aroclor 1260 71.6 % 50-150 02-DEC-20 VOC-TCLP-WT Waste STORTH PWT WISTORTH PWT WI	Aroclor 1254									
Batch R5301919 WG3455082-1 LCS LCS 1,1-Dichloroethylene 121.9 % 70-130 02-DEC-20 1,2-Dichloroethylene 103.2 % 70-130 02-DEC-20 1,2-Dichloroethane 121.0 % 70-130 02-DEC-20 1,4-Dichlorobenzene 109.8 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Carbon tetrachloride 120.8 % 60-140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Chloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Virig chloride 107.9 % 60-130 02-DEC-20 </td <td>Aroclor 1260</td> <td></td> <td></td> <td>71.6</td> <td></td> <td>%</td> <td></td> <td></td> <td></td>	Aroclor 1260			71.6		%				
National State	VOC-TCLP-WT	Waste								
1,1-Dichloroethylene 121,9 % 70-130 02-DEC-20 1,2-Dichloroebnzene 103.2 % 70-130 02-DEC-20 1,2-Dichloroethane 121.0 % 70-130 02-DEC-20 1,4-Dichlorobenzene 109.8 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Carbon tetrachloride 120.8 % 60-140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 110.7 % 70-130 02-DEC-20 Viny chloride 107.9 % 70-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene <0.025	Batch R53019	19								
1,2-Dichlorobenzene 103.2 % 70-130 02-DEC-20 1,2-Dichloroethane 121.0 % 70-130 02-DEC-20 1,4-Dichlorobenzene 109.8 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Carbon tetrachloride 120.8 % 60-140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene 0.025 mg/L 0.025 02-DEC-20 1,2-Dichlorobenzene <0.025										
1,2-Dichloroethane 121.0 % 70-130 02-DEC-20 1,4-Dichlorobenzene 109.8 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Carbon tetrachloride 120.8 % 60-140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Tirchloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene <0.025	•									
1,4-Dichlorobenzene 109.8 % 70-130 02-DEC-20 Benzene 114.1 % 70-130 02-DEC-20 Carbon tetrachloride 120.8 % 60-140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene 0.025 mg/L 0.025 02-DEC-20 1,2-Dichlorobenzene 0.025 mg/L 0.025 02-DEC-20 1,4-Dichlorobenzene mg/L 0.025 02-DEC-20 Benzene 0.025 </td <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	,									
Benzene 114.1 % 70-130 02-DEC-20 Carbon tetrachloride 120.8 % 60-140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene 0.025 mg/L 0.025 02-DEC-20 1,2-Dichlorobenzene <0.025	•									
Carbon tetrachloride 120.8 % 60.140 02-DEC-20 Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene <0.025										
Chlorobenzene 97.8 % 70-130 02-DEC-20 Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene <0.025										
Chloroform 132.2 LCS-ND % 70-130 02-DEC-20 Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene <0.025										
Dichloromethane 122.9 % 70-130 02-DEC-20 Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 1,1-Dichloroethylene <0.025					1.00.115					
Methyl Ethyl Ketone 108.9 % 50-150 02-DEC-20 Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB NB NB <td></td> <td></td> <td></td> <td></td> <td>LCS-ND</td> <td></td> <td></td> <td></td> <td></td>					LCS-ND					
Tetrachloroethylene 110.7 % 70-130 02-DEC-20 Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB NB										
Trichloroethylene 112.7 % 70-130 02-DEC-20 Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB MB MB MB MB 0.025 0.025 02-DEC-20 1,2-Dichloroethylene <0.025										
Vinyl chloride 107.9 % 60-130 02-DEC-20 WG3455082-2 MB 7.1-Dichloroethylene <0.025 mg/L 0.025 02-DEC-20 1,2-Dichlorobenzene <0.025	· · · · · · · · · · · · · · · · · · ·									
WG3455082-2 MB 1,1-Dichloroethylene <0.025	•									
1,1-Dichloroethylene <0.025	-			107.9		/0		60-130	02-DEC-20	
1,2-Dichlorobenzene <0.025				<0.025		mg/L		0.025	02-DEC-20	
1,2-Dichloroethane <0.025	1,2-Dichlorobenzene			<0.025		mg/L		0.025		
Benzene <0.025 mg/L 0.025 02-DEC-20 Carbon tetrachloride <0.025	·			<0.025				0.025	02-DEC-20	
Carbon tetrachloride <0.025 mg/L 0.025 02-DEC-20 Chlorobenzene <0.025	•			<0.025		mg/L		0.025	02-DEC-20	
Carbon tetrachloride <0.025 mg/L 0.025 02-DEC-20 Chlorobenzene <0.025	Benzene			<0.025		mg/L		0.025	02-DEC-20	
Chloroform <0.10 mg/L 0.1 02-DEC-20 Dichloromethane <0.50	Carbon tetrachloride			<0.025		mg/L		0.025		
Dichloromethane <0.50 mg/L 0.5 02-DEC-20 Methyl Ethyl Ketone <1.0	Chlorobenzene			<0.025		mg/L		0.025	02-DEC-20	
Methyl Ethyl Ketone <1.0 mg/L 1 02-DEC-20	Chloroform			<0.10		mg/L		0.1	02-DEC-20	
	Dichloromethane			<0.50		mg/L		0.5	02-DEC-20	
Tetrachloroethylene <0.025 mg/L 0.025 02-DEC-20	Methyl Ethyl Ketone			<1.0		mg/L		1	02-DEC-20	
	Tetrachloroethylene			<0.025		mg/L		0.025	02-DEC-20	

Workorder: L2534350 Report Date: 03-DEC-20 Page 5 of 6

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-TCLP-WT	Waste							
Batch R5301919								
WG3455082-2 MB Trichloroethylene			<0.025		mg/L		0.025	02-DEC-20
Vinyl chloride			< 0.050		mg/L		0.05	02-DEC-20
Surrogate: 1,4-Difluorob	enzene		99.1		%		70-130	02-DEC-20
Surrogate: 4-Bromofluor	obenzene		106.8		%		70-130	02-DEC-20
WG3455082-3 MS		L2534561-1						
1,1-Dichloroethylene			123.9		%		50-140	02-DEC-20
1,2-Dichlorobenzene			103.1		%		50-140	02-DEC-20
1,2-Dichloroethane			121.8		%		50-140	02-DEC-20
1,4-Dichlorobenzene			107.0		%		50-140	02-DEC-20
Benzene			116.6		%		50-140	02-DEC-20
Carbon tetrachloride			124.8		%		50-140	02-DEC-20
Chlorobenzene			98.0		%		50-140	02-DEC-20
Chloroform			135.8		%		50-140	02-DEC-20
Dichloromethane			125.3		%		50-140	02-DEC-20
Methyl Ethyl Ketone			112.7		%		50-140	02-DEC-20
Tetrachloroethylene			107.6		%		50-140	02-DEC-20
Trichloroethylene			114.3		%		50-140	02-DEC-20
Vinyl chloride			112.3		%		50-140	02-DEC-20

Page 6 of 6

Workorder: L2534350 Report Date: 03-DEC-20

Client: MTE CONSULTANTS INC. (Kitchener)

520 BINGEMANS CENTRE DRIVE

KITCHENER ON N2B 3X9

Contact: JEN LAMBKE

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
LCS-ND	Lab Control Sample recovery was slightly outside ALS DQO. Reported non-detect results for associated samples were unaffected.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Proc. 1 800 665 9879

0000 HM 17 -

Fage 11 1 U

	<u>gas ang andawa</u>													
Карот Тс	Con a nacrio du arginante solovi - 19 -	ere de la colonia.			at ' Postribulien		1 .					h (Ala jaurens		' ^y !
Син рати	ÜTF		Хекс: Арроп Га					Ragular (H) .						
Contact	.c. Lamtin		Ocary Collection				1.31	day [P4 25%]		1 Builross	i € 3γ [Æ 100°	S)		-
Chana	51 -502 3299		Figure 1986			ene final chere	1311	нау [23,25%]	_ 12			stated to be be		الن ه
	Communication below will access from the	יו אן יי 1-ר	sekro Dabilado					day [92:605y]				s may арруу)]		
Herry.	·		Fla office	him (ke/iliane	erm			na Militara Raspaire				lancann vy 🤭		
Citys number	any moran Office		2 10. 2				P11. 007	la accesso a anton	an Salvarate.	_				
Pinla Cute.	·		√ =m/3							Aralysis				
Involca Ta	1	TV:		ideoice,	Դելահակտո		. o L	1 49 1		r " re-s.	a e a l'imperent	1)/604		1 2 1
_	Name of the second section (1999)	Tw:	S els al humbs	s hilton i h	wr Tw.	184	151	i			\perp		크	131
Compare			amarini bar	эл төрө лагууч			Ͻ;ϗΓ		- 1	,	'		-1 ♀	2
Cata Gata	 -		£	• •			Į≅						ļΨ	:
	Project to 'ornal' on	"	Dita	a el Сах Вир. :	ual Field& (allo	nt 199)]≟[;			Z	
A. S Account A	L. Quate #		and Court and		7-759		동	, i					10	3
	2 (1.1400) = 20 (0.440,100.2)		ary committee		Routing Opt	·	6						l o	
70 · v-+			Pegak reno				1ኴ[è					lщ	[5]
			Lourier -				0		!				_	151
	1 20	121 NOVE	-				7监!	•				1 .	₾	131
Al Crah Wor	rk Order# (lab use only): 12= 35	: 55-3VT	ALS Confee!	Emils -	2s ⊐hiv	9all 3	ш	: \$ \$.					AMPI	11.1
	Sarvole dentification	n anders Cosser outes	·	Daru	Time	· · · ·	┧┋┃						ા ∢	3,0467
ALS Sanista A. Habitita brilyt		TRANSPORTER OF	ı	real. 1 :	20.203	Switcher Type	'lźi	: Laig					ဟ	1 🖔 1
	9h 52 00 000	1,000		151.96	· ·	291						+-	_	\top
					+		٠.	- - - - - - - - - - 		—— —	— ₁	· · ·		1 1
l	↓ <u> </u>				I —			.		. +	-	— I		1 1
					⊥ .		. i	! .		 .	!			
<u> </u>					T		il	: !]	
 -	i ———						1 1	· 1	! · '	\top		i]	
-	└						1	·	'	'	. –		1	
ļ	<u> </u>						1 1	:	•	· —		- 1	1 .	-+
L							 ! -					.		+ +
							Ι.		.l			'		.;
-					_	!			.i			1		
├	·									 ·		11.	· 	1
ŀ .—	 						: -		- ··		-		-	1 1
L					:					<u> </u>			ł	+
	†			l										Щ
	g Water (DW) Samples (Ichort uso)	Specialist nation 16				oped swithof below				HETICH AS		_		-
			10460	or ecesal!			02411	-		Coperation		H	N.:	<u> </u>
I _	um Nom B Regulated CW System?							∞ ⊿ <u>∞</u> ∽	mes [] Ci	islady sear kna	кт Үөэ		พก	ᆈ
ı	: ™ 0						:,+ - 4 rs	j:·linin.i				• • • • • • • • • • • • • • • • • • • •		
Agripating Ing for	in toda screen rythod twe?	Oreg 341 Schedult 1 G	0000 P				<u> </u>		EM-F-/ II.6 	' '	2 7 Se	Сфицен вин	-a ::-C	
	85 <u>I</u> <u>M</u> 1	l												i
	SHIPMENT RECEASE (c) 21: 04	a)	<u> </u>	IN ITAL STIEME	м" весеето	Nillabicate Only)	1.	.4.		_		i lab ijao orty		I
			Rotelled by		1- P		lime	Para venib	° 0.	Fare •) /4	Tion.	ಜನಡ
	4 at 1 at 2				yeri i kuma	9.5.0.00 00	<u> </u>	EX 50%	<u>Ŋ</u> y		NoV_{-}	y. I		لببيت
	4 моде в Силе Монской иму ами дами с 18 року пред 1911 годинация объектория		ee : a n i h:							Å				

Appendix E

Excess Soil Procedures

Unexpected / Suspected Contamination
Rejected Loads at Reuse Site

Procedure Title:	Procedure for Handling Unexpected Impacted	Date Issued:	January 2022
Procedure Title:		Revision No.:	0
Authorizer:	Project Leader or Operator of a Project Area	Date Revised:	N/A

1 PURPOSE

To comply with Section 23 of Ontario Regulation 406/19 with a written procedure outlining the steps that must occur if any unexpected and suspected soil contamination is encountered during any excavation within the Project Area.

2 SCOPE

As required under section 23 of O. Reg 406/19, this written procedure applies to any personnel acting on behalf of the Project Leader or the Operator of the Project Area and indicates what must occur "if any person working in the Project Area makes an observation during soil excavation within the Project Area, including any visual or olfactory observation, that suggests that the soil being excavated may be affected by the discharge of a contaminant" (e.g. staining, odour, deleterious debris).

3 DEFINITIONS

Contaminant of Potential Environmental Concern – the potential for one or more contaminants to be located on, in, or under a property at a concentration above the applicable standard

Excess Soil – means soil, or soil mixed with rock, that has been excavated as part of the project and removed from the project area for the project.

Excess Soil Regulation – known as *Ontario Regulation 406/19: On-Site and Excess Soil Management.*

MECP – means the Ontario Ministry of the Environment, Conservation and Parks (formerly MOECC and MOE).

O.Reg 153/04 – refers to Ontario Regulation 153/04, Records of Site Condition – Part XV.1 of the Act

Project Area – means, in respect of a project, a single property or adjoining properties on which the project is carried out.

Project Leader – means, in respect of a project, the person or persons who are ultimately responsible for making decisions relating to the planning and implementation of the project.

Qualified Person – means, a person who meets the qualifications to be a qualified person for the purposes of conducting or supervising a phase one or phase two environmental site assessment, and completing the certifications that must be completed in a record of site condition, if:

- the person holds a license, limited license or temporary license under the *Professional Engineers Act;* or
- the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary member or limited member of the Association of Professional Geoscientists of Ontario.

Soil Rules – the documents entitled "Rules for Soil Management and Excess Soil Quality Standards". This document is a provision of the Excess Soil Regulation and requires compliance where indicated. This document also references the Excess Soil Quality Standards.

Procedure Title:	Procedure for Handling Unexpected Impacted	Date Issued:	January 2022
Procedure Title:	Te little: Call Danier Francisco if annount and	Revision No.:	0
Authorizer:	Project Leader or Operator of a Project Area	Date Revised:	N/A

4 RESPONSIBILITY

The Project Leader or the Operator of the Project Area is responsible for ensuring that this procedure is followed in the event that unexpected soil impacts are encountered during excavation within the Project Area.

5 PROCEDURE for Handling Unexpected and Suspected Impacted Soil During Excavation

As stipulated in **Section 23** of the Excess Soil Regulation 406/19, a procedure must be developed in the event that unexpected soil impacts are encountered during excavation within the Project Area.

The Project Leader or the Operator of the Project Area shall ensure the following:

- 1. All soil excavations in the immediate work area must immediately cease upon the observation of impacted or potentially impacted soil being made.
- 2. The Project Leader or the Operator of the Project Area must immediately be notified of the observation.

Project Leader Representative Name:	Phone #:
-------------------------------------	----------

- 3. The Project Leader or the Operator of the Project Area, upon being notified of the observation, must, before allowing the excavation to resume, ensure that all necessary steps are taken to ensure that:
 - a. Advice of the Project Leader's/Contractors Qualified Person (QP)* is obtained regarding what next steps are necessary, and in consultation with the <u>Project Leader's QP</u>, advise on whether any of documents required under the regulation require revision (update) as a result of the observation.
 - b. The extent of the work area that is affected by a contaminant must be determined. This includes an inspection of the suspect soil to determine appropriate sampling, handling and/or disposal requirements.
 - c. That the Contractor and the Constructor have in-place proper worker health and safety procedures and environmental controls to protect workers, engineers and visitors in the work area and limit access to the work area from unauthorized persons.
 - d. All excavated soil that is affected by a contaminant is identified and is segregated from other excavated soil in the Project Area. All such segregated soil should be covered with plastic sheeting placed below and above the stockpile.
 - e. All segregated stockpiles must not exceed 2,500m³ each, and must be placed greater than 30 m from a water body, unless any exemptions under the Soil Rules apply (Section 4(ii)).

Dragadura Titlar	dure Title: Procedure for Handling Unexpected Impacted Soil During Excavation, if encountered	Date Issued:	January 2022
Procedure Title:		Revision No.:	0
Authorizer:	Project Leader or Operator of a Project Area	Date Revised:	N/A

- f. Sampling frequency from each stockpile must be completed in accordance with Table 2 of Schedule E, O.Reg. 153/04, Minimum Stockpile Sampling Frequency. At a minimum, each soil sample must be analyzed for petroleum hydrocarbons (PHCs), metals and hydrides, sodium adsorption ratio (SAR) and electrical conductivity (EC). In addition, any contaminant of potential concern identified during the assessment of past uses (or equivalent) must also be analyzed.
- g. Leachate analysis for required contaminants as outlined in the Soil Rules.
- h. Soil excavation should not resume in the affected work area until the Project Leader directs that excavation may resume.
- i. Any excess soil from that portion of the Project Area is disposed of in accordance with the Excess Soil Regulation, including disposal at a licensed facility.

REFERENCES

Ontario Ministry of the Environment, Conservations and Parks, 2019. *Environmental Protection Act.* Ontario Regulation 406/19 (On-Site and Excess Soil Management).

Ontario Ministry of the Environment, Conservations and Parks, "Rules for Soil Management and Excess Soil Quality Standards", December 8, 2020.

Revision Loa

Revision Date	Revision Number	Summary of Changes

Notice: This procedure has been prepared in recognition with Section 23 of the Excess Soil Regulation 406/19 and reflects MTE's interpretation of what is required when unexpected or suspected impacted soil is encountered during excavation. Redistribution or copies to others made without written permission from MTE Consultants Inc. is strictly prohibited. MTE assumes no liability or responsibility, and makes no guarantee or warranty with respect to the information contained, either expressed or implied.

Dropoduro Titlor	Procedure for Rejected Loads at Intended		May 2022
Procedure Title:	Reuse Site	Revision No.:	0
Authorizer:	Project Leader or Operator of a Project Area	Date Revised:	N/A

1 PURPOSE

To comply with Section 13 2 (2) of Ontario Regulation 406/19 and Section 4(6) of the Soil Rules with a written procedure outlining the steps that must occur if any load of excess soil is rejected at an intended reuse site.

2 SCOPE

As required under Section 13 of O. Reg 406/19, this written procedure applies to any personnel acting on behalf of the Project Leader or the Operator of the Project Area and indicates "measures to be implemented in the event that the excess soil cannot be deposited" at the intended reuse site.

3 DEFINITIONS

Excess Soil – means soil, or soil mixed with rock, that has been excavated as part of the project and removed from the project area for the project.

Excess Soil Regulation – known as *Ontario Regulation 406/19: On-Site and Excess Soil Management.*

MECP – means the Ontario Ministry of the Environment, Conservation and Parks (formerly MOECC and MOE).

O.Reg 153/04 – refers to Ontario Regulation 153/04, Records of Site Condition – Part XV.1 of the Act

Project Area – means, in respect of a project, a single property or adjoining properties on which the project is carried out.

Project Leader – means, in respect of a project, the person or persons who are ultimately responsible for making decisions relating to the planning and implementation of the project.

Qualified Person – means, a person who meets the qualifications to be a qualified person for the purposes of conducting or supervising a phase one or phase two environmental site assessment, and completing the certifications that must be completed in a record of site condition, if:

- the person holds a license, limited license or temporary license under the *Professional Engineers Act*; or
- the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary member or limited member of the Association of Professional Geoscientists of Ontario.

Soil Rules – the documents entitled "Rules for Soil Management and Excess Soil Quality Standards". This document is a provision of the Excess Soil Regulation and requires compliance where indicated. This document also references the Excess Soil Quality Standards.

Procedure Title:	Procedure for Rejected Loads at Intended	Date Issued:	May 2022
	Reuse Site	Revision No.:	0
Authorizer:	Project Leader or Operator of a Project Area	Date Revised:	N/A

4 RESPONSIBILITY

The Project Leader or the Operator of the Project Area is responsible for ensuring that this procedure is followed in the event that any load of excess soil is rejected at an intended reuse site.

5 PROCEDURE for Rejected Loads at Intended Re-use Site

The Contractor may encounter two scenarios related to rejected loads at an intended reuse site. If any load is rejected at the intended reuse site, the hauler shall immediately notify the Contractor who shall notify the Contractor Administrator and Project Leader. The Contractor/Contractor's hauler shall also adhere to the following.

Contractor Representative Name:	Ph. #:
Project Leader Representative Name:	Ph. #:

1) Load rejected at gate of intended receiving site, before load is dumped

In such an event, the hauler shall immediately notify the Contractor who shall notify the Contractor Administrator and Project Leader that the truck will be returning directly to the Project Area with a rejected load. The Contractor shall ensure that the hauler does not attempt to dispose of the rejected load on another property.

The Project Leader will allow the truck to return to the Project Area to be dumped and retained in a designated area set up by the Contractor. The designated area shall be set up with fencing and plastic tarping both under and over the soil pile(s).

2) Load rejected after dumping at intended receiving site

In such an event, the hauler shall immediately notify the Contractor who shall notify the Contractor Administrator and Project Leader that a load has been rejected after dumping. The Contractor shall provide suitable equipment and labour to excavate, load, and remove the rejected material from the receiver's property in a timely manner.

The Project Leader will allow the load/truck to return to the Project Area to be dumped and retained in a designated area set up by the Contractor as outlined in 1) above.

<u>Assessment by Project Leader:</u> Any material that has been rejected and returned to the Project Area, and placed in the designated area shall be examined and tested by the Project Leader's QP to determine an alternative receiving site or licensed facility.

REFERENCES

Ontario Ministry of the Environment, Conservations and Parks, 2019. *Environmental Protection Act.* Ontario Regulation 406/19 (On-Site and Excess Soil Management).

Procedure Title:	Procedure for Rejected Loads at Intended	Date Issued:	May 2022
	Reuse Site	Revision No.:	0
Authorizer:	Project Leader or Operator of a Project Area	Date Revised:	N/A

Ontario Ministry of the Environment, Conservations and Parks, "Rules for Soil Management and Excess Soil Quality Standards", December 8, 2020.

Revision Log

Revision Date	Revision Number	Summary of Changes

Notice: This procedure has been prepared in recognition with Section 13 of the Excess Soil Regulation 406/19 and reflects MTE's interpretation of what is required when loads of excess soil are rejected at an intended reuse site. Redistribution or copies to others made without written permission from MTE Consultants Inc. is strictly prohibited. MTE assumes no liability or responsibility, and makes no guarantee or warranty with respect to the information contained, either expressed or implied.

Appendix H

Phase I Environmental Site Assessment MTE Consultants Inc. December 2020

Heart Lake Road & Countryside Drive

Phase I Environmental Site Assessment

Project Location:

Heart Lake Road & Countryside Drive, Brampton, ON

Prepared for:

City of Brampton 2 Wellington Street West, Brampton, ON L6Y 4R2

Prepared by:

MTE Consultants 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

December 15, 2020

MTE File No.: 47877-100

Contents

Execu	ıtive Sı	ummary	
1.0	Introd	luction	2
1.1	Site	e Description	2
1.2	Sco	ppe of Work	2
1.3	Me	thodology	3
2.0	Reco	rds	3
2.1	His	torical Background	3
2.2	Top	oographical, Geological and Hydrogeological Setting	3
2.3	Aer	rial Photographs	4
2.4	Mu	nicipal Directories	5
2.5	Fire	e Insurance Plans	5
2.6	En۱	vironmental Risk Information Services (ERIS) Report	5
2.7		vironmental Regulatory Agencies and Utilities	
2.8	Coi	mpany Records	7
2.9	Pre	vious Environmental Reports	7
2.10	Oth	ner Regulatory Agencies	8
2	.10.1	Ministry of Natural Resources and Forestry (MNRF)	
2	.10.2	City of Brampton	8
2	.10.3	Regional Municipality of Peel	9
3.0	Site F	Reconnaissance and Interview	10
3.1	Site	e Visit	10
3.2	Inte	erview	10
4.0	Evalu	ation of Phase I ESA Finds	11
4.1	Site	e History and Description	11
4.2	Bui	Iding Structures	11
4.3	Util	ity Services	11
4	.3.1	Stormwater/Water Well/Wastewater/Sewage Disposal	11
4	.3.2	Electricity, Heating and Cooling	11
4	.3.3	Drains and Sumps	11
4	.3.4	Pits and Lagoons	11
4	.3.5	Mechanical/Hydraulic Equipment	11
4.4	Abo	oveground and Underground Storage Tanks (ASTs/USTs)	11
4.5	Che	emical Use and Storage	11
4.6	Sol	id Waste	11

4	.7	Haz	ardous and Liquid Waste1	1
4	.8	Unio	dentified Substances or Odours1	2
4	.9	Fill	Materials1	2
4	.10	Air I	Emissions1	2
4	.11	Fire	s1	2
4	.12	Spil	ls and Releases1	2
4	.13	Stai	ned Materials or Stressed Vegetation1	2
4	.14	Floo	oding and Drainage1	2
4	.15	Spe	cial Attention Items1	2
	4.15	5.1	Asbestos Containing Materials (ACMs)1	2
	4.15	5.2	Lead Based Paint1	2
	4.15	5.3	Ozone Depleting Substances (ODS)1	3
	4.15	5.4	Polychlorinated Biphenyls (PCBs)1	3
	4.15	5.5	Urea Formaldehyde Foam Insulation (UFFI)1	3
	4.15	5.6	Water Staining/Mould1	3
	4.15	5.7	Radon Gas1	3
4	.16	Sur	rounding Properties1	3
5.0	С	oncl	usions1	4
6.0	Q	(ualif	ications of Assessors1	5
7.0	Li	imita	tions1	6
8.0	Li	ist of	References and Sources of Information1	7

Figures

Figure 1	Site Location Map
Figure 2	Site Layout & Features

Appendices

Appendix A Appendix B Appendix C Appendix D Maps and Aerial Photographs ERIS Report Records Review

Interview, Inspection Records and Photographic Log

Executive Summary

MTE Consultants Inc. (MTE) was retained by the Corporation of the City of Brampton to complete a Phase I Environmental Site Assessment (ESA) for the intersection at Heart Lake Road and Countryside Drive in Brampton, Ontario (the "Site" or the "Intersection").

Based on a review of historical aerial photographs, the Site has been used as an intersection since at least 1946. The Intersection is owned by the Corporation of the City of Brampton. The Phase I ESA was completed for due diligence purposes in advance of reconstruction of the Intersection.

MTE reviewed information for the Site and properties within 250 m of the Intersection (representing the "Phase I Study Area"), including aerial photographs, geology and hydrogeological records and mapping, Ministry of the Environment, Conservation and Parks ("MECP") database records and previous reports.

Based on the findings of this Phase I ESA, no evidence of actual contamination in connection with the Site or surrounding properties was identified. However, the following potential environmental concerns were identified on the Site:

Potential Importation of Fill of Unknown Quality: Fill materials of unknown quality
may have been imported to the Site for use during the construction of Heart Lake Road
and Countryside Drive, due to the lower elevation of the wetland areas adjacent to Site.

Based on the above, soil sampling should be completed in advance of road reconstruction activities to assess soil quality for potential excess soil management, which would be legislated under Ontario Regulation 406/19. This could be completed in conjunction with a geotechnical investigation for the Site.

This report does not assess geotechnical aspects of the Site, compliance with municipal by-laws or permits, or features of the natural environment.

1.0 Introduction

1.1 Site Description

MTE Consultants Inc. (MTE) was retained by the Corporation of the City of Brampton to complete a Phase I Environmental Site Assessment (ESA) for the intersection at Heart Lake Road and Countryside Drive in Brampton, Ontario (the "Site" or the "Intersection"). Refer to **Figure 1** for the Site location and **Figure 2** for the Site features.

The Site is owned by the Corporation of the City of Brampton and has been used as an intersection since at least 1946. MTE understands the Corporation of the City of Brampton intends to have the Intersection reconstructed.

1.2 Scope of Work

The purpose of the Phase I ESA is to identify potential environmental concerns on or near the Site that may affect soil or groundwater quality. Authorization to proceed with the project was received from the Corporation of the City of Brampton, following acceptance of MTE's submission related to Request for Proposal Call No. RFP2020-082. The assignment was completed by MTE according to Reference Number 47877-100. The report has been issued to the Corporation of the City of Brampton for due diligence purposes in advance of reconstruction of the Heart Lake Road and Countryside Drive intersection.

The Phase I ESA meets the requirements of Canadian Standards Association (CSA) document Z768-01 (R2016) and was completed with consideration toward the methodology of Ontario Regulation 153/04 (as amended). Tasks performed for this assignment included:

- Review of environmental information including published and online records from the Ministry of the Environment, Conservation and Parks (MECP)*, Ministry of Natural Resources and Forestry (MNRF), Environment Canada, Technical Standards and Safety Authority (TSSA), the City of Brampton, and the Regional Municipality of Peel for information related to the Site and Phase I Study Area (as described in Section 1.3);
- Review of available previous environmental reports for the Site and Phase I Study Area;
- Review of physical setting information including aerial photographs, topographic maps, and geologic reference materials related to the Site and Phase I Study Area;
- Review of an Environmental Risk Information Services Ltd. (ERIS) database report for the Site and surrounding properties;
- Review of published municipal directories and Fire Insurance Plans (FIPs) applicable for the area, where available;
- Interview with a person knowledgeable of the Site for information about the Site and its uses:
- Site visit and inspection of the Site and surrounding lands;
- Preparation of a photographic log of the Site;
- Assessment of information collected for the Site and Study Area; and
- Preparation of this summary report of findings and recommendations.

*The Ontario Ministry of the Environment, Conservation and Parks (MECP) was previously the Ontario Ministry of the Environment (MOE) and the Ontario Ministry of the Environment and Climate Change (MOECC).

1.3 Methodology

The Phase I Study Area includes the Site, as well as properties located wholly or partially within approximately 250 metres (m) from the Intersection, as shown on **Figure 1**. MTE conducted research and collected available information that was reasonably accessible for the Site and Phase I Study Area, through the following methods:

- Written correspondence with regulatory agencies;
- Research and review of publicly available information through on-line databases;
- Interviews by MTE staff with persons knowledgeable about the Site;
- In-person reconnaissance of the Site by MTE staff; and
- Review of available written records, maps, figures, and reports applicable to the Site and Phase I Study Area.

MTE has compiled a report of findings for use by the Corporation of the City of Brampton that has been prepared under the supervision of Mr. Sean Anderson, P. Eng., QP_{ESA}. The qualifications of Mr. Anderson and Ms. Frances Heather, B.Sc., M.Sc., (who compiled the report) are included in **Section 6.0**.

2.0 Records

2.1 Historical Background

Based on the records review, the Site has been a municipal intersection right-of-way since at least 1946. There is no evidence of any former buildings at the Site. The Site is owned by the Corporation of the City of Brampton and first received surface treatment in 1987.

2.2 Topographical, Geological and Hydrogeological Setting

The UTM coordinates of the centre of the Site were obtained from Google Earth and are approximately 597,247 m east and 4,844,229 m north (zone 17T).

An Ontario Base Map (OBM) from the Ministry of Natural Resources and Forestry (MNRF) was reviewed to reference the land features and uses in the area. OBM No. 10 17 5900 48000 was published in 2002 and is based on unspecified aerial photography. The Site appeared to consist of a roadway surrounded by open space (inferred agricultural lands), roadways, wooded areas, wetlands, waterbodies, and a watercourse. Ground surface elevations at the Site were approximately 253 metres above sea level (masl). A copy of the OBM is provided in **Appendix A**.

The Site is located within the broad physiographic region known as the Peel Plain, which comprises approximately 777 km² (300 square miles) across the central portions of the Regional Municipalities of York, Peel, and Halton. The Plain consists of a level to undulating tract of clay soils, with a gradual and fairly uniform slope toward Lake Ontario (*Chapman and Putnam*,

1984). The underlying geological material consists of glaciolacustrine deposits including sand, gravelly sand with gravel, near-shore and beach deposits.

Bedrock is not anticipated to be near surface and includes Upper Ordovician formations of shale, limestone, dolostone and siltstone (Ministry of Northern Development and Mines, 1991).

2.3 Aerial Photographs

Aerial photographs for the Site and Phase I Study Area were reviewed for the period 1946 to 2019 in approximately ten-year intervals (where available at a reasonable scale). Aerial photographs from 1946, 1954, and 1988 were ordered through ERIS. Photos from 1960 to 1985 were available through MTE archives. The 2004 to 2019 photos were available through the City of Brampton online mapping. Selected aerial photographs are included in **Appendix A**. Due to the scale and clarity of several aerial photographs, specific observations are limited.

Year(s)	Aerial Photograph Description	
1946	The Site comprises the T-shaped intersection right-of-way. The surrounding land use appears to comprise agricultural lands and wooded areas. There appears to be an inferred farming operation, including structures, further west of the Phase I Study Area. There appears to be a waterbody to the south of the Phase I Study Area.	
1954	The Site and Phase I Study Area appear relatively unchanged from the 1946 aerial photograph.	
1960	The Site appears relatively unchanged from the 1954 aerial photograph. There appears to be a new roadway southeast of the Phase I Study Area. The remaining Phase I Study Area and surrounding lands appear to be relatively unchanged.	
1970	The Site appears relatively unchanged from the 1960 aerial photograph. There appears to be a new roadway and a parking area constructed south of the Phase I Study Area. The remaining Phase I Study Area appears relatively unchanged from the 1960 aerial photograph.	
1985	The Site and Phase I Study Area appear relatively unchanged from the 1970 aerial photograph. There appears to be inferred residential dwellings constructed southwest of the Phase I Study Area.	
1988	The Site and Phase I Study Area appear relatively unchanged from the 1985 aerial photograph.	
2004	The Site and Phase I Study Area appear relatively unchanged from the 1988 aerial photograph.	
2015	The Site and Phase I Study Area appear relatively unchanged from the 2004 aerial photograph. Highway 410 and residential dwellings appear to have been constructed to the northeast of the Phase I Study Area.	
2019	The Site and Phase I Study Area appear relatively unchanged from the 2015 aerial photograph.	

Based on the review of aerial photographs, the Site has been used as an intersection right-ofway since at least 1946. No buildings were observed on the Site in the historical aerial photographs.

The surrounding properties comprised mostly woodland and agricultural use, with an inferred parking area associated with the Heart Lake Conservation Park in the south portion of the Phase I Study Area.

2.4 Municipal Directories

MTE contacted the Brampton Library, Four Corners branch, on October 19, 2020 to inquire about City of Brampton Municipal Directories available for the Site and surrounding properties. A representative from the Brampton Library provided directory information for selected addresses on Heart Lake Road in the Phase I Study Area for the period 1995 to 2001. The property located south of the Site at 10818 Heart Lake Road is listed as the Heart Lake Conservation Park for 1995, 1998 and 2001. The remaining listings for surrounding properties were primarily residential and therefore do not represent an environmental concern to the Site. Results of the records search can be found in **Appendix C.**

2.5 Fire Insurance Plans

Fire Insurance Plans (FIPs) were developed between 1875 and 1923 and were revised in some areas until the 1970s. FIPs typically illustrate building construction, occupancy and potential fire hazards and may provide information regarding environmental concerns such as storage tanks, transformers, boilers and electrical rooms.

A search of the Catalogue of Canadian Fire Insurance Plans 1875-1975 indicated that FIPs are not available for the Site and Phase I Study Area.

2.6 Environmental Risk Information Services (ERIS) Report

MTE contacted ERIS, an environmental database and information service company, to request a search of selected government (federal and provincial) and private records for information pertaining to the Site and surrounding properties.

The ERIS report identified one record for the Site consisting of an ERIS Historical Search, which does not represent a potential environmental concern to the Site.

The ERIS report identified 24 records for the Phase I Study Area, including 11 Water Well Information System records.

The remaining 13 records were related to the municipal address 10818 Heart Lake Road, which is associated with the Heart Lake Conservation Park located south of Site, and included:

- Records of hazardous waste generation related to light fuels, oil skimmings and sludges, petroleum distillates, and waste oil and lubricants (between 1992 and 2005);
- Record of a spill in 2008 of approximately 50 litres of hydraulic oil leaking from a pipe or a hose that caused potential soil contamination; and
- Records related to two (2) 2,270 litre capacity steel, single-wall UST commercial fuel oil tanks, installed in 2007.

Based on the locations of the office, boathouse, gatehouse, and other features at 10818 Heart Lake Road, and observations during the Site inspection, it is unlikely that the activities described in the records above occurred within 250 metres of the Site. Therefore, none of the records appear to represent a significant environmental concern to the Site.

The report also identified unplottable records pertaining to approvals for municipal and private water/sewage works, a leak of natural gas to air, a spill of diesel fuel from a motor vehicle on Countryside Drive, a pesticide limited vendor, and a hazardous waste generator of waste oils and lubricants. None of the unplottable records appear to represent a significant environmental concern to the Site.

A copy of the ERIS report dated September 18, 2020 is provided in **Appendix B**.

2.7 Environmental Regulatory Agencies and Utilities

MTE consulted and reviewed available records with applicable regulatory agencies, as summarized below. Copies of the search results and records are maintained on file with MTE. Pertinent records are included in **Appendix C.**

Provincial

Technical Standards and Safety Authority (TSSA): The TSSA was contacted for electronic database information concerning underground storage tanks (USTs) or aboveground storage tanks (ASTs) for surrounding properties with available municipal addresses.

An email response was received on October 2, 2020 indicating that no electronic records from 1990 and beyond were found for the subject addresses.

MECP Freedom of Information (FOI): A written request could not be filed with the MECP Freedom of Information (FOI) Office for information regarding environmental concerns on file for the Site, as the MECP requires a municipal address and there is no municipal address associated with the Intersection.

MECP Inventory of Coal Gasification Plants, Coal Tars & Related Tars, Waste Disposal Inventory, and Ontario PCB Inventory

MTE completed an electronic listing query from the following historical databases using the Site UTM coordinates and a search radius of 1000m.

MECP Inventory of Coal Gasification Plant Waste Sites in Ontario (April 1987): The Site has not been used for the gasification of coal. No coal gasification plants were identified at the Site or within 1000 m of the Site.

MECP Inventory of Industrial Sites Producing Coal Tars and Related Tars in Ontario: The production and use of coal or other tars has not taken place at the Site or within 1000 m of the Site.

MECP Waste Disposal Inventory: There are no 'active' or 'closed' landfills registered on the Site or within 1000 m of the Site.

MECP PCB Storage Sites: No PCB Storage Sites were identified at the Site or within 1000 m of the Site.

MECP Access Environment: MTE reviewed the MECP online Access Environment database for any Certificate of Approval (C of A), Environmental Activity and Sector Registry (EASR) and Environmental Compliance Approval (ECA) records for the Site or properties within the Phase I Study Area. No records were found for the Site or Phase I Study Area.

MECP Environmental Registry: MTE reviewed the Environmental Registry online platform. No records were found for the Site or Phase I Study Area.

MECP Brownfield Environmental Site Registry: MTE searched the Brownfield Environmental Site Registry for any Records of Site Condition (RSCs) filed within 250 m of the Site. No RSC records were identified for the Site.

The following RSC records were identified in the Study Area:

- RSC # 46911 was filed for the lands to the east of the intersection of Heart Lake Road and Countryside Drive on April 20, 2009. It appears that soil samples were collected from the RSC property for analysis of metals, organochloride pesticides, electrical conductivity, and sodium adsorption ratio. No elevated concentrations of these compounds in soil were reported. It does not appear that groundwater was investigated.
- RSC #225896 for the lands to the north of the Intersection of Heart Lake Road and Countryside Drive was filed on August 12, 2019. Soil samples were collected from the RSC property for analysis of OC pesticides to investigate potential impacts from historical agricultural purposes. No contaminants were identified in soil. Groundwater was not investigated.

The RSC records for surrounding properties described above do not appear to represent an environmental concern to the Site.

MECP Hazardous Waste Information Network (HWIN): MTE searched the HWIN online database for any active registrations for the Site and properties within the Phase I Study Area. Historical HWIN listings were also reviewed as part of the ERIS report.

There were no HWIN records for the Site or Phase I Study Area.

MECP Water Well Records Inventory: The MECP Well Record database is a web-based system that provides water well information including the well depth, date of completion, and location. A review of the MECP online database identified well records within the Phase I Study Area identifying the general stratigraphy as a mix of sand, gravel, and clay above shale bedrock, which was encountered at depths ranging from approximately 36 to 39 metres below ground surface (mbgs).

Federal

Environment Canada National Pollution Release Inventory (NPRI): The NPRI requires companies to report information on releases and transfers of pollutants to the Government of Canada on an annual basis. MTE reviewed the NPRI for information pertaining to the Site and Phase I Study Area. No records were listed for the Site or within the Phase I Study Area.

Federal Contaminated Sites Inventory: MTE reviewed the inventory for any Federal Contaminated Sites located on-Site or within the Phase I Study Area. Based on a review of the inventory, neither the Site nor surrounding properties were listed.

2.8 Company Records

There are no active industrial/commercial operations at the Site and therefore no company records exist.

2.9 Previous Environmental Reports

MTE completed a cursory review of the following previous Class Environmental Assessment (EA) report. A summary of pertinent information relevant to the Intersection is provided below. A copy of the report is maintained on file with MTE.

Environmental Study Report, Countryside Drive Class Environmental Assessment Heart Lake Road to Clarkway Drive, Brampton, Ontario dated November 14, 2005 prepared by Trow Associates Inc. for the City of Brampton

The report was completed for Countryside Drive, from Heart Lake Road to Clarkway Drive, which is inclusive of the Site and partially inclusive of the Phase I Study Area. The following pertinent information was noted:

- Generally, the surrounding area along Countryside Drive comprises of agricultural land and subdivisions.
- Wetlands and marsh areas are present near Countryside Drive, including a provincially significant wetland that is part of the Heart Lake Wetland Complex.
- Wild life in the study area of the EA consists of common species of birds, mammals, amphibians and reptiles.
- A preliminary geotechnical investigation was completed as part of the EA Report, and the soil stratigraphy is generally described as asphalt surface underlain by variable fill (clay, silt, gravel, and organic matter) underlain by native clayey silt till or silty clay till.
 Some of the boreholes were underlain by shale bedrock at depths of 2.9 to 6.1 mbgs.
- There were no staining or odours noted in the Trow Associates Inc. borehole logs.

2.10 Other Regulatory Agencies

2.10.1 Ministry of Natural Resources and Forestry (MNRF)

MTE reviewed the MNRF online Natural Heritage mapping for information related to natural heritage features, ANSIs, Provincially Significant Wetlands (PSWs) and species-at-risk that may be present within the limits of the Site or Phase I Study Area.

- The Phase I Study Area contains Provincially Significant Wetlands;
- The Phase I Study Area contains woodland;
- The Site and Phase I Study Area do not contain a Natural Core Area;
- The Phase I Study Area does contain Areas of Natural and Scientific Interest; and
- There were no threatened or endangered species listed in the NHIC database for the Site.

Based on the above, the Site is considered sensitive according to O. Reg. 153/04.

2.10.2 City of Brampton

Official Plan

MTE reviewed the City of Brampton Official Plan (consolidated September 2020), for information regarding important natural and cultural resources for the Site or within the Phase I Study Area.

The Official Plan is a public document which establishes a policy framework for public and private sector decisions regarding development and the provision of community infrastructure and services, immediate and long-term land use, social and economic matters within the City.

Information pertaining to the Site and Phase I Study Area is as follows:

• The lands to the south and east of the Site are located within an open space system:

- The lands to the south and east of the Site are located within a Provincially Significant Wetland:
- The lands to the east of the Site are located within a woodland; and
- The lands to the south of the Site are located within an Area of Natural and Scientific Interest (Life Science and Earth Science).

Based on the above, the Site is considered sensitive according to O. Reg. 153/04.

2.10.3 Regional Municipality of Peel

Information Request

An Environmental Records search request was filed with the Regional Municipality of Peel on November 9, 2020 for information pertaining to the intersection of Heart Lake Road and Countryside Drive.

A letter response (via e-mail) dated November 11, 2020 was received and included the following information in response to the request:

- No records were found related to any violations, infractions or outstanding order under Wastewater Bylaw 53-2010 and the former Sewer Use Bylaws 90-90 and 9-75.
- One spill event is listed for Countryside Drive between Heart Lake Road and Dixie Road. Used motor oil was spilled in the ditch of Countryside Drive on May 10, 2004. The City of Brampton applied oil absorbent pads, booms and straw bails to contain the oil. The City of Brampton hired Fielding Emergency Response to clean up the spill. Fielding Emergency response decanted approximately 200 litres of oil into a drum and used absorbent pads to clean the remaining oil in the ditch. The contaminated soil was excavated by the City of Brampton and disposed of by Fielding Emergency Response.

Based on the above, no environmental concerns were identified for the Site. A copy of the response is provided in **Appendix C.**

Official Plan

MTE reviewed the Regional Municipality of Peel's "Regional Official Plan" (ROP), consolidated December 2018, for information regarding important natural and cultural resources at the Site and surrounding lands.

The ROP is a public document which establishes a policy framework for public and private sector decisions regarding immediate and long-term land use, servicing, transportation, infrastructure investment and economic matters within the Region.

Information pertaining to the Site and surrounding areas is as follows:

- The Phase I Study Area is partially located within a Core Area of the Greenlands System (Schedule A);
- The Site is not located within a Prime Agricultural Area (Schedule B);
- The Site is not located within a Mineral Aggregate Resources Area (Schedule C); and
- The Site is not located within the boundaries of the Oak Ridges Moraine (Schedule D1).

3.0 Site Reconnaissance and Interview

3.1 **Site Visit**

A Site visit was completed on October 2, 2020 by Mr. Sean Anderson, P.Eng., QP_{ESA} of MTE. Weather conditions were clear and the temperature was approximately 15°C. The Inspection Report and photographs taken of the Site and adjacent properties at the time of the inspection are included in **Appendix D**. A brief summary is presented below.

The Site is a municipal intersection right-of-way consisting of Heart Lake Road and Countryside Drive. Plastic "Animex" fencing was present at the time of the inspection along the perimeter of the wetlands adjacent to the Site. Catch basins were present along the curbs of Countryside Drive. Overhead hydro and telecommunication lines were present above the Intersection.

There was no evidence of staining or stressed vegetation on the Site. There was no evidence of past placement of solid waste at the Site.

MTE did not observe any evidence of water supply wells or septic systems at the Site.

The Site is bordered to the north by a soil berm and an ongoing land development project with evidence of earthworks.

The adjacent lands to the east and south of the Site comprise of low-lying wetland.

The adjacent lands to the south of the Site comprise of wetland and a wooded area. Further to the south is a portion of the Heart Lake Conservation Park.

3.2 Interview

MTE conducted a telephone interview on October 21, 2020 with Mr. Mario Goolsarran, Senior Project Engineer for the City of Brampton, who has 4 years of familiarity with the Site. The completed interview questionnaire is provided in **Appendix D**.

The Site is owned by the Corporation of the City of Brampton. The roadways on Site were first constructed with surface treatment in 1987. Existing utility services at the Site include overhead hydro and catch basins along Countryside Drive. There is a possible water main in the Intersection, and possible sewer lines on Countryside Drive. No other utility services are present on the Site.

According to Mr. Goolsarran, there are no current or former industrial activities on the Site and there is no chemical or fuel storage. Salt application occurs at the Site by City of Brampton staff or contractors in the winter months. There is no salt or other de-icing chemicals stored at the Site. Mr. Goolsarran is not aware of any illegal dumping or waste that has been brought to and deposited on the Site. According to Mr. Goolsarran, historical placement of fill likely occurred during road construction, due to the native soil at the Site consisting of peat.

Reportedly, there are no issues with drainage, flooding or ponding on the Site. Mr. Goolsarran suggested that due to the swamp features present at the adjacent Heart Lake Conservation Park, there is the potential for localized flooding. There have been no complaints from or in regards to any neighbouring properties.

4.0 Evaluation of Phase I ESA Finds

4.1 **Site History and Description**

Based on the review of historical aerial photographs, the Site has been used as an intersection since at least 1946. The Site is owned by the Corporation of the City of Brampton and first received surface treatment in 1987.

4.2 **Building Structures**

There are currently no buildings on Site.

4.3 **Utility Services**

4.3.1 Stormwater/Water Well/Wastewater/Sewage Disposal

There are existing catch basins along the curbs of Countryside Drive. There was no other evidence of stormwater, water wells, or wastewater services observed on the Site.

4.3.2 Electricity, Heating and Cooling

There are no structures on the Site and therefore no heating or cooling systems were present.

4.3.3 Drains and Sumps

There are no structures on the Site and therefore no drains or sumps were present.

4.3.4 Pits and Lagoons

MTE did not observe any pits or lagoons on the Site.

4.3.5 Mechanical/Hydraulic Equipment

MTE did not observe any mechanical or hydraulic lift equipment on the Site.

4.4 Aboveground and Underground Storage Tanks (ASTs/USTs)

At the time of the Site visit, MTE did not observe evidence of current ASTs or USTs on the Site. No evidence of existing or historical ASTs or USTs at the Site was identified during the Phase I ESA interview and records review.

4.5 **Chemical Use and Storage**

MTE did not observe any evidence of chemical use or storage on the Site.

4.6 **Solid Waste**

MTE did not observe any evidence of solid waste disposal on the Site.

4.7 **Hazardous and Liquid Waste**

MTE did not observe any evidence of hazardous or liquid waste being stored on the Site.

4.8 **Unidentified Substances or Odours**

MTE did not observe any unidentified substances on the Site and no odours were detected at the time of the Site inspection.

4.9 Fill Materials

MTE did not observe any evidence of fill berms or embankments on the Site. A berm was observed adjacent to the Site to the north. Fill materials may have been placed on the Site during the construction of Heart Lake Road and Countryside Drive, as the intersection is at a higher elevation than the surrounding low-lying wetlands.

4.10 Air Emissions

MTE did not observe any air emission sources at the Site during the inspection. There are no records of Certificates of Approval or Environmental Compliance Approvals for the Site.

4.11 Fires

MTE did not observe any evidence of former fires or open burning at the Site.

4.12 Spills and Releases

MTE did not observe any evidence of spills at the Site.

4.13 Stained Materials or Stressed Vegetation

MTE did not observe any evidence of surface staining or indications of stressed vegetation at the Site.

4.14 Flooding and Drainage

Surface water is expected to be directed towards the off-Site wetlands. No environmental concerns pertaining to surface drainage were observed during the Site visit.

4.15 Special Attention Items

4.15.1 Asbestos Containing Materials (ACMs)

Asbestos is defined as a designated substance under the Ontario Occupational Health and Safety Act (OHSA). Friable asbestos-containing materials (ACM) were discontinued from use in the early 1980s.

There are no structures on the Site and therefore no concerns related to ACMs.

4.15.2 Lead Based Paint

Lead can typically be found in paint in older buildings. Lead was banned from products in the early 1970s and is considered a designated substance under the OHSA.

There are no structures on the Site and therefore no concerns related to lead-based paint.

4.15.3 Ozone Depleting Substances (ODS)

In Ontario, the use of ODSs such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) (common refrigerants) are regulated under O. Reg. 463/10 Ozone Depleting Substances and Other Halocarbons. This regulation banned the use of large refrigeration equipment and chillers containing CFCs after January 1, 2012, and requires the handling and servicing of equipment containing ODSs to be completed by a ODS certified contractor.

There are no structures on the Site and therefore no concerns related to ODS.

4.15.4 Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls (PCBs) were historically used as a dielectric fluid (non-conductor) in electrical equipment, as well as in other specialized equipment such as heat exchangers and hydraulic systems. The import, manufacture, sale and re-use of PCBs were made illegal in Canada in 1977.

There are no structures or transformers on the Site and therefore no concerns related to PCBs.

4.15.5 Urea Formaldehyde Foam Insulation (UFFI)

UFFI insulation was mainly used in Canada from about 1975 to 1978, when financial incentives were offered by the government to upgrade home insulation levels. Use of the insulation was banned in December 1980.

There are no structures on the Site and therefore no concerns related to UFFI.

4.15.6 Water Staining/Mould

There are no structures on the Site and therefore no concerns related to water staining/mould in building materials.

4.15.7 Radon Gas

Radon is a naturally occurring radioactive gas emitted from the breakdown of uranium in soil and rock. Radon may enter a building through cracks or other openings in a building foundation. There are no current buildings at the Site. No testing for radon was performed at the Site during the Phase I ESA.

4.16 Surrounding Properties

Surrounding lands were observed from accessible areas of the Site and public roadways during the Site visit. Surrounding land uses are shown on Figure 1 and are summarized as follows:

Bearing	Description
North	The Site is bordered to the north by an ongoing land development project with evidence of earthworks.
East	The Site is bordered to the east by a wetland.
South	The Site is bordered to the south by a wetland.
West	The Site is bordered the west by a wetland and a wooded area.

5.0 Conclusions

The Phase I ESA was completed for due diligence purposes in advance of reconstruction of the intersection at Heart Lake Road and Countryside Drive in Brampton, Ontario.

Based on the review of historical aerial photographs, the Site has been used as an intersection since at least 1946. The Intersection is owned by the Corporation of the City of Brampton.

MTE reviewed information for the Site and properties within 250 m of the Intersection (representing the "Phase I Study Area"), including aerial photographs, geology and hydrogeological records and mapping, Ministry of the Environment, Conservation and Parks ("MECP") database records and previous reports.

Based on the findings of this Phase I ESA, no evidence of actual contamination in connection with the Site or surrounding properties was identified. However, the following potential environmental concerns were identified on the Site and surrounding properties:

Potential Importation of Fill of Unknown Quality: Fill materials of unknown quality may have been imported to the Site for use during the construction of Heart Lake Road and Countryside Drive, due to the lower elevation of the wetland areas adjacent to Site.

Based on the above, soil sampling should be completed in advance of road reconstruction activities to assess soil quality for potential excess soil management, which would be legislated under Ontario Regulation 406/19. This could be completed in conjunction with a geotechnical investigation for the Site.

This report does not assess geotechnical aspects of the Site, compliance with municipal by-laws or permits, or features of the natural environment.

Qualifications of Assessors 6.0

As required by CSA Standard Z768-01 (R2016), an appropriate combination of formal education, skills, experience and training is required in order to provide a technically sound and rational Phase I ESA. The key participants involved in performing the components of the Phase I ESA are Mr. Sean Anderson, P. Eng., QP_{ESA} and Ms. Frances Heather, B.Sc., M.Sc.

Mr. Anderson is a licensed Professional Engineer in the Province of Ontario, and a Qualified Person for Environmental Site Assessment as defined in Ontario Regulation 153/04 (as amended). He is a graduate of the University of Waterloo in Environmental Engineering (Water Resources Option). Mr. Anderson has completed courses in Spill Response, Construction Site Safety and WHMIS. He has completed the Hazardous Wastes Operations and Emergency Response (29 CFR 1910) training (40-hour course) in accordance with the US Department of Labour's Occupational Safety & Health Administration (OSHA). He has over ten years of experience in the environmental consulting industry that includes project management, site inspections, regulatory and public liaison, historical records reviews, co-ordination of field activities with contractors, drilling supervision, soil identification and sampling, hydrogeological interpretations, monitoring well sampling, soil vapour sampling, data compilation, report preparation and remediation planning.

Ms. Heather is a graduate from the University of Waterloo with a Bachelor's of Science in Biochemistry and Lakehead University with a Master of Science in Environmental Engineering. She has obtained her Ontario College Graduate Certificate in Environmental Engineering Applications at Conestoga College. She has five months of experience in the environmental consulting industry that includes: site assessment and investigations, soil and groundwater sampling, drilling supervision, surface soil sampling and report preparation.

7.0 Limitations

Services performed by MTE Consultants Inc. (MTE) were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering & Consulting profession. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This report was completed for the sole use of MTE and the Client. No other parties may rely upon this report without the written permission of MTE. This report was completed in accordance with the Scope of Work referred to in Section 1.2 and meets the mandatory requirements of CAN/CSA-Z768-01. As such, this report may not deal with all issues potentially applicable to the site and may omit issues, which are or may be of interest to the reader. MTE makes no representation that the present report has dealt with any and all of the important features, including any or all important environmental features, except as provided in the Scope of Work. All findings and conclusions presented in this report are based on site conditions, as they existed during the time period of the investigation. In addition, MTE has relied on information provided by the persons interviewed as part of this study (identified herein) as being accurate and representative. This report is not intended to be exhaustive in scope or to imply a risk-free facility.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such third parties. MTE accepts no responsibility for liabilities incurred by or damages, if any, suffered by any third party as a result of decisions made or actions taken, based upon this report. Others with interest in the site should undertake their own investigations and studies to determine how or if the condition affects them or their plans.

It should be recognized that the passage of time may affect the views, conclusions and recommendations (if any) provided in this report because environmental conditions of a property can change. Should additional or new information become available. MTE recommends that it be brought to our attention in order that we may re-assess the contents of this report.

All of which is respectfully submitted.

MTE Consultants Inc.

DRAFT DRAFT

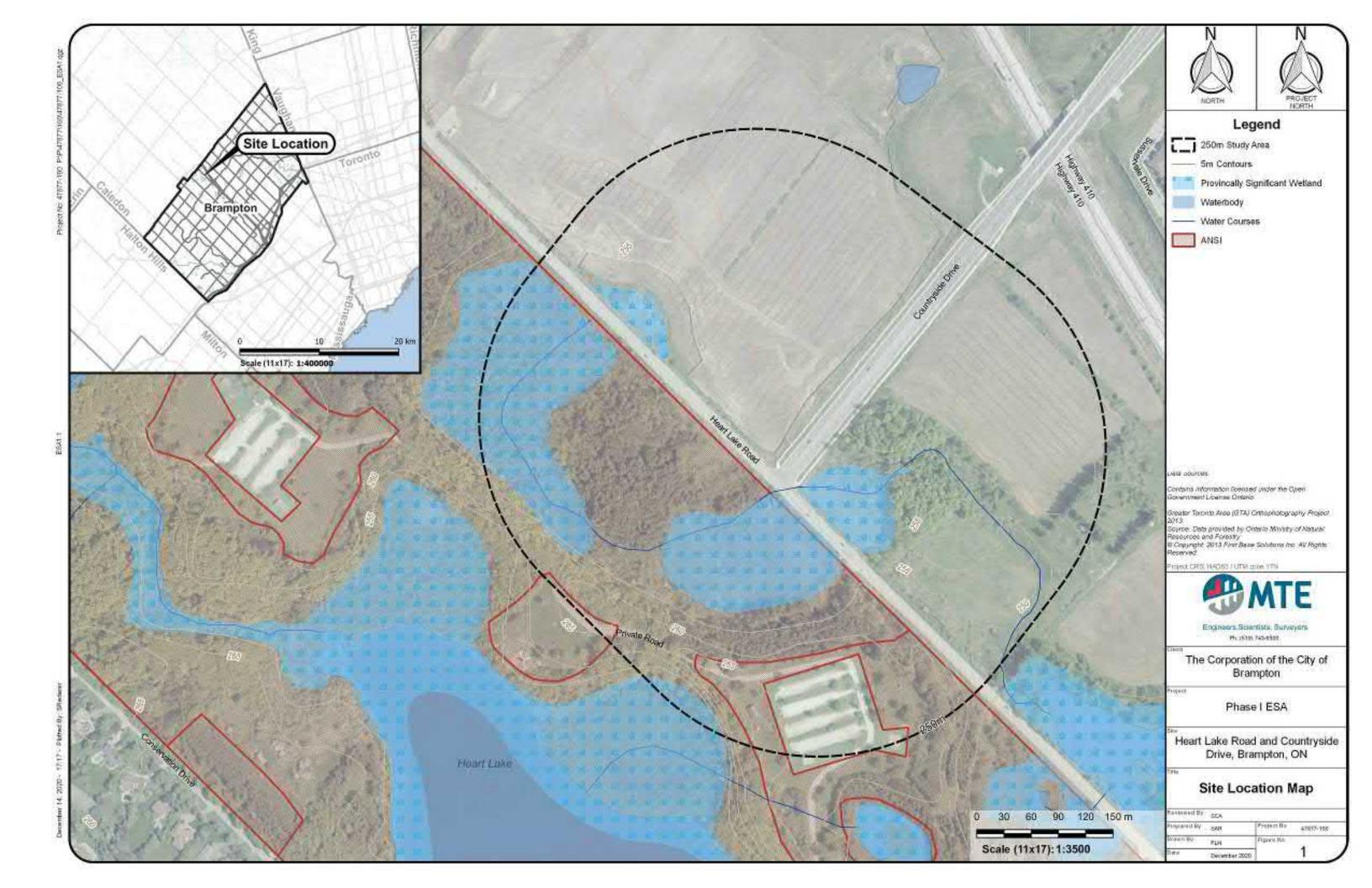
Frances Heather, B.Sc., M.Sc. **Environmental Scientist** 519-743-6500 ext. 1340 fheather@mte85.com

Sean Anderson, P.Eng., QP_{ESA} **Environmental Engineer** 519-743-6500 ext. 1331 sanderson@mte85.com

FLH:dem

\mte85.local\mte\Proj_Mgmt\47877\100\Phase I ESA\04-Deliverables\47877-100_2020-12-15_Heartlake Road Phase I ESA - DRAFT.docx

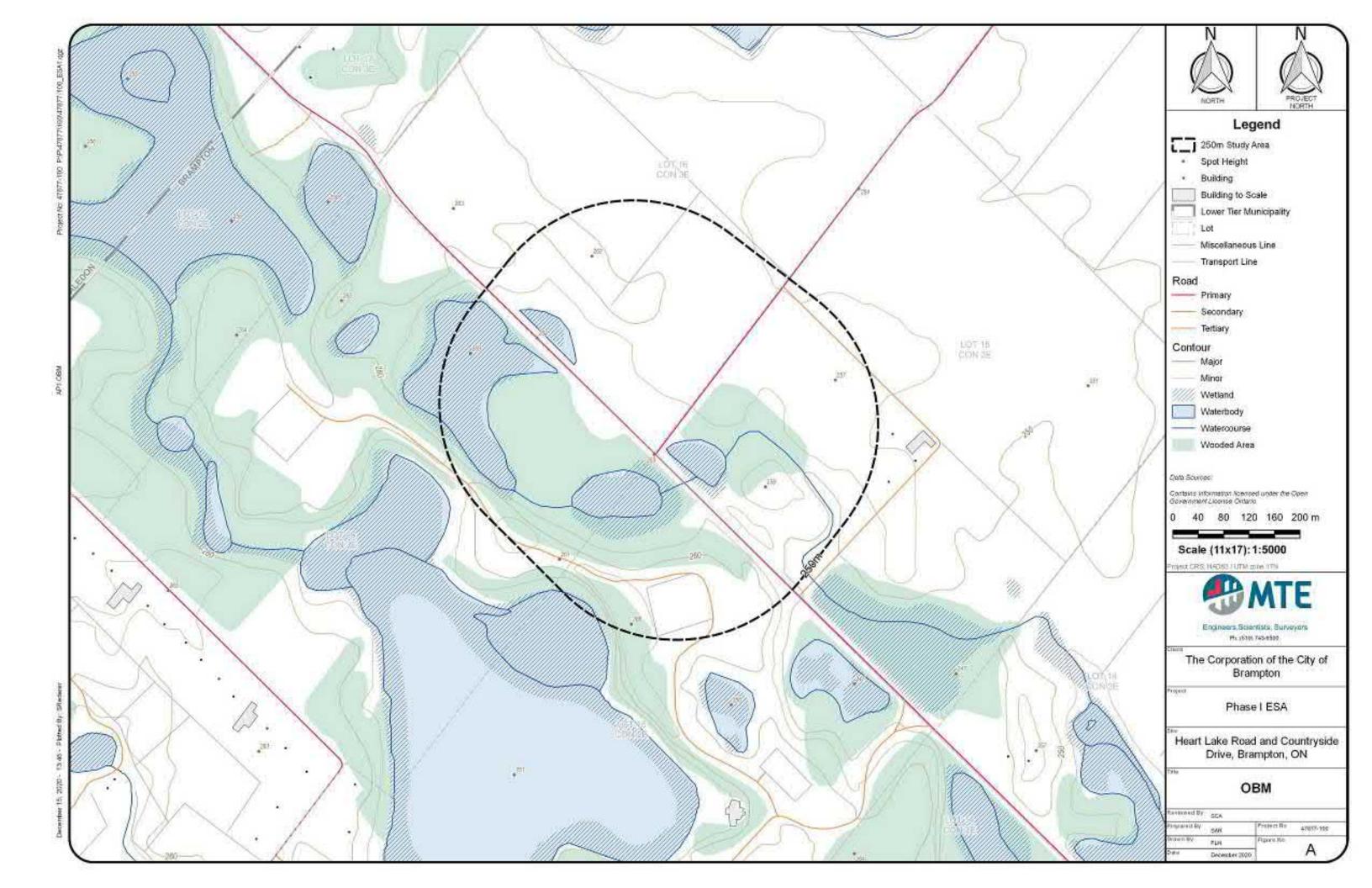
8.0 List of References and Sources of Information

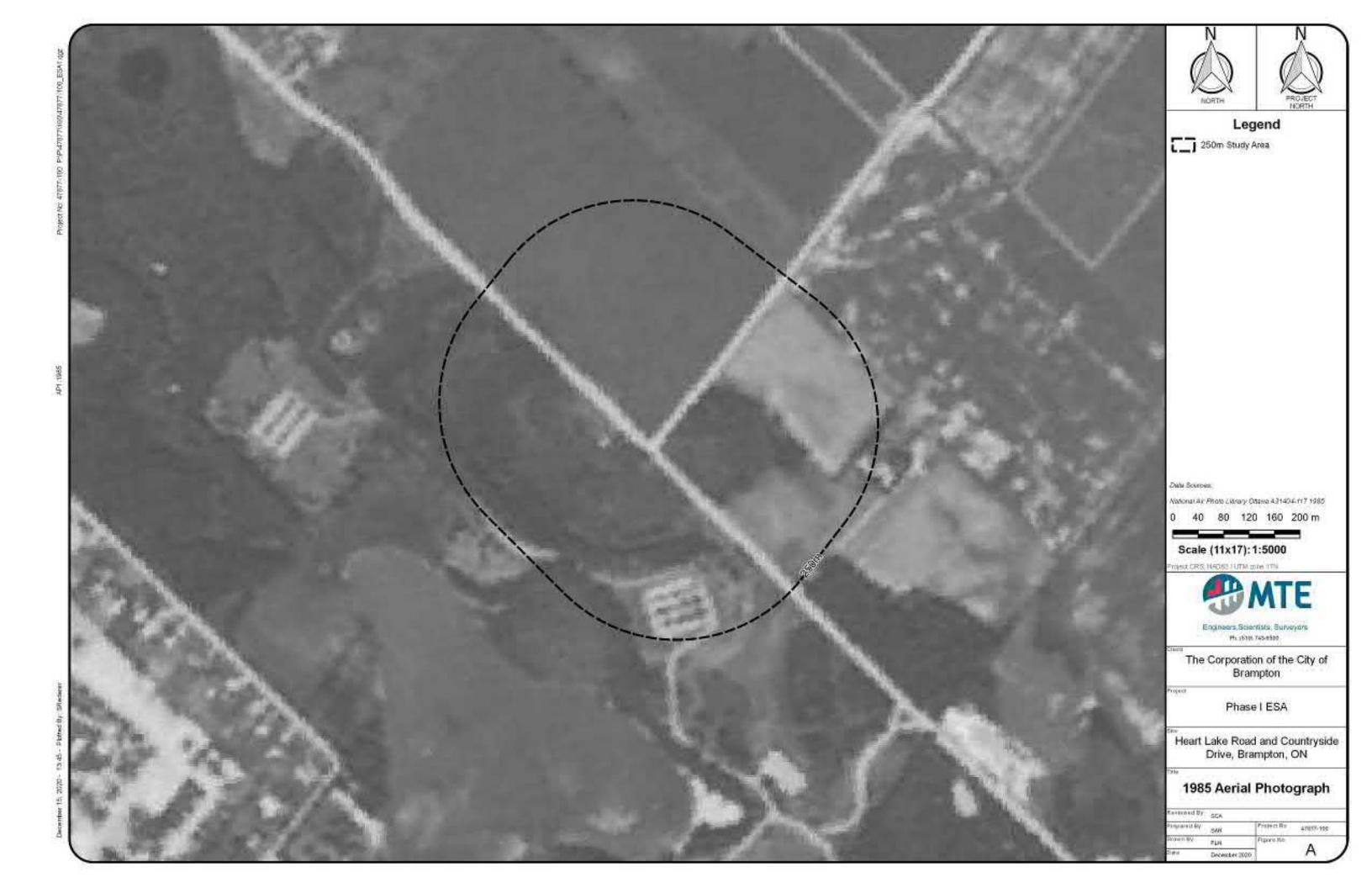

The following list of references and sources were reviewed for the purposes of preparing the report:

Applicable Section	Reference / Source	Date
All	Canadian Standards Association Z768-01 "Phase I – Environmental Site Assessments"	November 2001 Updated April 2003 Reaffirmed 2016
2.2	Ontario Base Map, Ministry of Natural Resources 10 17 5900 48000	No date (Published 2002)
2.2	Chapman and Putnam. The Physiography of Southern Ontario, 3 rd Edition.	1984
2.2	Ontario Ministry of Northern Development and Mines. Bedrock Geology of Ontario, Southern Sheet. Scale 1:1,000,000.	1991
2.3	ERIS Aerial Photographs	1946, 1954, 1988
2.3	MTE Archives	1960, 1970, 1985
2.3	City of Brampton GIS Online Mapping	2004, 2015, 2019
2.4	Municipal Directories- Brampton Library Archives	October 19, 2020 (date of correspondence)
2.5	Dubreuil, L. and C. Woods, Catalogue of Canadian Fire Insurance Plans 1875-1975	2002
2.6	ERIS Report Number- 20291500065	September 18, 2020 (date of report)
2.7	Technical Standards and Safety Authority – Fuel Safety Division inquiry	October 2, 2020 (date of response)
2.7	Ontario Ministry of the Environment, "Inventory of Coal Gasification Plant Waste Sites in Ontario"	April 1987, Reprinted February 1989
2.7	Ontario Ministry of the Environment, Inventory of Industrial Sites Producing or Using Coal Tar and Related Tars in Ontario	November 1988
2.7	Ontario Ministry of the Environment, "PCB Site Inventory System 2000"	July 2000
2.7	Ontario Ministry of the Environment, "Waste Disposal Site Inventory"	June 1991
2.7	Ontario Ministry of the Environment, Conservation and Parks, Access Environment	October 5, 2020 (date of search)
2.7	Ontario Ministry of the Environment, Environmental Registry (website)	October 2, 2020 (date of search)
2.7	Ontario Ministry of the Environment, Brownfields Environmental Site Registry 2004-2011	September 23, 2020 (date of search)
2.7	Ontario Ministry of the Environment, Brownfields Environmental Site Registry since 2011	September 23, 2020 (date of search)
2.7	Ontario Ministry of the Environment, Brownfields Environmental Site Registry	September 23, 2020 (date of search)
2.7	Ontario Ministry of the Environment, Hazardous Waste Information Network	October 2, 2020 (date of search)
2.7	Ministry of Ontario, Well Records	October 15, 2020 (date of search)

Applicable Section	Reference / Source	Date
2.7	National Pollutant Release Inventory (December 1992)	October 2, 2020 (date of search)
2.7	Federally Contaminated Sites, Treasury Board of Canada (website)	September 23, 2020 (date of search)
2.10.1	Ministry of Natural Resources and Forestry Natural Heritage Map	October 2, 2020 (date of search)
2.10.2	City of Brampton Official Plan	Consolidated September 2020
2.10.3	Regional Municipality of Peel Official Plan	Consolidated December 2018

Figures




Appendix A

Maps and Aerial Photographs

Appendix B

ERIS Report

Project Property: Heart Lake Road and Countryside Drive

Heart Lake Road and Countryside Drive

Brampton ON

Project No: 47877-100

Report Type: Standard Report Order No: 20291500065

Requested by: MTE Consultants Inc.

Date Completed: September 18, 2020

Table of Contents

Table of Contents	2
Executive Summary	
Executive Summary: Report Summary	
Executive Summary: Site Report Summary - Project Property	
Executive Summary: Site Report Summary - Surrounding Properties	7
Executive Summary: Summary By Data Source	9
Map	13
Aerial	
Topographic Map	15
Detail Report	16
Unplottable Summary	49
Unplottable Report	51
Appendix: Database Descriptions	
Definitions	67

Notice: IMPORTANT LIMITATIONS and YOUR LIABILITY

Reliance on information in Report: This report DOES NOT replace a full Phase I Environmental Site Assessment but is solely intended to be used as a database review of environmental records.

License for use of information in Report: No page of this report can be used without this cover page, this notice and the project property identifier. The information in Report(s) may not be modified or re-sold.

Your Liability for misuse: Using this Service and/or its reports in a manner contrary to this Notice or your agreement will be in breach of copyright and contract and ERIS may obtain damages for such mis-use, including damages caused to third parties, and gives ERIS the right to terminate your account, rescind your license to any previous reports and to bar you from future use of the Service.

No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Limited Partnership ("ERIS") using various sources of information, including information provided by Federal and Provincial government departments. The report applies only to the address and up to the date specified on the cover of this report, and any alterations or deviation from this description will require a new report. This report and the data contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein and does not constitute a legal opinion nor medical advice. Although ERIS has endeavored to present you with information that is accurate, ERIS disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Trademark and Copyright: You may not use the ERIS trademarks or attribute any work to ERIS other than as outlined above. This Service and Report (s) are protected by copyright owned by ERIS Information Limited Partnership. Copyright in data used in the Service or Report(s) (the "Data") is owned by ERIS or its licensors. The Service, Report(s) and Data may not be copied or reproduced in whole or in any substantial part without prior written consent of ERIS.

Executive Summary

_			
Pro	nertv	Inform	natı∩n∙

Project Property: Heart Lake Road and Countryside Drive

Heart Lake Road and Countryside Drive Brampton ON

Order No: 20291500065

Project No: 47877-100

Coordinates:

 Latitude:
 43.7448905

 Longitude:
 -79.7923779

 UTM Northing:
 4,844,247.61

 UTM Easting:
 597,234.24

UTM Zone: 17T

Elevation: 820 FT

249.80 M

Order Information:

Order No: 20291500065

Date Requested: September 15, 2020

Requested by: MTE Consultants Inc.

Report Type: Standard Report

Historical/Products:

Aerial Photographs Aerials - National Collection

Executive Summary: Report Summary

Database	Name	Searched	Project Property	Within 0.25 km	Total
AAGR	Abandoned Aggregate Inventory	Υ	0	0	0
AGR	Aggregate Inventory	Υ	0	0	0
AMIS	Abandoned Mine Information System	Υ	0	0	0
ANDR	Anderson's Waste Disposal Sites	Υ	0	0	0
AST	Aboveground Storage Tanks	Υ	0	0	0
AUWR	Automobile Wrecking & Supplies	Υ	0	0	0
BORE	Borehole	Υ	0	0	0
CA	Certificates of Approval	Υ	0	1	1
CDRY	Dry Cleaning Facilities	Υ	0	0	0
CFOT	Commercial Fuel Oil Tanks	Υ	0	2	2
CHEM	Chemical Register	Υ	0	0	0
CNG	Compressed Natural Gas Stations	Υ	0	0	0
COAL	Inventory of Coal Gasification Plants and Coal Tar Sites	Υ	0	0	0
CONV	Compliance and Convictions	Υ	0	0	0
CPU	Certificates of Property Use	Υ	0	0	0
DELISTED	Delisted Fuel Tanks	Υ	0	2	2
DRL	Drill Hole Database	Υ	0	0	0
EASR	Environmental Activity and Sector Registry	Y	0	0	0
EBR	Environmental Registry	Y	0	0	0
ECA	Environmental Compliance Approval	Y	0	1	1
EEM	Environmental Effects Monitoring	Y	0	0	0
EHS	ERIS Historical Searches	Y	1	0	1
EIIS	Environmental Issues Inventory System	Y	0	0	0
EMHE	Emergency Management Historical Event	Υ	0	0	0
EPAR	Environmental Penalty Annual Report	Y	0	0	0
EXP	List of Expired Fuels Safety Facilities	Y	0	0	0
FCON	Federal Convictions	Υ	0	0	0
FCS	Contaminated Sites on Federal Land	Υ	0	0	0
FOFT	Fisheries & Oceans Fuel Tanks	Υ	0	0	0
FRST	Federal Identification Registry for Storage Tank Systems (FIRSTS)	Y	0	0	0
FST	Fuel Storage Tank	Y	0	2	2
FSTH	Fuel Storage Tank - Historic	Y	0	0	0
GEN	Ontario Regulation 347 Waste Generators Summary	Y	0	4	4
GHG	Greenhouse Gas Emissions from Large Facilities	Y	0	0	0
HINC	TSSA Historic Incidents	Y	0	0	0
IAFT	Indian & Northern Affairs Fuel Tanks	Υ	0	0	0

Database	Name	Searched	Project Property	Within 0.25 km	Total
INC	Fuel Oil Spills and Leaks	Υ	0	0	0
LIMO	Landfill Inventory Management Ontario	Υ	0	0	0
MINE	Canadian Mine Locations	Υ	0	0	0
MNR	Mineral Occurrences	Υ	0	0	0
NATE	National Analysis of Trends in Emergencies System	Y	0	0	0
NCPL	(NATES) Non-Compliance Reports	Υ	0	0	0
NDFT	National Defense & Canadian Forces Fuel Tanks	Υ	0	0	0
NDSP	National Defense & Canadian Forces Spills	Υ	0	0	0
NDWD	National Defence & Canadian Forces Waste Disposal	Υ	0	0	0
NEBI	Sites National Energy Board Pipeline Incidents	Y	0	0	0
NEBP	National Energy Board Wells	Υ	0	0	0
NEES	National Environmental Emergencies System (NEES)	Υ	0	0	0
NPCB	National PCB Inventory	Υ	0	0	0
NPRI	National Pollutant Release Inventory	Υ	0	0	0
OGWE	Oil and Gas Wells	Y	0	0	0
OOGW	Ontario Oil and Gas Wells	Y	0	0	0
OPCB	Inventory of PCB Storage Sites	Υ	0	0	0
ORD	Orders	Υ	0	0	0
PAP	Canadian Pulp and Paper	Υ	0	0	0
PCFT	Parks Canada Fuel Storage Tanks	Υ	0	0	0
PES	Pesticide Register	Υ	0	0	0
PINC	Pipeline Incidents	Υ	0	0	0
PRT	Private and Retail Fuel Storage Tanks	Υ	0	0	0
PTTW	Permit to Take Water	Υ	0	0	0
REC	Ontario Regulation 347 Waste Receivers Summary	Υ	0	0	0
RSC	Record of Site Condition	Υ	0	0	0
RST	Retail Fuel Storage Tanks	Υ	0	0	0
SCT	Scott's Manufacturing Directory	Υ	0	0	0
SPL	Ontario Spills	Υ	0	1	1
SRDS	Wastewater Discharger Registration Database	Υ	0	0	0
TANK	Anderson's Storage Tanks	Υ	0	0	0
TCFT	Transport Canada Fuel Storage Tanks	Υ	0	0	0
VAR	Variances for Abandonment of Underground Storage Tanks	Y	0	0	0
WDS	Waste Disposal Sites - MOE CA Inventory	Y	0	0	0
WDSH	Waste Disposal Sites - MOE 1991 Historical Approval Inventory	Y	0	0	0
WWIS	Water Well Information System	Y	0	11	11
		Total:	1	24	25

Executive Summary: Site Report Summary - Project Property

Map Key	DB	Company/Site Name	Address	Dir/Dist (m)	Elev diff (m)	Page Number
<u>1</u>	EHS		Heart Lake Road and Countryside Drive Brampton ON	-/0.0	-0.23	<u>16</u>

Executive Summary: Site Report Summary - Surrounding Properties

Page Number
<u>16</u>
18
_
<u>18</u>
<u>19</u>
<u>22</u>
<u>24</u>
<u>30</u>
<u>34</u>
<u>36</u>
<u>38</u>
<u>40</u>
<u>43</u>

Map Key	DB	Company/Site Name	Address	Dir/Dist (m)	Elev Diff (m)	Page Number
<u>12</u>	GEN	METROPOLITAN TORONTO & REGION 25-392	CONS. AUTH.C/O 5 SHOREHAM DR. DOWNSVIEW HEART LAKE C.S. 10818 HEART LAKE RD. BRAMPTON ON L6T 3S1	S/229.2	12.00	<u>44</u>
12	GEN	METROPOLITAN TORONTO AND	HEART LAKE CONSERVATION AREA 10818 HEART LAKE ROAD BRAMPTON ON L6T 3S1	S/229.2	12.00	44
<u>12</u>	GEN	TORONTO AND REGION CONSERVATION AUTHORITY	10818 HEART LAKE RD. BRAMPTON ON L6Z 0B3	S/229.2	12.00	<u>44</u>
12	DTNK	Toronto and Region Conservation	10818 Heart Lake Rd BRAMPTON ON L6Z 0B3	S/229.2	12.00	<u>45</u>
12	DTNK	Toronto and Region Conservation	10818 Heart Lake Rd BRAMPTON ON L6Z 0B3	S/229.2	12.00	<u>45</u>
12	SPL	Rose Trucking - 207052 Ontario Ltd. <unofficial></unofficial>	9574 Gore Road; 10818 Heart Lake Road Brampton; Brampton ON	\$/229.2	12.00	<u>46</u>
<u>12</u>	CA	Toronto and Region Conservation Authority	10818 Heart Lake Rd Brampton ON L6Z 0B3	S/229.2	12.00	<u>46</u>
<u>12</u> .	CFOT	TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S/229.2	12.00	<u>46</u>
<u>12</u>	CFOT	TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S/229.2	12.00	<u>47</u>
12	ECA	Toronto and Region Conservation Authority	10818 Heart Lake Rd Brampton ON M3N 1S4	S/229.2	12.00	47
<u>12</u>	FST	TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S/229.2	12.00	<u>48</u>
<u>12</u>	FST	TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S/229.2	12.00	<u>48</u>

Executive Summary: Summary By Data Source

CA - Certificates of Approval

A search of the CA database, dated 1985-Oct 30, 2011* has found that there are 1 CA site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	<u>Address</u>	<u>Direction</u>	Distance (m)	<u>Map Key</u>
Toronto and Region Conservation Authority	10818 Heart Lake Rd Brampton ON L6Z 0B3	S	229.16	<u>12</u>

CFOT - Commercial Fuel Oil Tanks

A search of the CFOT database, dated Jul 31, 2020 has found that there are 2 CFOT site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	<u>Address</u>	<u>Direction</u>	Distance (m)	Map Key
TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S	229.16	<u>12</u>
TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S	229.16	<u>12</u>

DELISTED TANK - Delisted Fuel Tanks

A search of the DELISTED TANK database, dated Jul 31, 2020 has found that there are 2 DELISTED TANK site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	<u>Address</u>	Direction	Distance (m)	<u>Map Key</u>
Toronto and Region Conservation	10818 Heart Lake Rd BRAMPTON ON L6Z 0B3	S	229.16	<u>12</u>
Toronto and Region Conservation	10818 Heart Lake Rd BRAMPTON ON L6Z 0B3	S	229.16	<u>12</u>

ECA - Environmental Compliance Approval

A search of the ECA database, dated Oct 2011-Aug 31, 2020 has found that there are 1 ECA site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	<u>Address</u>	<u>Direction</u>	Distance (m)	<u>Map Key</u>
Toronto and Region Conservation Authority	10818 Heart Lake Rd Brampton ON M3N 1S4	S	229.16	<u>12</u>

EHS - ERIS Historical Searches

A search of the EHS database, dated 1999-Jul 31, 2020 has found that there are 1 EHS site(s) within approximately 0.25 kilometers of the project property.

Lower Elevation	<u>Address</u>	Direction	Distance (m)	<u>Map Key</u>
	Heart Lake Road and Countryside Drive Brampton ON	-	0.00	1

FST - Fuel Storage Tank

A search of the FST database, dated Jul 31, 2020 has found that there are 2 FST site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	<u>Address</u>	Direction	Distance (m)	Map Key
TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S	229.16	12
TORONTO AND REGION CONSERVATION	10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON	S	229.16	<u>12</u>

GEN - Ontario Regulation 347 Waste Generators Summary

A search of the GEN database, dated 1986-Jul 31, 2020 has found that there are 4 GEN site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation METROPOLITAN TORONTO & REGION	Address HEART LAKE CONSERVATION AREA 10818 HEART LAKE ROAD BRAMPTON ON L6T 3S1	<u>Direction</u> S	<u>Distance (m)</u> 229.16	<u>Map Key</u> <u>12</u>
TORONTO AND REGION CONSERVATION AUTHORITY	10818 HEART LAKE RD. BRAMPTON ON L6Z 0B3	S	229.16	<u>12</u>
METROPOLITAN TORONTO AND	HEART LAKE CONSERVATION AREA 10818 HEART LAKE ROAD BRAMPTON ON L6T 3S1	S	229.16	12

Equal/Higher Elevation	<u>Address</u>	<u>Direction</u>	Distance (m)	<u>Map Key</u>
METROPOLITAN TORONTO & REGION 25-392	CONS. AUTH.C/O 5 SHOREHAM DR. DOWNSVIEW HEART LAKE C.S. 10818 HEART LAKE RD. BRAMPTON ON L6T 3S1	S	229.16	<u>12</u>

SPL - Ontario Spills

A search of the SPL database, dated 1988-Nov 2019 has found that there are 1 SPL site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	<u>Address</u>	Direction	Distance (m)	<u>Map Key</u>
Rose Trucking - 207052 Ontario Ltd. <unofficial></unofficial>	9574 Gore Road; 10818 Heart Lake Road Brampton: Brampton ON	S	229.16	<u>12</u>

WWIS - Water Well Information System

A search of the WWIS database, dated Apr 30, 2020 has found that there are 11 WWIS site(s) within approximately 0.25 kilometers of the project property.

Equal/Higher Elevation	Address lot 16 con 2 ON Well ID: 6929089	<u>Direction</u> W	<u>Distance (m)</u> 48.66	Map Key 2
	HAERT LAKE RD lot 16 con 3 ON Well ID: 7337072	N	123.53	<u>4</u>
	lot 15 con 2 ON <i>Well ID:</i> 4901204	SSE	140.78	<u>5</u>
	HEARTLAKE EMPLOYMENT LANDS Brampton ON Well ID: 7282208	ENE	194.13	9
	HEATLAKE EMPLOYMENT LANDS Brampton ON Well ID: 7282209	NE	196.13	<u>10</u>
	COUNTRYSIDE & HEARTLAKE RD. BRAMPTON ON	NE	196.13	<u>10</u>

	Well ID: 7334436			
Lower Elevation	<u>Address</u>	<u>Direction</u>	Distance (m)	<u>Map Key</u>
	<u>/(uu.1000</u>	<u>=σσσ</u> E	104.50	3
	ON			<u>=</u>
	Well ID: 7205653			
	lot 15 con 2	WSW	178.57	<u>6</u>
	ON			-
	Well ID: 7199756			
	lot 15 con 2 ON	WSW	183.07	<u>7</u>
	Well ID: 4901205			
	lot 16 con 2 ON	WSW	189.86	<u>8</u>
	Well ID: 4901215			
	1.440	140.047	000.47	
	lot 16 con 2 ON	WNW	202.47	<u>11</u>
	Well ID: 4901210			

Direction

Distance (m)

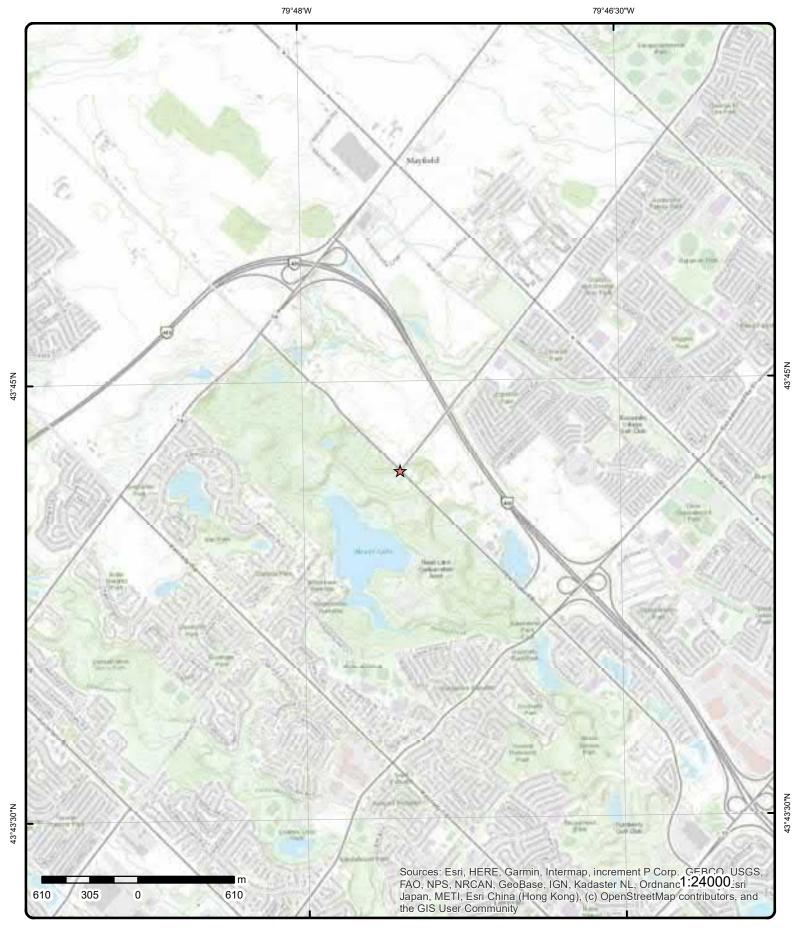
Map Key

Order No: 20291500065

Equal/Higher Elevation

Address

Proposed RoadFerry Route/Ice Road


Aerial Year: 2018

Address: Heart Lake Road and Countryside Drive, Brampton, ON

Source: ESRI World Imagery

Order Number: 20291500065

Topographic Map

Address: Heart Lake Road and Countryside Drive, ON

Source: ESRI World Topographic Map

Order Number: 20291500065

© ERIS Information Limited Partnership

Detail Report

Мар Кеу	Number Record			Site		DB
1	1 of 1	-/0.0	249.6 / -0.23	Heart Lake Road and Brampton ON	l Countryside Drive	EHS
Order No: Status: Report Type Report Date Date Receiv Previous Si Lot/Building Additional In	: red: te Name: g Size:	20100315001 C Custom Report 3/23/2010 3/15/2010		Nearest Intersection: Municipality: Client Prov/State: Search Radius (km): X: Y:	ON 0.25 -694444.444444 1	
2	1 of 1	W/48.7	249.8 / 0.05	lot 16 con 2 ON		wwis
Well ID: Construction Primary Wat Sec. Water U	er Use: Ise:	6929089		Data Entry Status: Data Src: Date Received: Selected Flag:	7/7/2005 Yes	
Final Well St Water Type: Casing Mate		Abandoned-Quality		Abandonment Rec: Contractor: Form Version:	Yes 4011 3	

Z30254 Audit No:

Tag:

Construction Method: Elevation (m): Elevation Reliability: Depth to Bedrock: Well Depth:

Overburden/Bedrock: Pump Rate: Static Water Level:

Flowing (Y/N): Flow Rate: Clear/Cloudy:

Owner: Street Name:

County:

Municipality: **BRAMPTON CITY (TORONTO GORE)**

Site Info:

016 Lot: Concession: 02 Concession Name: CON

Easting NAD83: Northing NAD83: Zone:

UTM Reliability:

PDF URL (Map):

Bore Hole Information

Bore Hole ID: 11328058

DP2BR:

Spatial Status: Code OB:

No formation data Code OB Desc: Open Hole:

Cluster Kind: Date Completed:

6/15/2005 Remarks:

Elevrc Desc:

Location Source Date:

Improvement Location Source: Improvement Location Method:

251.969573 Elevation:

Elevrc:

Zone: 17 East83: 597186 4844254 North83: UTM83 Org CS:

UTMRC:

UTMRC Desc: margin of error: 30 m - 100 m

Order No: 20291500065

Location Method:

Source Revision Comment:

Supplier Comment:

Annular Space/Abandonment

Sealing Record

Plug ID: 933272114 2 Layer: Plug From: 2.6

Plug To: 2.88 Plug Depth UOM: m

Annular Space/Abandonment

Sealing Record

Plug ID: 933272115

Layer: 1 Plug From: 0 2.6 Plug To: Plug Depth UOM:

Method of Construction & Well

<u>Use</u>

Method Construction ID: 966929089

Method Construction Code: Method Construction: Other Method Construction:

Pipe Information

Pipe ID: 11342913

Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 930873048

Layer:

Material:

Open Hole or Material:

Depth From: 0 Depth To: 6 Casing Diameter: 1.21 Casing Diameter UOM: cm Casing Depth UOM:

Results of Well Yield Testing

Pump Test ID: 11353326

m

Pump Set At: Static Level: 2.7

Final Level After Pumping: Recommended Pump Depth:

Pumping Rate:

Flowing Rate:

Recommended Pump Rate:

Levels UOM: m Rate UOM: LPM

Water State After Test Code:

Water State After Test: Pumping Test Method: Pumping Duration HR: Pumping Duration MIN:

Flowing:

3 1 of 1 E/104.5 248.4 / -1.40 WWIS

Well ID: 7205653 Data Entry Status: Yes

Construction Date:

Primary Water Use:

Data Src:

Date Received:

7/31/2013

Sec. Water Use:
Final Well Status:
Water Type:

Selected Flag:
Abandonment Rec:
Contractor:
7230

 Casing Material:
 Form Version:
 8

 Audit No:
 C20273
 Owner:

 Tag:
 A139150
 Street Name:

Tag: A139150 Street Name:

Construction Method: County: PEEL

Elevation (m): Municipality: BRAMPTON CITY (CHINGUACOUSY)

Elevation Reliability: Site Info:

Depth to Bedrock:

Well Depth:

Overburden/Bedrock:

Lot:

Concession:

Concession Name:

Pump Rate: Easting NAD83:
Static Water Level: Northing NAD83:
Flowing (Y/N): Zone:

Flow Rate: UTM Reliability: Clear/Cloudy:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/720\720\50553.pdf

Bore Hole Information

Bore Hole ID: 1004478982 **Elevation:** 247.85205

 DP2BR:
 Elevrc:

 Spatial Status:
 Zone:
 17

 Code OB:
 East83:
 597338

 Code OB Desc:
 North83:
 4844260

 Open Hole:
 Org CS:
 UTM83

Cluster Kind:

Date Completed: 3/22/2013

UTMRC: 4

UTMRC Desc: margin of error: 30 m - 100 m

Remarks: Location Method: wwr

Elevrc Desc:

Location Source Date:
Improvement Location Source:

Improvement Location Method: Source Revision Comment:

Supplier Comment:

4 1 of 1 N/123.5 250.9 / 1.06 HAERT LAKE RD lot 16 con 3

Order No: 20291500065

Well ID: 7337072 Data Entry Status: Yes

 Construction Date:
 Data Src:

 Primary Water Use:
 Date Received:
 7/10/2019

 Sec. Water Use:
 Selected Flag:
 Yes

 Final Well Status:
 0
 Abandonment Rec:
 Yes

 Water Type:
 Contractor:
 7644

 Water Type:
 Contractor:
 76

 Casing Material:
 Form Version:
 7

 Audit No:
 Z314978
 Owner:

Tag: Street Name: HAERT LAKE RD

Construction Method: County: PEEL

Map Key Number of Direction/ Elev/Diff Site DB

Records Distance (m) (m)

 Elevation (m):
 Municipality:
 BRAMPTON CITY (CHINGUACOUSY)

 Elevation Reliability:
 Site Info:

 Depth to Bedrock:
 Lot:
 016

 Well Depth:
 Concession:
 03

 Overburden/Redrock:
 Concession Name:
 US

Overburden/Bedrock:Concession Name:HS EPump Rate:Easting NAD83:Static Water Level:Northing NAD83:Flowing (Y/N):Zone:

Flow Rate: UTM Reliability: Clear/Cloudy:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/733\7337072.pdf

Bore Hole Information

Bore Hole ID: 1007520900 Elevation:

DP2BR: Elevrc: Spatial Status: Zone: 17 Code OB: 597240 East83: Code OB Desc: North83: 4844371 Open Hole: Org CS: UTM83 Cluster Kind: UTMRC:

Date Completed: 5/22/2019 UTMRC Desc: margin of error: 30 m - 100 m

Remarks: Location Method: wwr Elevro Desc:

Location Source Date: Improvement Location Source:

Improvement Location Source:
Improvement Location Method:
Source Revision Comment:
Supplier Comment:

Annular Space/Abandonment Sealing Record

19

-

 Plug ID:
 1008001535

 Layer:
 1

 Plug From:
 0

 Plug To:
 30

 Plug Depth UOM:
 ft

5 1 of 1 SSE/140.8 250.7 / 0.88 lot 15 con 2 WWIS

 Well ID:
 4901204
 Data Entry Status:

 Construction Date:
 Data Src:
 1

Primary Water Use: Not Used Date Received: 2/13/1961
Sec. Water Use: 0 Selected Flag: Yes
Final Well Status: Test Hole Abandonment Rec:
Water Type: Contractor: 2801

Water Type:Contractor:2801Casing Material:Form Version:1Audit No:Owner:Tag:Street Name:

Construction Method: County: PEEL

 Elevation (m):
 Municipality:
 BRAMPTON CITY (CHINGUACOUSY)

 Elevation Reliability:
 Site Info:

 Depth to Bedrock:
 Lot:
 015

 Well Depth:
 Concession:
 02

 Overburden/Bedrock:
 Concession Name:
 HS E

Overburden/Bedrock:Concession Name:HS EPump Rate:Easting NAD83:Static Water Level:Northing NAD83:

Flowing (Y/N):

Flow Rate:

Clear/Cloudy:

Zone:

UTM Reliability:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/490\4901204.pdf

Bore Hole Information

250.441772 Bore Hole ID: 10316050 Elevation:

DP2BR: 119 Elevrc: 17

Spatial Status: Zone:

Code OB: East83: 597281.5 Code OB Desc: **Bedrock** North83: 4844115

Open Hole: Org CS:

Cluster Kind: UTMRC:

2/4/1960 UTMRC Desc: unknown UTM Date Completed: Remarks: Location Method: p9

Elevrc Desc:

Overburden and Bedrock

Location Source Date: Improvement Location Source: Improvement Location Method: Source Revision Comment: **Supplier Comment:**

Formation ID: 932033187

Layer: 3

Color: General Color:

Materials Interval

Mat1: 05

Most Common Material: CLAY 09 Mat2:

MEDIUM SAND Mat2 Desc:

Mat3: Mat3 Desc: **GRAVEL** Formation Top Depth: 6 66 Formation End Depth: Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033191

Layer:

Color:

General Color:

Mat1: 17

Most Common Material: SHALE

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

119 Formation Top Depth: Formation End Depth: 129

Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033185

Layer:

Color:

General Color:

02 Mat1:

Most Common Material: Mat2: Mat2 Desc:

TOPSOIL

Mat3: Mat3 Desc:

Formation Top Depth: 0 Formation End Depth: 2 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033186

Layer:

Color:

General Color:

Mat1: Most Common Material: 05 CLAY

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 2 Formation End Depth: 6 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033188

Layer:

Color: General Color:

Mat1:

MEDIUM SAND Most Common Material:

Mat2: 06 Mat2 Desc: SILT Mat3: 11 **GRAVEL** Mat3 Desc: Formation Top Depth: 66 Formation End Depth: 85 Formation End Depth UOM:

Overburden and Bedrock

Materials Interval

Formation ID: 932033189

Layer: 5

Color: General Color:

09 Mat1:

Most Common Material: MEDIUM SAND

Mat2: 11 **GRAVEL** Mat2 Desc:

Mat3:

Mat3 Desc:

Formation Top Depth: 85 Formation End Depth: 91 Formation End Depth UOM: ft

Overburden and Bedrock

Number of Direction/ Elev/Diff Site DΒ Map Key Records Distance (m) (m)

Materials Interval

932033190 Formation ID:

Layer:

Color: General Color:

Mat1: 09

MEDIUM SAND Most Common Material:

Mat2: 11 **GRAVEL** Mat2 Desc: Mat3: 05 Mat3 Desc: CLAY Formation Top Depth: 91 Formation End Depth: 119 Formation End Depth UOM: ft

Method of Construction & Well

<u>Use</u>

Method Construction ID: 964901204

Method Construction Code:

Method Construction: Rotary (Convent.)

Other Method Construction:

Pipe Information

Pipe ID: 10864620

Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 930522556

Z127266

Layer:

Material:

Open Hole or Material:

Depth From: Depth To:

Casing Diameter: 5 Casing Diameter UOM: inch Casing Depth UOM: ft

1 of 1 WSW/178.6 247.2 / -2.64 lot 15 con 2 6 **WWIS** ON

Order No: 20291500065

7199756 Well ID: Data Entry Status:

Construction Date: Data Src: Primary Water Use: Date Received: 4/2/2013 Sec. Water Use: Selected Flag: Yes

Final Well Status: 0 Abandonment Rec: Yes Water Type: Contractor: 3406 Casing Material: Form Version: 7

Audit No: Owner: Street Name: Tag: **Construction Method:** County:

BRAMPTON CITY (CHINGUACOUSY) Elevation (m): Municipality: Elevation Reliability: Site Info:

015 Depth to Bedrock: Lot: Well Depth: Concession: 02 HS E Overburden/Bedrock: Concession Name:

Pump Rate: Easting NAD83:

Static Water Level: Northing NAD83:

Flowing (Y/N): Zone:

Flow Rate: UTM Reliability: Clear/Cloudy:

https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/719\7199756.pdf PDF URL (Map):

Bore Hole Information

Bore Hole ID: 1004270712 Elevation: 250.412628

DP2BR: Elevrc: Spatial Status: Zone: 17 East83: 597099 Code OB:

Code OB Desc: North83: 4844131 Open Hole: Org CS: UTM83 Cluster Kind: UTMRC:

UTMRC Desc: margin of error: 30 m - 100 m Location Method:

Date Completed: 4/16/2012

Remarks: Elevrc Desc:

Location Source Date:

Improvement Location Source: Improvement Location Method: Source Revision Comment:

Supplier Comment:

Annular Space/Abandonment

Sealing Record

Plug ID: 1004791655

Layer: Plug From: 14.9 Plug To: 0 Plug Depth UOM: m

Annular Space/Abandonment

Sealing Record

Plug ID: 1004791653

Layer: Plug From: 22.9 Plug To: 16.5 Plug Depth UOM: m

Annular Space/Abandonment

Sealing Record

Plug ID: 1004791654

Layer: Plug From: 16.5 Plug To: 14.9 Plug Depth UOM: m

Method of Construction & Well

<u>Use</u>

Method Construction ID: 1004791652

Method Construction Code: Method Construction: Other Method Construction:

Pipe Information

Pipe ID: 1004791646

Casing No: 0 Comment:

Construction Record - Casing

Casing ID: 1004791650

Layer: Material:

Alt Name:

Open Hole or Material:

Depth From: Depth To: Casing Diameter: Casing Diameter UOM: Casing Depth UOM:

cm m

Construction Record - Screen

1004791651 Screen ID:

Layer: Slot:

Screen Top Depth: Screen End Depth: Screen Material: Screen Depth UOM: Screen Diameter UOM:

m cm Screen Diameter:

Water Details

Water ID: 1004791649

Layer: Kind Code: Kind:

Water Found Depth: Water Found Depth UOM: m

Hole Diameter

Hole ID: 1004791648

Diameter: Depth From: Depth To:

Hole Depth UOM: m Hole Diameter UOM: cm

7 1 of 1 WSW/183.1 247.0 / -2.80 lot 15 con 2 **WWIS** ON

2801

Order No: 20291500065

Well ID: 4901205 Data Entry Status: **Construction Date:** Data Src:

2/13/1961 Not Used Primary Water Use: Date Received: Sec. Water Use: Selected Flag: Yes

Test Hole Final Well Status: Abandonment Rec: Water Type: Contractor: Casing Material: Form Version: Audit No: Owner: Tag: Street Name:

Construction Method: County:

Elevation (m): Municipality: **BRAMPTON CITY (CHINGUACOUSY)**

Elevation Reliability:

Well Depth: Overburden/Bedrock:

Pump Rate: Static Water Level: Flowing (Y/N):

Flow Rate: Clear/Cloudy:

Depth to Bedrock: Lot:

> Concession Name: Easting NAD83: Northing NAD83: Zone:

015

02

HS E

247.400466

4844160

unknown UTM

Order No: 20291500065

17 597073.5

p9

Site Info:

Concession:

UTM Reliability:

Elevation:

Elevrc:

East83:

North83:

Org CS:

UTMRC:

UTMRC Desc:

Location Method:

Zone:

 $https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/490\4901205.pdf$ PDF URL (Map):

Bore Hole Information

Bore Hole ID: 10316051 DP2BR: 127

Spatial Status:

Code OB:

Code OB Desc: Bedrock

Open Hole: Cluster Kind:

Date Completed: 2/10/1960

Remarks: Elevrc Desc:

Location Source Date:

Improvement Location Source: Improvement Location Method: **Source Revision Comment:** Supplier Comment:

Overburden and Bedrock

Materials Interval

932033194 Formation ID:

Laver:

Color:

General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

Mat2: 05 CLAY Mat2 Desc: Mat3: 12 **STONES** Mat3 Desc: Formation Top Depth: 29 Formation End Depth: 35 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033192

Layer:

Color:

General Color:

Mat1: 02

TOPSOIL Most Common Material:

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

0 Formation Top Depth: Formation End Depth: Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033193

Layer: 2

Color:

General Color:

 Mat1:
 05

 Most Common Material:
 CLAY

 Mat2:
 09

Mat2 Desc: MEDIUM SAND

Mat3:11Mat3 Desc:GRAVELFormation Top Depth:1Formation End Depth:29Formation End Depth UOM:ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033197

Layer: 6

Color:

General Color:

 Mat1:
 05

 Most Common Material:
 CLAY

 Mat2:
 09

Mat2 Desc: MEDIUM SAND

Mat3: 11
Mat3 Desc: GRAVEL
Formation Top Depth: 51

Formation End Depth: 55
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033201

Layer: 10

Color: General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

Mat2: 11 Mat2 Desc: GRAVEL

Mat3:

Mat3 Desc:

Formation Top Depth: 110
Formation End Depth: 113
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033200

Layer: 9
Color:

General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

Mat2: 06

SILT Mat2 Desc: Mat3: 11 **GRAVEL** Mat3 Desc: Formation Top Depth: 87 Formation End Depth: 110 ft Formation End Depth UOM:

Overburden and Bedrock

Materials Interval

932033196 Formation ID:

Layer:

Color:

General Color:

Mat1: 80

FINE SAND Most Common Material: Mat2: GRAVEL Mat2 Desc: Mat3: 05 Mat3 Desc: CLAY Formation Top Depth: 47

Formation End Depth: 51 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

932033202 Formation ID:

Layer: 11

Color:

General Color:

Mat1: 09

MEDIUM SAND Most Common Material:

Mat2: 11 Mat2 Desc: **GRAVEL** Mat3: 05 Mat3 Desc: CLAY Formation Top Depth: 113 Formation End Depth: 120 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

932033199 Formation ID:

Layer: 8

Color:

General Color:

09 Mat1:

MEDIUM SAND Most Common Material:

Mat2: Mat2 Desc: **GRAVEL** Mat3: 05 Mat3 Desc: CLAY 80 Formation Top Depth: 87 Formation End Depth: Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033204

13 Layer:

Color:

General Color:

17 Mat1: SHALE

Most Common Material: Mat2:

Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 127 Formation End Depth: 132 Formation End Depth UOM:

Overburden and Bedrock

Materials Interval

Formation ID: 932033203

Layer: 12 Color:

General Color:

05 Mat1: Most Common Material: CLAY Mat2: **GRAVEL**

Mat2 Desc: Mat3: Mat3 Desc:

120 Formation Top Depth: Formation End Depth: 127 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033195

Layer:

Color:

General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

Mat2: 11 GRAVEL Mat2 Desc:

Mat3: Mat3 Desc:

Formation Top Depth: 35 Formation End Depth: 47 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033198

Layer:

Color:

General Color:

Mat1:

MEDIUM SAND Most Common Material:

Mat2: 11 Mat2 Desc: **GRAVEL** Mat3: 05 CLAY Mat3 Desc: Formation Top Depth: 55 Formation End Depth: 80 Formation End Depth UOM:

Order No: 20291500065

ft

Method of Construction & Well

<u>Use</u>

Method Construction ID: 964901205

Method Construction Code:

Method Construction: Rotary (Convent.)

Other Method Construction:

Pipe Information

Pipe ID: 10864621

Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 930522557

Layer: 1
Material: 1

Open Hole or Material: STEEL

Depth From:

Depth To: 69
Casing Diameter: 2
Casing Diameter UOM: inch
Casing Depth UOM: ft

Construction Record - Screen

Screen ID: 933359094

Layer: 1

Slot:

Screen Top Depth: 69
Screen End Depth: 89
Screen Material:
Screen Depth UOM: ft
Screen Diameter UOM: inch
Screen Diameter: 2

Results of Well Yield Testing

Pump Test ID: 994901205

Pump Set At:
Static Level: 12

Final Level After Pumping: 15
Recommended Pump Depth:

Pumping Rate: 32

Flowing Rate:

Recommended Pump Rate:

Levels UOM: ft

Rate UOM: GPM
Water State After Test Code: 1
Water State After Test: CLEAR
Pumping Test Method: 1
Pumping Duration HR: 6

Pumping Duration MIN: 0
Flowing: No

Water Details

Number of Direction/ Elev/Diff Site DΒ Map Key Records Distance (m) (m)

933789175 Water ID:

Layer: Kind Code: **FRESH** Kind: Water Found Depth: 35 Water Found Depth UOM: ft

8 1 of 1 WSW/189.9 247.0 / -2.81 lot 16 con 2 **WWIS** ON

Well ID: 4901215 Data Entry Status:

Construction Date: Data Src:

Primary Water Use: Municipal 5/18/1962 Date Received: Sec. Water Use: Selected Flag: Yes Water Supply Final Well Status: Abandonment Rec:

Water Type: 2801 Contractor: Casing Material: Form Version:

Audit No: Owner: Street Name: Tag:

Construction Method: County:

BRAMPTON CITY (CHINGUACOUSY) Municipality: Elevation (m): Elevation Reliability: Site Info:

Depth to Bedrock: 016 Lot:

Well Depth: Concession: 02 HS E Overburden/Bedrock: Concession Name: Easting NAD83: Pump Rate:

Static Water Level: Northing NAD83: Flowing (Y/N): Zone:

Flow Rate: UTM Reliability: Clear/Cloudy:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/490\4901215.pdf

Bore Hole Information

10316061 247.410614 Bore Hole ID: Elevation:

DP2BR: Elevrc: Spatial Status: Zone:

Code OB: East83: 597068.5 Code OB Desc: Overburden North83: 4844155

Open Hole: Org CS: Cluster Kind: **UTMRC**:

margin of error : 100 m - 300 m Date Completed: 10/23/1961 UTMRC Desc:

Order No: 20291500065

Remarks: Location Method:

Elevrc Desc:

Location Source Date: Improvement Location Source:

Source Revision Comment: Supplier Comment:

Improvement Location Method:

Overburden and Bedrock

Formation ID: 932033261

Layer: 8

Color: General Color:

Materials Interval

09 Mat1:

Most Common Material:

MEDIUM SAND

Mat2: Mat2 Desc: **GRAVEL**

Mat3:

Mat3 Desc:

Formation Top Depth: 67
Formation End Depth: 73
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033259

Layer: 6

Color:

General Color:

Mat1: 10

Most Common Material: COARSE SAND

Mat2: 11

Mat2 Desc: GRAVEL

Mat3:

Mat3 Desc:

Formation Top Depth: 53
Formation End Depth: 62
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033262

Layer: 9

Color:

General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

 Mat2:
 11

 Mat2 Desc:
 GRAVEL

 Mat3:
 05

 Mat3 Desc:
 CLAY

 Formation Top Depth:
 73

 Formation End Depth:
 83

 Formation End Depth UOM:
 ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033256

Layer: 3

Color:

General Color:

Mat1: 08

Most Common Material: FINE SAND

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 20 Formation End Depth: 32 Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033260

Layer: 7

Color:

General Color:

Mat1: 10

Most Common Material: COARSE SAND

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 62
Formation End Depth: 67
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033255

Layer: 2

Color:

General Color:

 Mat1:
 05

 Most Common Material:
 CLAY

 Mat2:
 09

Mat2 Desc: MEDIUM SAND

Mat3:11Mat3 Desc:GRAVELFormation Top Depth:1Formation End Depth:20Formation End Depth UOM:ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033258

Layer: 5

Color:

General Color:

Mat1: 10

Most Common Material: COARSE SAND

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 42
Formation End Depth: 53
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033254

Layer:

Color:

General Color:

Mat1: 02

Most Common Material: TOPSOIL

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 0
Formation End Depth: 1
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033257

Layer:

Color:

General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

Mat2: 1

Mat2 Desc: GRAVEL Mat3:

Mat3 Desc:

Formation Top Depth: 32
Formation End Depth: 42
Formation End Depth UOM: ft

Method of Construction & Well

<u>Use</u>

Method Construction ID: 964901215

Method Construction Code: 1

Method Construction: Cable Tool

Other Method Construction:

Pipe Information

Pipe ID: 10864631

Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 930522572

Layer: 1
Material: 1

Open Hole or Material: STEEL

Depth From:

Depth To:20Casing Diameter:22Casing Diameter UOM:inchCasing Depth UOM:ft

Construction Record - Casing

Casing ID: 930522573

Layer: 2
Material: 1
Open Hole or Material: STEEL

Depth From:

Depth To: 54
Casing Diameter: 12
Casing Diameter UOM: inch
Casing Depth UOM: ft

Construction Record - Screen

 Screen ID:
 933359101

 Layer:
 1

 Slot:
 006

 Screen Top Depth:
 54

Number of Direction/ Elev/Diff Site DΒ Map Key Records Distance (m) (m)

74 Screen End Depth: Screen Material:

Screen Depth UOM: ft Screen Diameter UOM: inch Screen Diameter: 12

Results of Well Yield Testing

Pump Test ID: 994901215

Pump Set At:

14 Static Level: 38 Final Level After Pumping:

Recommended Pump Depth:

Pumping Rate: 600

Flowing Rate:

Recommended Pump Rate:

Levels UOM:

ft Rate UOM: **GPM** Water State After Test Code: 1 Water State After Test: **CLEAR** Pumping Test Method: **Pumping Duration HR:** 99 **Pumping Duration MIN:** 0 No

Water Details

Flowing:

Water ID: 933789186 Layer: Kind Code: **FRESH** Kind:

Water Found Depth: 54 Water Found Depth UOM: ft

Brampton ON

ENE/194.1

Well ID: 7282208 Construction Date:

1 of 1

Primary Water Use: Test Hole

9

Sec. Water Use: Test Hole

Final Well Status:

Water Type:

Casing Material:

Audit No: Z241685

A211984 Tag:

Construction Method: Elevation (m): Elevation Reliability: Depth to Bedrock:

Well Depth: Overburden/Bedrock: Pump Rate:

Static Water Level: Flowing (Y/N):

Flow Rate: Clear/Cloudy: Data Entry Status:

250.9 / 1.06

Data Src:

Date Received: 2/28/2017 Selected Flag: Yes

HEARTLAKE EMPLOYMENT LANDS

Abandonment Rec:

Contractor: 7383 Form Version:

Owner:

Street Name: HEARTLAKE EMPLOYMENT LANDS County: **PEEL** BRAMPTON CITY (CHINGUACOUSY)

WWIS

Order No: 20291500065

Municipality:

Site Info: Lot:

Concession: Concession Name: Easting NAD83: Northing NAD83:

Zone:

UTM Reliability:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/728\7282208.pdf

Bore Hole Information

Bore Hole ID: 1006361306 **Elevation**: 252.944854

DP2BR: Elevrc: Spatial Status: Zone: 17 Code OB: East83: 597401 Code OB Desc: North83: 4844347 UTM83 Open Hole: Org CS: Cluster Kind: UTMRC:

Date Completed: 9/23/2016 UTMRC Desc: margin of error : 30 m - 100 m

Remarks: Location Method: wwr Elevro Desc:

Overburden and Bedrock Materials Interval

Location Source Date: Improvement Location Source: Improvement Location Method: Source Revision Comment: Supplier Comment:

Formation ID: 1006614280

Layer: 1

Color: General Color:

Mat1: 28

Most Common Material: SAND
Mat2: 34
Mat2 Desc: TILL

Mat3:

Mat3 Desc:

Formation Top Depth: 0
Formation End Depth:
Formation End Depth UOM: ft

Annular Space/Abandonment

Sealing Record

Plug ID: 1006614287

 Layer:
 1

 Plug From:
 0

 Plug To:
 14

 Plug Depth UOM:
 ft

Annular Space/Abandonment

Sealing Record

Plug ID: 1006614288

 Layer:
 2

 Plug From:
 14

 Plug To:
 25

 Plug Depth UOM:
 ft

Method of Construction & Well

<u>Use</u>

Method Construction ID: 1006614286

Method Construction Code:

Method Construction: Boring

Other Method Construction:

Pipe Information

Pipe ID: 1006614279

Order No: 20291500065

0 Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 1006614283

Layer: Material: 5

Open Hole or Material: **PLASTIC**

Depth From: Depth To: 15 Casing Diameter: 2 Casing Diameter UOM: inch Casing Depth UOM:

Construction Record - Screen

Screen ID: 1006614284

Layer: Slot: 10 Screen Top Depth: 15 Screen End Depth: 25 Screen Material: 5 Screen Depth UOM: ft Screen Diameter UOM: inch Screen Diameter: 2.375

Water Details

Water ID: 1006614282

Layer: Kind Code: Kind:

Water Found Depth:

Water Found Depth UOM: ft

Hole Diameter

Hole ID: 1006614281

Diameter: 6 Depth From: 0 Depth To: 25 Hole Depth UOM: ft Hole Diameter UOM: inch

10 1 of 2 NE/196.1 250.9 / 1.06 HEATLAKE EMPLOYMENT LANDS **WWIS Brampton ON**

Well ID: 7282209

Construction Date:

Primary Water Use: Test Hole Sec. Water Use: Final Well Status: Test Hole

Water Type: Casing Material:

Audit No: Z241684

A211985 Tag: **Construction Method:**

Elevation (m): Elevation Reliability: Depth to Bedrock:

Data Src: 2/28/2017 Date Received: Yes

Selected Flag: Abandonment Rec: Contractor: 7383 Form Version: Owner:

Data Entry Status:

Street Name: HEATLAKE EMPLOYMENT LANDS

County:

Municipality: **BRAMPTON CITY (CHINGUACOUSY)**

Site Info:

Lot:

Well Depth: Concession:
Overburden/Bedrock: Concession Name:

Pump Rate:Easting NAD83:Static Water Level:Northing NAD83:Flowing (Y/N):Zone:Flow Rate:UTM Reliability:

Flow Rate: Clear/Cloudy:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/728\7282209.pdf

Bore Hole Information

Bore Hole ID: 1006361312 **Elevation:** 255.303802

DP2BR: Elevrc:

 Spatial Status:
 Zone:
 17

 Code OB:
 East83:
 597324

 Code OB Desc:
 North83:
 4844422

 Open Hole:
 Org CS:
 UTM83

 Cluster Kind:
 UTMRC:
 4

Date Completed: 9/23/2016 UTMRC Desc: margin of error : 30 m - 100 m

Remarks: Location Method: wwr Elevro Desc:

Location Source Date:

Improvement Location Source: Improvement Location Method: Source Revision Comment:

Supplier Comment:

Overburden and Bedrock

Materials Interval

Formation ID: 1006614290

Layer: 1

Color:

General Color:

 Mat1:
 28

 Most Common Material:
 SAND

 Mat2:
 34

 Mat2 Desc:
 TILL

Mat3: Mat3 Desc:

Formation Top Depth: 0

Formation End Depth:
Formation End Depth UOM: ft

Annular Space/Abandonment

Sealing Record

Plug ID: 1006614298

 Layer:
 2

 Plug From:
 24

 Plug To:
 35

 Plug Depth UOM:
 ft

Annular Space/Abandonment

Sealing Record

Plug ID: 1006614297

 Layer:
 1

 Plug From:
 0

 Plug To:
 24

 Plug Depth UOM:
 ft

Order No: 20291500065

Method of Construction & Well

<u>Use</u>

Method Construction ID:1006614296Method Construction Code:6Method Construction:Boring

Other Method Construction:

Pipe Information

Pipe ID: 1006614289

Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 1006614293

Layer: 1 Material: 5

Open Hole or Material:PLASTICDepth From:0Depth To:25Casing Diameter:2Casing Diameter UOM:inch

Construction Record - Screen

Casing Depth UOM:

Screen ID: 1006614294

ft

 Layer:
 1

 Slot:
 10

 Screen Top Depth:
 25

 Screen End Depth:
 35

 Screen Material:
 5

 Screen Depth UOM:
 ft

Screen Diameter UOM: inch Screen Diameter: 2.375

Water Details

Water ID: 1006614292

Layer: Kind Code: Kind:

Water Found Depth:
Water Found Depth UOM: ft

vater Found Depth OOM.

Hole Diameter

Hole ID: 1006614291

 Diameter:
 6

 Depth From:
 0

 Depth To:
 35

 Hole Depth UOM:
 ft

 Hole Diameter UOM:
 inch

10 2 of 2 NE/196.1 250.9 / 1.06 COUNTRYSIDE & HEARTLAKE RD. BRAMPTON ON WWIS

Well ID: 7334436 Data Entry Status:

 Construction Date:
 Data Src:

 Primary Water Use:
 Date Received:
 6/10/2019

 Sec. Water Use:
 Selected Flag:
 Yes

 Final Well Status:
 0
 Abandonment Rec:
 Yes

 Water Type:
 Contractor:
 7644

 Water Type:
 Contractor:
 7644

 Casing Material:
 Form Version:
 7

 Audit No:
 Z311632
 Owner:

 Tag:
 A211985
 Street Name:
 COUNTRYSIDE & HEARTLAKE RD.

 Construction Method:
 County:
 PEEL

 Elevation (m):
 Municipality:
 BRAMPTON CITY (CHINGUACOUSY)

 Elevation Reliability:
 Site Info:

Depth to Bedrock:

Well Depth:

Overburden/Bedrock:

Pump Rate:

Static Water Level:

Flowing (Y/N):

Lot:

Concession:

Concession Name:

Easting NAD83:

Northing NAD83:

Zone:

Flow Rate: UTM Reliability: Clear/Cloudy:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/733\7334436.pdf

Bore Hole Information

Location Source Date: Improvement Location Source: Improvement Location Method: Source Revision Comment:

 Bore Hole ID:
 1007471280
 Elevation:

 DP2BR:
 Elevrc:

Spatial Status: Zone: 17 Code OB: East83: 597324 Code OB Desc: North83: 4844422 UTM83 Open Hole: Org CS: Cluster Kind: UTMRC: Date Completed: **UTMRC Desc:**

ate Completed: UTMRC Desc: margin of error : 30 m - 100 m

Demarks: Location Method: wwr

Order No: 20291500065

Remarks: Location Method: w
Elevro Desc:

Supplier Comment:

Method of Construction & Well

Method Construction ID: 1007961496

Method Construction Code: Method Construction: Other Method Construction:

Pipe Information

Pipe ID: 1007961490

Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 1007961494

Layer: Material:

Open Hole or Material:

Depth From: Depth To:

Casing Diameter:
Casing Diameter UOM:

Casing Diameter UOM: inch Casing Depth UOM: ft

Construction Record - Screen

Screen ID: 1007961495

Layer: Slot:

Screen Top Depth: Screen End Depth: Screen Material:

Screen Depth UOM: ft Screen Diameter UOM: inch

Screen Diameter:

Water Details

Water ID: 1007961493

Layer: Kind Code: Kind:

Water Found Depth:

Water Found Depth UOM: ft

Hole Diameter

Hole ID: 1007961492

Diameter: Depth From: Depth To:

Hole Depth UOM: ft
Hole Diameter UOM: inch

1 of 1 WNW/202.5 249.8 / -0.05 lot 16 con 2 WWIS

1

Well ID: 4901210 Data Entry Status:

Construction Date: Data Src:

Primary Water Use:Not UsedDate Received:2/13/1961Sec. Water Use:0Selected Flag:YesFinal Well Status:Test HoleAbandonment Rec:Water Type:Contractor:2801

Water Type:
Casing Material:
Audit No:
Tag:
Casing Water Type:
Contractor:
Form Version:
Owner:
Street Name:

 Construction Method:
 County:
 PEEL

 Elevation (m):
 Municipality:
 BRAMPTON CITY (CHINGUACOUSY)

Elevation Reliability:

Depth to Bedrock:

Well Depth:

Concession:

02

Well Depth: Concession: 02
Overburden/Bedrock: Concession Name: HS E
Pump Rate: Easting NAD83:

Static Water Level:

Flowing (Y/N):

Flow Rate:

Clear/Cloudy:

Northing NAD83:

Zone:

UTM Reliability:

PDF URL (Map): https://d2khazk8e83rdv.cloudfront.net/moe_mapping/downloads/2Water/Wells_pdfs/490\4901210.pdf

Elevation:

Elevrc:

East83:

North83:

Org CS:

UTMRC:

UTMRC Desc:

Location Method:

Zone:

250.719863

597066.5

4844361

p9

unknown UTM

Order No: 20291500065

Bore Hole Information

Bore Hole ID: 10316056 **DP2BR:** 121

Spatial Status:

Code OB:

Code OB Desc: Bedrock

Open Hole:

Cluster Kind:

Date Completed: 2/19/1960

Remarks: Elevrc Desc:

Location Source Date:

Improvement Location Source: Improvement Location Method: Source Revision Comment: Supplier Comment:

Overburden and Bedrock

Materials Interval

Formation ID: 932033229

Layer: 1

Color:

General Color:

Mat1: 02

Most Common Material: TOPSOIL

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 0
Formation End Depth: 1
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033234

Layer:

Color:

General Color:

Mat1: 17
Most Common Material: SHALE

Mat2: Mat2 Desc: Mat3: Mat3 Desc:

Formation Top Depth: 121
Formation End Depth: 126
Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033231

Layer: 3

Color:

General Color:

 Mat1:
 05

 Most Common Material:
 CLAY

 Mat2:
 06

 Mat2 Desc:
 SILT

DB Map Key Number of Direction/ Elev/Diff Site Records Distance (m)

09 Mat3:

Mat3 Desc: MEDIUM SAND

Formation Top Depth: 7 Formation End Depth: 93 Formation End Depth UOM: ft

Overburden and Bedrock Materials Interval

Formation ID: 932033233

Layer:

Color: General Color:

Mat1: 09

Most Common Material: MEDIUM SAND

ft

Mat2: Mat2 Desc: **GRAVEL** Mat3: 05 CLAY Mat3 Desc: Formation Top Depth: 104 Formation End Depth: 121

Overburden and Bedrock

Formation End Depth UOM:

Materials Interval

Formation ID: 932033230

Layer: 2 Color:

General Color:

05 Mat1: CLAY Most Common Material: Mat2: 09

Mat2 Desc: MEDIUM SAND

Mat3: Mat3 Desc:

Formation Top Depth: 1 Formation End Depth: Formation End Depth UOM: ft

Overburden and Bedrock

Materials Interval

Formation ID: 932033232

Layer: 4

Color: General Color:

Mat1:

MEDIUM SAND Most Common Material:

Mat2: Mat2 Desc: **GRAVEL** 05 Mat3: Mat3 Desc: CLAY Formation Top Depth: 93 Formation End Depth: 104 Formation End Depth UOM: ft

Method of Construction & Well

<u>Use</u>

Method Construction ID: 964901210

Method Construction Code: 2

Method Construction:

Rotary (Convent.)

Other Method Construction:

Pipe Information

Pipe ID: 10864626 Casing No:

Comment: Alt Name:

Construction Record - Casing

Casing ID: 930522564 Layer: Material: **STEEL** Open Hole or Material: Depth From: 94 Depth To: Casing Diameter: 2 Casing Diameter UOM: inch Casing Depth UOM: ft

Construction Record - Screen

Screen ID: 933359099

1

ft

Layer:

Slot:

Screen Top Depth: 94 105 Screen End Depth:

Screen Material:

Screen Depth UOM: ft Screen Diameter UOM: inch Screen Diameter: 2

Water Details

Water ID: 933789180 Layer: Kind Code: **FRESH** Kind: Water Found Depth: 94

12 1 of 13

Water Found Depth UOM:

S/229.2

261.8 / 12.00

METROPOLITAN TORONTO & REGION HEART LAKE CONSERVATION AREA 10818

Generator No: ON0651311 Status:

Approval Years:

92,93,97,98

Contam. Facility:

MHSW Facility:

8364 SIC Code:

SIC Description: REC./CULTURE ADMIN.

Detail(s)

Waste Class:

Waste Class Desc: PETROLEUM DISTILLATES HEART LAKE ROAD

BRAMPTON ON L6T 3S1

PO Box No: Country:

Choice of Contact: Co Admin:

Phone No Admin:

GEN

Мар Кеу	Numbe Record		Direction/ Distance (m)	Elev/Diff (m)	Site	DB
Waste Class: Waste Class Desc:			252 WASTE OILS & LUBRICANTS			
12	2 of 13		S/229.2	261.8 / 12.00	METROPOLITAN TORONTO & REGION 25-392 CONS. AUTH.C/O 5 SHOREHAM DR. DOWNSVIEW HEART LAKE C.S. 10818 HEART LAKE RD. BRAMPTON ON L6T 3S1	GEN
Generator N	lo:	ON0651	311		PO Box No:	
Status: Approval Ye	ears:	94,95,96	5		Country: Choice of Contact:	
Contam. Facil MHSW Facil					Co Admin: Phone No Admin:	
SIC Code: SIC Descrip	•	8364	REC./CULTURE A	ADMIN.		
Detail(s)						
Waste Class Waste Class			213 PETROLEUM DIS	TILLATES		
Waste Class Waste Class			252 WASTE OILS & LI	UBRICANTS		
12	3 of 13		S/229.2	261.8 / 12.00	METROPOLITAN TORONTO AND HEART LAKE CONSERVATION AREA 10818 HEART LAKE ROAD BRAMPTON ON L6T 3S1	GEN
Generator No:		ON0651	311		PO Box No:	
Status: Approval Ye Contam. Fac	cility:	99,00,01	I		Country: Choice of Contact: Co Admin:	
MHSW Facil SIC Code: SIC Descrip	•	8364	REC./CULTURE A	ADMIN.	Phone No Admin:	
Detail(s)						
Waste Class Waste Class			213 PETROLEUM DIS	TILLATES		
Waste Class Waste Class			252 WASTE OILS & LI	JBRICANTS		
12	4 of 13		S/229.2	261.8 / 12.00	TORONTO AND REGION CONSERVATION AUTHORITY 10818 HEART LAKE RD. BRAMPTON ON L6Z 0B3	GEN
Generator N	lo:	ON3238	649		PO Box No:	
Status: Approval Ye Contam. Fac		05			Country: Choice of Contact: Co Admin:	
MHSW Facil SIC Code:		913150			Phone No Admin:	
SIC Code. SIC Descrip	tion:	313130	Municipal Regulate	ory Services		
Detail(s)						

Order No: 20291500065

Number of Direction/ Elev/Diff Site DΒ Map Key Records Distance (m) (m)

221 Waste Class:

Waste Class Desc: LIGHT FUELS

Waste Class:

Waste Class Desc: **OIL SKIMMINGS & SLUDGES**

12 5 of 13 S/229.2 261.8 / 12.00 **Toronto and Region Conservation DTNK** 10818 Heart Lake Rd

BRAMPTON ON L6Z 0B3

Facility Type:

Corrosion Protection:

CFOT Up to Apr 2013

DTNK

Order No: 20291500065

Letter Sent:

Fuel Type:

Instance Type:

Record Date:

Original Source:

Province:

Nbr:

Delisted Commercial Fuel Oil

Tanks

Licence No:

Registration No: 200204-1718

Posse File No: Posse Reg No: Instance No: Status Name:

Tank Type:

Tank Size: 2270 L Steel

Tank Material:

Tk Age (as of 05/1992):

10818 Heart Lake Rd Tank Address: Distributor: Chalmers Contact Name: c/o William Jewell 5 Shoreham Dr Contact Address:

Contact Address2: Contact Suite:

Contact City: Downsview Contact Prov: ON Contact Postal: M3N 1S4

Comments:

12

S/229.2 261.8 / 12.00 **Toronto and Region Conservation**

10818 Heart Lake Rd **BRAMPTON ON L6Z 0B3**

Delisted Commercial Fuel Oil

6 of 13

Tanks

Licence No:

Registration No: 200204-1721

Posse File No: Posse Reg No: Instance No: Status Name: Tank Type:

Tank Size: 2270 L

Tank Material: Steel Tk Age (as of 05/1992):

10818 Heart Lake Rd Tank Address:

Distributor: Chalmers c/o William Jewell Contact Name: Contact Address: 5 Shoreham Dr

Contact Address2: Contact Suite:

Downsview Contact City: Contact Prov: ON Contact Postal: M3N 1S4

Comments:

Facility Type: Letter Sent:

Corrosion Protection:

Fuel Type: Province: Nbr: Instance Type:

Original Source: CFOT

Record Date: Up to Apr 2013

Map Key	Numbe Record		Direction/ Distance (m)	Elev/Diff (m)	Site		DB
12	7 of 13		S/229.2	261.8 / 12.00	Rose Trucking - 2070 <unofficial> 9574 Gore Road; 108 Brampton; Brampton</unofficial>	18 Heart Lake Road	SPL
Ref No: Site No: Incident Dt: Year:		2543-71	_4NUC		Discharger Report: Material Group: Health/Env Conseq: Client Type:		
Incident Cal Incident Eve Contaminan Contaminan	ent: et Code:	15	Hose Leak		Sector Type: Agency Involved: Nearest Watercourse: Site Address:	Other Motor Vehicle	
Contaminan Contam Lim Contaminan	t Limit 1: nit Freq 1:	IIIDIKA	OLIC OIL		Site Address. Site District Office: Site Postal Code: Site Region:	Halton-Peel; Halton-Peel	
Environment Nature of Im Receiving M Receiving E	pact: ledium: nv:		ntamination		Site Municipality: Site Lot: Site Conc: Northing:	Brampton; Brampton	
MOE Respo Dt MOE Arv MOE Report Dt Documer	l on Scn: ted Dt: nt Closed:	11/6/20 11/5/20			Easting: Site Geo Ref Accu: Site Map Datum: SAC Action Class:	Land Spills	
Incident Rea Site Name: Site County, Site Geo Re Incident Sur Contaminan	/District: f Meth: mmary:	Spill	Tractor Trailer <un 50="" 50l="" l<="" rose="" td="" trucking:=""><td>·</td><td></td><td>Conservation Area<unofficial></unofficial></td><td></td></un>	·		Conservation Area <unofficial></unofficial>	
12	8 of 13		S/229.2	261.8 / 12.00	Toronto and Region (10818 Heart Lake Rd Brampton ON L6Z 0	Conservation Authority	CA
Certificate # Application Issue Date: Approval Ty Status: Application Client Name Client Addition Client City: Client Posta Project Des	Year: rpe: Type: o: ess:		5186-875GUH 2010 7/21/2010 Municipal and Prive Approved	ate Sewage Works	Brampion ON 202 02		
Contaminan Emission Co	ts:		S/229.2	261.8 / 12.00	10818 HEART LAKE	ION CONSERVATION RD BRAMPTON L6Z 4S2 ON	CFOT
					CA ON		
Licence No: Registration Posse File N	No:				Item Description: Instance Type: Facility Type:	Fuel Oil Tank FS Fuel Oil Tank FS Fuel Oil Tank	

Facility Type: Fuel Type: Distributor: Letter Sent: Posse Reg No: Status Name: Tank Type: Fuel Oil

Order No: 20291500065

Single Wall UST

Number of Direction/ Elev/Diff Site DΒ Map Key (m)

Records Distance (m)

Tank Size: 2270 Comments: Tank Material: **Corrosion Protect:** Steel

48142729 Instance No: Province: Inst Creation Date: 3/14/2007 Nbr: Inst Install Date: 3/14/2007 Context:

FS FUEL OIL TANK Item:

Tank Age (as of 05/1992):

10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA Device Installed Location:

Description: **NULL**

10 of 13

Contact Name: Contact Address: Contact Address2: Contact Suite: Contact City: Contact Prov: Contact Postal:

12

S/229.2 261.8 / 12.00 TORONTO AND REGION CONSERVATION

> 10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA ON

FS Fuel Oil Tank

CFOT

Order No: 20291500065

Licence No: Item Description: Fuel Oil Tank FS Fuel Oil Tank Registration No: Instance Type: Posse File No: Facility Type: FS Fuel Oil Tank Posse Reg No: Fuel Type: Fuel Oil

Status Name: Distributor:

Single Wall UST Tank Type: Letter Sent: Tank Size: 2270 Comments: Tank Material: Steel **Corrosion Protect:**

Instance No: 48142730 Province: Inst Creation Date: 3/14/2007 Nbr: Inst Install Date: 3/14/2007 Context:

FS Fuel Oil Tank

Item: **FS FUEL OIL TANK**

Tank Age (as of 05/1992):

Device Installed Location: 10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA

NULL Description:

Contact Name: Contact Address: Contact Address2: **Contact Suite:** Contact City: Contact Prov: Contact Postal:

> 11 of 13 S/229.2 261.8 / 12.00 **Toronto and Region Conservation Authority** 12 **ECA** 10818 Heart Lake Rd

Brampton ON M3N 1S4

Approval No: 5186-875GUH MOE District: Halton-Peel

2010-07-21 Approval Date: City:

Status: Approved Longitude: -79.79808 **ECA** 43.747654 Record Type: Latitude:

IDS Link Source: Geometry X: SWP Area Name: Toronto Geometry Y: ECA-MUNICIPAL AND PRIVATE SEWAGE WORKS

Approval Type: Project Type: MUNICIPAL AND PRIVATE SEWAGE WORKS

Address: 10818 Heart Lake Rd

Full Address: Full PDF Link: https://www.accessenvironment.ene.gov.on.ca/instruments/1330-83CSX2-14.pdf

Map Key	Numbe Record			Site		DB
12	12 of 13	S/229.2	261.8 / 12.00		ION CONSERVATION RD BRAMPTON L6Z 4S2 ON	FST
Instance No: Status: Cont Name: Instance Type: Item: Item Description: Tank Type: Install Date: Install Year: Years in Service: Model: Description: Capacity: Tank Material: Corrosion Protect: Overfill Protect:		48142730 Active Fuel Oil Tank Single Wall UST 3/14/2007 NULL 4.1 NULL NULL NULL 2270 Steel NULL		Manufacturer: NULL Serial No: NULL Ulc Standard: NULL Quantity: 1 Unit of Measure: EA Fuel Type: Fuel Type2: Fuel Type3: Piping Steel: Piping Galvanized: Tanks Single Wall St: Piping Underground: Num Underground: Panam Related: NULL Panam Venue: NULL		
Facility Typ Parent Facil Facility Loc Device Insta	lity Type: ation:		TANK LAKE RD BRAMPTOI	N L6Z 4S2 ON CA		
12	13 of 13	S/229.2	261.8 / 12.00		ION CONSERVATION RD BRAMPTON L6Z 4S2 ON	FST
Instance No Status: Cont Name: Instance Ty, Item: Item Descriptank Type: Install Date: Install Year: Years in Sel Model: Description Capacity:	: pe: ption: : : rvice:	48142729 Active Fuel Oil Tank Single Wall UST 3/14/2007 NULL 4.1 NULL NULL 2270 Stool		Manufacturer: Serial No: UIc Standard: Quantity: Unit of Measure: Fuel Type: Fuel Type2: Fuel Type3: Piping Steel: Piping Galvanized: Tanks Single Wall St: Piping Underground: Num Underground:	NULL NULL 1 EA	

NULL NULL

Order No: 20291500065

Panam Related:

Panam Venue:

Corrosion Protect: Overfill Protect:

Tank Material:

Facility Type: Parent Facility Type: FS FUEL OIL TANK

Steel

NULL

10818 HEART LAKE RD BRAMPTON L6Z 4S2 ON CA

Facility Location:
Device Installed Location:

Unplottable Summary

Total: 21 Unplottable sites

DB	Company Name/Site Name	Address	City	Postal
CA	The Corporation of the City of Brampton	Countryside Dr	Brampton ON	
CA	Thorn Bush Land Development Inc.	Part of the West Half of Lot 15, Concession 3	Brampton ON	
CA	BRAMPTON CITY	COUNTRYSIDE DR. COMPOST SITE	BRAMPTON CITY ON	
CA	REG. MUN. OF PEEL	HEART LAKE RD.	BRAMPTON CITY ON	
CA	R.M. OF PEEL	COUNTRYSIDE DR.	BRAMPTON CITY ON	
CA	BRAMPTON CITY	COUNTRYSIDE DR. COMPOST SITE	BRAMPTON CITY ON	
CA	MANAGEMENT BOARD SECRETARIAT	HEART LAKE RD. SEW. LIFT STA.	BRAMPTON CITY ON	
CA	846456 ONTARIO LTD.	HEART LAKE RD./STREETS A-E	BRAMPTON CITY ON	
CA	The Corporation of the City of Brampton	Countryside Dr	Brampton ON	
CA	Crupi Enterprises Inc.	Heart Lake Road	Brampton ON	
CA	The Corporation of the City of Brampton	Heart Lake Road	Brampton ON	
CA	Mattamy (Fletcher's North) Limited	Part of Lot 15, Concession 3	Brampton ON	
CA	Heart Lake Road Developers Group Inc.	Heart Lake Road	Brampton ON	
CA	R.M. OF PEEL	COUNTRYSIDE DR.	BRAMPTON CITY ON	
CA	846456 ONTARIO LTD.	HEART LAKE RD/A. DONNELLY SUB.	BRAMPTON CITY ON	
ECA	Thorn Bush Land Development Inc.	Part of the West Half of Lot 15, Concession 3	Brampton ON	M1W 3Z4
GEN	FRANCESCHINI BROS. AGGREGATES LTD.	HEART LAKE ROAD NORTH - BRAMPTON C/O 2531 CAWTHRA ROAD	MISSISSAUGA ON	L5A 2W7
PES	LAKESIDE GARDEN CENTRE (C#02/2002)	RR 4, HEART LAKE RD	BRAMPTON ON	L6T 3S1

Order No: 20291500065

PES	LAKESIDE GARDEN CENTRE (C#91761)	R.R. #4, HEART LAKE ROAD	BRAMPTON ON
SPL	Enbridge Gas Distribution Inc.	SW corner of Heart Lake & Copperfield Dr	Brampton ON
SPL		Countryside Drive	Brampton ON

Order No: 20291500065

Unplottable Report

Site: The Corporation of the City of Brampton

Countryside Dr Brampton ON

Database:

 Certificate #:
 2207-8BXJBE

 Application Year:
 2010

 Issue Date:
 12/18/2010

Approval Type: Municipal and Private Sewage Works

Approved

Status:

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:

Emission Control:

Site: Thorn Bush Land Development Inc.

Part of the West Half of Lot 15, Concession 3 Brampton ON

Database:

 Certificate #:
 0735-65JPWX

 Application Year:
 2004

 Issue Date:
 10/8/2004

Approval Type: Municipal and Private Sewage Works

Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description.

Project Description: Contaminants: Emission Control:

Site: BRAMPTON CITY

COUNTRYSIDE DR. COMPOST SITE BRAMPTON CITY ON

Database:

 Certificate #:
 3-0466-94-000

 Application Year:
 94

 Issue Date:
 8/30/94

Approval Type: Municipal sewage
Status: Application Cancelled

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:

Site: REG. MUN. OF PEEL

HEART LAKE RD. BRAMPTON CITY ON

Database:

Order No: 20291500065

Certificate #: 7-0461-85-006

Application Year: 85

erisinfo.com | Environmental Risk Information Services

Issue Date: 7/4/85

Approval Type: Municipal water Status: Approved

Application Type:
Client Name:
Client Address:
Client City:
Client Postal Code:
Project Description:
Contaminants:
Emission Control:

Site: R.M. OF PEEL

COUNTRYSIDE DR. BRAMPTON CITY ON

Database: CA

Certificate #: 7-1802-87Application Year: 87
Issue Date: 12/3/1987
Approval Type: Municipal water
Status: Approved
Application Type:

Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:

Site: BRAMPTON CITY

COUNTRYSIDE DR. COMPOST SITE BRAMPTON CITY ON

Database:

Certificate #:3-0466-94-Application Year:94Issue Date:5/31/1994Approval Type:Municipal sewageStatus:Cancelled

Application Type:
Client Name:
Client Address:
Client City:
Client Postal Code:
Project Description:
Contaminants:
Emission Control:

Site: MANAGEMENT BOARD SECRETARIAT

HEART LAKE RD. SEW. LIFT STA. BRAMPTON CITY ON

Database: CA

Order No: 20291500065

Certificate #:3-0055-94-Application Year:94Issue Date:2/24/1994Approval Type:Municipal sewageStatus:Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control: Site: 846456 ONTARIO LTD.

HEART LAKE RD./STREETS A-E BRAMPTON CITY ON

Database:

Certificate #: 7-0777-93Application Year: 93
Issue Date: 9/7/1993
Approval Type: Municipal water
Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:

Emission Control:

<u>Site:</u> The Corporation of the City of Brampton Countryside Dr Brampton ON

Database:

 Certificate #:
 2679-83CJH6

 Application Year:
 2010

 Issue Date:
 3/29/2010

Approval Type: Municipal and Private Sewage Works

Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description:

Contaminants: Emission Control:

Site: Crupi Enterprises Inc.

Heart Lake Road Brampton ON

Database: CA

 Certificate #:
 3815-5TLRDK

 Application Year:
 2003

 Issue Date:
 11/26/2003

Approval Type: Municipal and Private Sewage Works

Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:

<u>Site:</u> The Corporation of the City of Brampton Heart Lake Road Brampton ON Database:

Order No: 20291500065

 Certificate #:
 6306-6W2RCJ

 Application Year:
 2006

 Issue Date:
 12/8/2006

Approval Type: Municipal and Private Sewage Works

Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: **Emission Control:**

Site: Mattamy (Fletcher's North) Limited

Part of Lot 15, Concession 3 Brampton ON

9079-5R8HKW Certificate #: Application Year: 2003 Issue Date: 11/6/2003

Approval Type: Municipal and Private Sewage Works

Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code:

Project Description: Contaminants: **Emission Control:**

Heart Lake Road Developers Group Inc. Site: Heart Lake Road Brampton ON

9921-6X9QAG

Certificate #: 2007 Application Year: Issue Date: 1/11/2007

Municipal and Private Sewage Works Approval Type:

Status: Approved

Application Type: Client Name: Client Address: Client City:

Client Postal Code: Project Description: Contaminants: **Emission Control:**

R.M. OF PEEL Site:

COUNTRYSIDE DR. BRAMPTON CITY ON

Certificate #: 7-0294-88-Application Year: 88 Issue Date: 3/29/1988 Municipal water Approval Type: Status: Approved

Application Type: Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:

Emission Control:

846456 ONTARIO LTD. Site:

HEART LAKE RD/A. DONNELLY SUB. BRAMPTON CITY ON

Certificate #: 3-0979-93-93 Application Year: Issue Date: 9/7/1993 Municipal sewage Approval Type: Status: Approved

Application Type:

Database:

Database: CA

Database: CA

Database: CA

Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:

Emission Control:

Site: Thorn Bush Land Development Inc.

Part of the West Half of Lot 15, Concession 3 Brampton ON M1W 3Z4

Database: ECA

0735-65JPWX Approval No: 2004-10-08 Approval Date: City: Approved Status: Longitude: ECA Record Type: Latitude: Link Source: **IDS** Geometry X: SWP Area Name: Geometry Y:

Approval Type: ECA-MUNICIPAL AND PRIVATE SEWAGE WORKS
Project Type: MUNICIPAL AND PRIVATE SEWAGE WORKS
Address: Part of the West Half of Lot 15, Concession 3

Full Address:

Full PDF Link: https://www.accessenvironment.ene.gov.on.ca/instruments/4195-65JHZ9-14.pdf

<u>Site:</u> FRANCESCHINI BROS. AGGREGATES LTD.

HEART LAKE ROAD NORTH - BRAMPTON C/O 2531 CAWTHRA ROAD MISSISSAUGA ON L5A 2W7

Database: GEN

 Generator No:
 ON0570602
 PO Box No:

 Status:
 Country:

Approval Years:86,87,88,89,90Choice of Contact:Contam. Facility:Co Admin:MHSW Facility:Phone No Admin:

SIC Code: 0821

SIC Description: SAND & GRAVEL PITS

Detail(s)

Waste Class: 252

Waste Class Desc: WASTE OILS & LUBRICANTS

Site: LAKESIDE GARDEN CENTRE (C#02/2002)
RR 4, HEART LAKE RD BRAMPTON ON L6T 3S1

/ AVEOURE O ARREN OF MEDE (OURS)

Database:

Detail Licence No: 23-01-01986-0 Operator Box: 01986 Operator Class: Licence No: Status: Operator No: Approval Date: Operator Type: Report Source: Oper Area Code: Licence Type: Limited Vendor Oper Phone No: Licence Type Code: 23 Operator Ext: Licence Class: 01 Operator Lot: Licence Control: 0 Oper Concession:

Latitude: Operator Region: 3
Longitude: Operator District:
Lot: Operator County: 49

Concession: Op Municipality:
Region: 3 Post Office Box:
District: MOE District:
County: 49 SWP Area Name:

Trade Name: PDF Link:

Site: LAKESIDE GARDEN CENTRE (C#91761)

R.R. #4, HEART LAKE ROAD BRAMPTON ON

Database:

Detail Licence No: Licence No: Status: Approval Date: Report Source:

Licence Type: Vendor

Licence Type Code: Licence Class: Licence Control: Latitude: Longitude: Lot: Concession: Region:

Oper Phone No: Operator Ext: Operator Lot: Oper Concession: Operator Region: Operator District: **Operator County:** Op Municipality: Post Office Box: **MOE District:**

SWP Area Name:

Operator Box:

Operator No:

Operator Type:

Oper Area Code:

Operator Class:

Trade Name: PDF Link:

District:

County:

Site: Enbridge Gas Distribution Inc.

SW corner of Heart Lake & Copperfield Dr Brampton ON

Database: SPL

Database:

Order No: 20291500065

Ref No: Site No: 5421-95TQ5M

Incident Dt:

15-MAR-13

Year:

Incident Cause: Leak/Break

Incident Event:

Contaminant Code:

NATURAL GAS (METHANE) Contaminant Name:

Contaminant Limit 1:

Contam Limit Freq 1:

Contaminant UN No 1:

Confirmed Environment Impact: Nature of Impact: Air Pollution

Receiving Medium:

Receiving Env: MOE Response:

Dt MOE Arvl on Scn:

MOE Reported Dt: 15-MAR-13 23-MAR-13 Dt Document Closed:

Incident Reason: Site Name:

Site County/District:

Site Geo Ref Meth:

Incident Summary: Contaminant Qty:

Referral to others

Operator/Human Error

Main Damage<UNOFFICIAL>

TSSA FSB: 4" main damaged yesterday 0 other - see incident description

Discharger Report: Material Group: Health/Env Conseq:

Client Type:

Sector Type:

Agency Involved:

Nearest Watercourse:

Site Address:

Site District Office:

Site Postal Code:

Site Region:

Site Municipality: Site Lot:

Site Conc: Northing:

Easting: Site Geo Ref Accu: Site Map Datum:

SAC Action Class:

Source Type:

0655-78L9DN

Countryside Drive Brampton ON

Ref No: Site No:

Incident Dt: Year:

Site:

Incident Cause: Other Transport Accident

Incident Event:

Contaminant Code: **DIESEL FUEL**

Contaminant Name: Contaminant Limit 1: Contam Limit Freq 1: Contaminant UN No 1:

Environment Impact: Not Anticipated

Soil Contamination; Surface Water Pollution; Nature of Impact:

Vegetation Damage Land & Water Receiving Medium:

Discharger Report: Material Group:

Health/Env Conseq:

Client Type: Sector Type:

Site Address:

Other Motor Vehicle

Brampton

Valve/Fitting/Piping

Brampton

Release/Spill

SW corner of Heart Lake & Copperfield Dr

TSSA - Fuel Safety Branch - Hydrocarbon Fuel

Agency Involved: Nearest Watercourse:

Oil

Site Region: Site Municipality:

Site Lot:

Site District Office:

Site Postal Code:

Site Conc:

erisinfo.com | Environmental Risk Information Services

56

Receiving Env:
MOE Response:
No Field Response
Dt MOE Arvl on Scn:

Dt MOE Arvl on Scn:
MOE Reported Dt:
11/3/2007
Dt Document Closed:
Incident Reason:
Spill

Site Name: MVA<UNOFFICIAL>

Site County/District: Site Geo Ref Meth:

Incident Summary: truck rollover, fuel and oil to ground and ditch, contained

Northing:

Easting:

Site Geo Ref Accu:

SAC Action Class:

Order No: 20291500065

Site Map Datum:

Source Type:

Contaminant Qty: 13.63 |

Appendix: Database Descriptions

Environmental Risk Information Services (ERIS) can search the following databases. The extent of historical information varies with each database and current information is determined by what is publicly available to ERIS at the time of update. **Note:** Databases denoted with " * " indicates that the database will no longer be updated. See the individual database description for more information.

Abandoned Aggregate Inventory:

Provincial

AGR

The MAAP Program maintains a database of abandoned pits and quarries. Please note that the database is only referenced by lot and concession and city/town location. The database provides information regarding the location, type, size, land use, status and general comments.*

Government Publication Date: Sept 2002*

Aggregate Inventory:

Provincial AGR

The Ontario Ministry of Natural Resources maintains a database of all active pits and quarries. The database provides information regarding the registered owner/operator, location name, operation type, approval type, and maximum annual tonnage.

Government Publication Date: Up to Sep 2019

Abandoned Mine Information System:

Provincial

AMIS

The Abandoned Mines Information System contains data on known abandoned and inactive mines located on both Crown and privately held lands. The information was provided by the Ministry of Northern Development and Mines (MNDM), with the following disclaimer: "the database provided has been compiled from various sources, and the Ministry of Northern Development and Mines makes no representation and takes no responsibility that such information is accurate, current or complete". Reported information includes official mine name, status, background information, mine start/end date, primary commodity, mine features, hazards and remediation.

Government Publication Date: 1800-Oct 2018

Anderson's Waste Disposal Sites:

Private

ANDR

The information provided in this database was collected by examining various historical documents which aimed to characterize the likely position of former waste disposal sites from 1860 to present. The research initiative behind the creation of this database was to identify those sites that are missing from the Ontario MOE Waste Disposal Site Inventory, as well as to provide revisions and corrections to the positions and descriptions of sites currently listed in the MOE inventory. In addition to historic waste disposal facilities, the database also identifies certain auto wreckers and scrap yards that have been extrapolated from documentary sources. Please note that the data is not warranted to be complete, exhaustive or authoritative. The information was collected for research purposes only.

Government Publication Date: 1860s-Present

Aboveground Storage Tanks:

Provincial

AST

Historical listing of aboveground storage tanks made available by the Department of Natural Resources and Forestry. Includes tanks used to hold water or petroleum. This dataset has been retired as of September 25, 2014 and will no longer be updated.

Government Publication Date: May 31, 2014

Automobile Wrecking & Supplies:

Private

AUWR

Order No: 20291500065

This database provides an inventory of known locations that are involved in the scrap metal, automobile wrecking/recycling, and automobile parts & supplies industry. Information is provided on the company name, location and business type.

Government Publication Date: 1999-Jan 31, 2020

Borehole: Provincial BORE

A borehole is the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally. The information here includes geotechnical investigations or environmental site assessments, mineral exploration, or as a pilot hole for installing piers or underground utilities. Information is from many sources such as the Ministry of Transportation (MTO) boreholes from engineering reports and projects from the 1950 to 1990's in Southern Ontario. Boreholes from the Ontario Geological Survey (OGS) including The Urban Geology Analysis Information System (UGAIS) and the York Peel Durham Toronto (YPDT) database of the Conservation Authority Moraine Coalition. This database will include fields such as location, stratigraphy, depth, elevation, year drilled, etc. For all water well data or oil and gas well data for Ontario please refer to WWIS and OOGW.

Government Publication Date: 1875-Jul 2018

Certificates of Approval:

Provincial CA

This database contains the following types of approvals: Air & Noise, Industrial Sewage, Municipal & Private Sewage, Waste Management Systems and Renewable Energy Approvals. The MOE in Ontario states that any facility that releases emissions to the atmosphere, discharges contaminants to ground or surface water, provides potable water supplies, or stores, transports or disposes of waste, must have a Certificate of Approval before it can operate lawfully. Fields include approval number, business name, address, approval date, approval type and status. This database will no longer be updated, as CofA's have been replaced by either Environmental Activity and Sector Registry (EASR) or Environmental Compliance Approval (ECA). Please refer to those individual databases for any information after Oct.31, 2011.

Government Publication Date: 1985-Oct 30, 2011*

Dry Cleaning Facilities: Federal CDRY

List of dry cleaning facilities made available by Environment and Climate Change Canada. Environment and Climate Change Canada's Tetrachloroethylene (Use in Dry Cleaning and Reporting Requirements) Regulations (SOR/2003-79) are intended to reduce releases of tetrachloroethylene to the environment from dry cleaning facilities.

Environment and Climate Change Canada cites the coronavirus pandemic as an explanation for delays in releasing data pursuant to requests.

Government Publication Date: Jan 2004-Dec 2017

Commercial Fuel Oil Tanks:

Provincial CFOT

Locations of commercial underground fuel oil tanks. This is not a comprehensive or complete inventory of commercial fuel tanks in the province; this listing is a copy of records of registered commercial underground fuel oil tanks obtained under Access to Public Information.

Note that the following types of tanks do not require registration: waste oil tanks in apartments, office buildings, residences, etc.; aboveground gas or

Government Publication Date: Jul 31, 2020

<u>Chemical Register:</u> Private CHEM

This database includes information from both a one time study conducted in 1992 and private source and is a listing of facilities that manufacture or distribute chemicals. The production of these chemical substances may involve one or more chemical reactions and/or chemical separation processes (i.e. fractionation, solvent extraction, crystallization, etc.).

Government Publication Date: 1999-Jan 31, 2020

Compressed Natural Gas Stations:

Private CNG

Canada has a network of public access compressed natural gas (CNG) refuelling stations. These stations dispense natural gas in compressed form at 3,000 pounds per square inch (psi), the pressure which is allowed within the current Canadian codes and standards. The majority of natural gas refuelling is located at existing retail gasoline that have a separate refuelling island for natural gas. This list of stations is made available by the Canadian Natural Gas Vehicle Alliance.

Government Publication Date: Dec 2012 - Jun 2020

Inventory of Coal Gasification Plants and Coal Tar Sites:

diesel tanks. Records are not verified for accuracy or completeness.

Provincial COAL

Order No: 20291500065

This inventory includes both the "Inventory of Coal Gasification Plant Waste Sites in Ontario-April 1987" and the Inventory of Industrial Sites Producing or Using Coal Tar and Related Tars in Ontario-November 1988) collected by the MOE. It identifies industrial sites that produced and continue to produce or use coal tar and other related tars. Detailed information is available and includes: facility type, size, land use, information on adjoining properties, soil condition, site operators/occupants, site description, potential environmental impacts and historic maps available. This was a one-time inventory.*

Government Publication Date: Apr 1987 and Nov 1988*

Compliance and Convictions:

Provincial CONV

This database summarizes the fines and convictions handed down by the Ontario courts beginning in 1989. Companies and individuals named here have been found guilty of environmental offenses in Ontario courts of law.

Government Publication Date: 1989-Dec 2019

Certificates of Property Use: Provincial CPU

This is a subset taken from Ontario's Environmental Registry (EBR) database. It will include all CPU's on the registry such as (EPA s. 168.6) - Certificate of Property Use.

Government Publication Date: 1994-Jul 31, 2020

Delisted Fuel Tanks:

Provincial DELISTED TANK

List of fuel storage tank sites that were once found in - and have since been removed from - the list of fuel storage tanks made available by the regulatory agency under Access to Public Information.

Government Publication Date: Jul 31, 2020

<u>Drill Hole Database:</u> Provincial DRL

The Ontario Drill Hole Database contains information on more than 113,000 percussion, overburden, sonic and diamond drill holes from assessment files on record with the department of Mines and Minerals. Please note that limited data is available for southern Ontario, as it was the last area to be completed. The database was created when surveys submitted to the Ministry were converted in the Assessment File Research Image Database (AFRI) project. However, the degree of accuracy (coordinates) as to the exact location of drill holes is dependent upon the source document submitted to the MNDM. Levels of accuracy used to locate holes are: centering on the mining claim; a sketch of the mining claim; a 1:50,000 map; a detailed company map; or from submitted a "Report of Work".

Government Publication Date: 1886 - Sep 2019

Environmental Activity and Sector Registry:

Provincial

EASR

On October 31, 2011, a smarter, faster environmental approvals system came into effect in Ontario. The EASR allows businesses to register certain activities with the ministry, rather than apply for an approval. The registry is available for common systems and processes, to which preset rules of operation can be applied. The EASR is currently available for: heating systems, standby power systems and automotive refinishing. Businesses whose activities aren't subject to the EASR may apply for an ECA (Environmental Compliance Approval), Please see our ECA database.

Government Publication Date: Oct 2011-Aug 31, 2020

Environmental Registry:

Provincial EBR

The Environmental Registry lists proposals, decisions and exceptions regarding policies, Acts, instruments, or regulations that could significantly affect the environment. Through the Registry, thirteen provincial ministries notify the public of upcoming proposals and invite their comments. For example, if a local business is requesting a permit, license, or certificate of approval to release substances into the air or water; these are notified on the registry. Data includes: Approval for discharge into the natural environment other than water (i.e. Air) - EPA s. 9, Approval for sewage works - OWRA s. 53(1), and EPA s. 27 - Approval for a waste disposal site. For information regarding Permit to Take Water (PTTW), Certificate of Property Use (CPU) and (ORD) Orders please refer to those individual databases.

Government Publication Date: 1994-Jul 31, 2020

Environmental Compliance Approval:

Provincial

ECA

On October 31, 2011, a smarter, faster environmental approvals system came into effect in Ontario. In the past, a business had to apply for multiple approvals (known as certificates of approval) for individual processes and pieces of equipment. Today, a business either registers itself, or applies for a single approval, depending on the types of activities it conducts. Businesses whose activities aren't subject to the EASR may apply for an ECA. A single ECA addresses all of a business's emissions, discharges and wastes. Separate approvals for air, noise and waste are no longer required. This database will also include Renewable Energy Approvals. For certificates of approval prior to Nov 1st, 2011, please refer to the CA database. For all Waste Disposal Sites please refer to the WDS database.

Government Publication Date: Oct 2011-Aug 31, 2020

Environmental Effects Monitoring:

Federal

EEM

The Environmental Effects Monitoring program assesses the effects of effluent from industrial or other sources on fish, fish habitat and human usage of fisheries resources. Since 1992, pulp and paper mills have been required to conduct EEM studies under the Pulp and Paper Effluent Regulations. This database provides information on the mill name, geographical location and sub-lethal toxicity data.

Government Publication Date: 1992-2007*

ERIS Historical Searches:

Private EHS

ERIS has compiled a database of all environmental risk reports completed since March 1999. Available fields for this database include: site location, date of report, type of report, and search radius. As per all other databases, the ERIS database can be referenced on both the map and "Statistical Profile" page.

Government Publication Date: 1999-Jul 31, 2020

Environmental Issues Inventory System:

Federal

EIIS

The Environmental Issues Inventory System was developed through the implementation of the Environmental Issues and Remediation Plan. This plan was established to determine the location and severity of contaminated sites on inhabited First Nation reserves, and where necessary, to remediate those that posed a risk to health and safety; and to prevent future environmental problems. The EIIS provides information on the reserve under investigation, inventory number, name of site, environmental issue, site action (Remediation, Site Assessment), and date investigation completed.

Government Publication Date: 1992-2001*

Emergency Management Historical Event:

Provincial

EMHE

Order No: 20291500065

List of locations of historical occurrences of emergency events, including those assigned to the Ministry of Natural Resources by Order-In-Council (OIC) under the Emergency Management and Civil Protection Act, as well as events where MNR provided requested emergency response assistance. Many of these events will have involved community evacuations, significant structural loss, and/or involvement of MNR emergency response staff. These events fall into one of ten (10) type categories: Dam Failure; Drought / Low Water; Erosion; Flood; Forest Fire; Soil and Bedrock Instability; Petroleum Resource Center Event, EMO Requested Assistance, Continuity of Operations Event, Other Requested Assistance. EMHE record details are reproduced by ERIS under License with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2017.

Government Publication Date: Dec 31, 2016

Environmental Penalty Annual Report:

Provincial

EPAR

This database contains data from Ontario's annual environmental penalty report published by the Ministry of the Environment and Climate Change. These reports provide information on environmental penalties for land or water violations issued to companies in one of the nine industrial sectors covered by the Municipal Industrial Strategy for Abatement (MISA) regulations.

Government Publication Date: Jan 1, 2011 - Dec 31, 2019

List of Expired Fuels Safety Facilities:

Provincial

FXP

List of facilities and tanks for which there was once a fuel registration. This is not a comprehensive or complete inventory of expired tanks/tank facilities in the province; this listing is a copy of previously registered tanks and facilities obtained under Access to Public Information. Includes private fuel outlets, bulk plants, fuel oil tanks, gasoline stations, marinas, propane filling stations, liquid fuel tanks, piping systems, etc; includes tanks which have been removed from the ground

Notes: registration was not required for private fuel underground/aboveground storage tanks prior to January 1990, nor for furnace oil tanks prior to May 1, 2002; registration is not required for waste oil tanks in apartments, office buildings, residences, etc., or aboveground gas or diesel tanks. Records are not verified for accuracy or completeness.

Government Publication Date: Jul 31, 2020

Federal Convictions: Federal FCON

Environment Canada maintains a database referred to as the "Environmental Registry" that details prosecutions under the Canadian Environmental Protection Act (CEPA) and the Fisheries Act (FA). Information is provided on the company name, location, charge date, offence and penalty.

Government Publication Date: 1988-Jun 2007*

Contaminated Sites on Federal Land:

Federal

FCS

The Federal Contaminated Sites Inventory includes information on known federal contaminated sites under the custodianship of departments, agencies and consolidated Crown corporations as well as those that are being or have been investigated to determine whether they have contamination arising from past use that could pose a risk to human health or the environment. The inventory also includes non-federal contaminated sites for which the Government of Canada has accepted some or all financial responsibility. It does not include sites where contamination has been caused by, and which are under the control of, enterprise Crown corporations, private individuals, firms or other levels of government. Includes fire training sites and sites at which Per- and Polyfluoroalkyl Substances (PFAS) are a concern.

Government Publication Date: Jun 2000-Apr 2020

Fisheries & Oceans Fuel Tanks:

Federal

FOFT

Fisheries & Oceans Canada maintains an inventory of aboveground & underground fuel storage tanks located on Fisheries & Oceans property or controlled by DFO. Our inventory provides information on the site name, location, tank owner, tank operator, facility type, storage tank location, tank contents & capacity, and date of tank installation.

Government Publication Date: 1964-Sep 2019

Federal Identification Registry for Storage Tank Systems (FIRSTS):

Federal

FRST

A list of federally regulated Storage tanks from the Federal Identification Registry for Storage Tank Systems (FIRSTS). FIRSTS is Environment and Climate Change Canada's database of storage tank systems subject to the Storage Tank for Petroleum Products and Allied Petroleum Products Regulations. The main objective of the Regulations is to prevent soil and groundwater contamination from storage tank systems located on federal and aboriginal lands. Storage tank systems that do not have a valid identification number displayed in a readily visible location on or near the storage tank system may be refused product delivery.

Government Publication Date: May 31, 2018

Fuel Storage Tank:

Provincial FST

List of registered private and retail fuel storage tanks. This is not a comprehensive or complete inventory of private and retail fuel storage tanks in the province; this listing is a copy of registered private and retail fuel storage tanks, obtained under Access to Public Information.

Notes: registration was not required for private fuel underground/aboveground storage tanks prior to January 1990, nor for furnace oil tanks prior to May 1, 2002; registration is not required for waste oil tanks in apartments, office buildings, residences, etc., or aboveground gas or diesel tanks. Records are not verified for accuracy or completeness.

Government Publication Date: Jul 31, 2020

Fuel Storage Tank - Historic:

Provincial

FSTH

Order No: 20291500065

The Fuels Safety Branch of the Ontario Ministry of Consumer and Commercial Relations maintained a database of all registered private fuel storage tanks. Public records of private fuel storage tanks are only available since the registration became effective in September 1989. This information is now collected by the Technical Standards and Safety Authority.

Government Publication Date: Pre-Jan 2010*

Ontario Regulation 347 Waste Generators Summary:

Provincial

Regulation 347 of the Ontario EPA defines a waste generation site as any site, equipment and/or operation involved in the production, collection, handling and/or storage of regulated wastes. A generator of regulated waste is required to register the waste generation site and each waste produced, collected, handled, or stored at the site. This database contains the registration number, company name and address of registered generators including the types of hazardous wastes generated. It includes data on waste generating facilities such as: drycleaners, waste treatment and disposal facilities, machine shops, electric power distribution etc. This information is a summary of all years from 1986 including the most currently available data. Some records may contain, within the company name, the phrase "See & Use..." followed by a series of letters and numbers. This occurs when one company is amalgamated with or taken over by another registered company. The number listed as "See & Use", refers to the new ownership and the other identification number refers to the original ownership. This phrase serves as a link between the 2 companies until operations have been fully transferred.

Government Publication Date: 1986-Jul 31, 2020

Greenhouse Gas Emissions from Large Facilities:

Federal

GHG

List of greenhouse gas emissions from large facilities made available by Environment Canada. Greenhouse gas emissions in kilotonnes of carbon dioxide equivalents (kt CO2 eq).

Government Publication Date: 2013-Dec 2017

TSSA Historic Incidents: Provincial HINC

List of historic incidences of spills and leaks of diesel, fuel oil, gasoline, natural gas, propane, and hydrogen recorded by the TSSA in their previous incident tracking system. The TSSA's Fuels Safety Program administers the Technical Standards & Safety Act 2000, providing fuel-related safety services associated with the safe transportation, storage, handling and use of fuels such as gasoline, diesel, propane, natural gas and hydrogen. Under this Act, the TSSA regulates fuel suppliers, storage facilities, transport trucks, pipelines, contractors and equipment or appliances that use fuels. Records are not verified for accuracy or completeness. This is not a comprehensive or complete inventory of historical fuel spills and leaks in the province. This listing is a copy of the data captured at one moment in time and is hence limited by the record date provided here.

Government Publication Date: 2006-June 2009*

Indian & Northern Affairs Fuel Tanks:

Federal

IAFT

The Department of Indian & Northern Affairs Canada (INAC) maintains an inventory of aboveground & underground fuel storage tanks located on both federal and crown land. Our inventory provides information on the reserve name, location, facility type, site/facility name, tank type, material & ID number, tank contents & capacity, and date of tank installation.

Government Publication Date: 1950-Aug 2003*

Fuel Oil Spills and Leaks: Provincial INC

Listing of spills and leaks of diesel, fuel oil, gasoline, natural gas, propane, and hydrogen reported to the Spills Action Centre (SAC). This is not a comprehensive or complete inventory of fuel-related leaks, spills, and incidents in the province; this listing in a copy of incidents reported to the SAC, obtained under Access to Public Information. Includes incidents from fuel-related hazards such as spills, fires, and explosions. Records are not verified for accuracy or completeness.

Government Publication Date: Jul 31, 2020

Landfill Inventory Management Ontario:

Provincial

LIMO

Order No: 20291500065

The Landfill Inventory Management Ontario (LIMO) database is updated every year, as the Ministry of the Environment, Conservation and Parks compiles new and updated information. Includes small and large landfills currently operating as well as those which are closed and historic. Operators of larger landfills provide landfill information for the previous operating year to the ministry for LIMO including: estimated amount of total waste received, landfill capacity, estimated total remaining landfill capacity, fill rates, engineering designs, reporting and monitoring details, size of location, service area, approved waste types, leachate of site treatment, contaminant attenuation zone and more. The small landfills include information such as site owner, site location and certificate of approval # and status.

Government Publication Date: Feb 28, 2019

Canadian Mine Locations: Private MINE

This information is collected from the Canadian & American Mines Handbook. The Mines database is a national database that provides over 290 listings on mines (listed as public companies) dealing primarily with precious metals and hard rocks. Listed are mines that are currently in operation, closed, suspended, or are still being developed (advanced projects). Their locations are provided as geographic coordinates (x, y and/or longitude, latitude). As of 2002, data pertaining to Canadian smelters and refineries has been appended to this database.

Government Publication Date: 1998-2009*

Mineral Occurrences: Provincial MNR

In the early 70's, the Ministry of Northern Development and Mines created an inventory of approximately 19,000 mineral occurrences in Ontario, in regard to metallic and industrial minerals, as well as some information on building stones and aggregate deposits. Please note that the "Horizontal Positional Accuracy" is approximately +/- 200 m. Many reference elements for each record were derived from field sketches using pace or chain/tape measurements against claim posts or topographic features in the area. The primary limiting factor for the level of positional accuracy is the scale of the source material. The testing of horizontal accuracy of the source materials was accomplished by comparing the plan metric (X and Y) coordinates of that point with the coordinates of the same point as defined from a source of higher accuracy.

Government Publication Date: 1846-Jan 2020

National Analysis of Trends in Emergencies System (NATES):

Federal

NATE

In 1974 Environment Canada established the National Analysis of Trends in Emergencies System (NATES) database, for the voluntary reporting of significant spill incidents. The data was to be used to assist in directing the work of the emergencies program. NATES ran from 1974 to 1994. Extensive information is available within this database including company names, place where the spill occurred, date of spill, cause, reason and source of spill, damage incurred, and amount, concentration, and volume of materials released.

Government Publication Date: 1974-1994*

Non-Compliance Reports:

Provincial NCPL

The Ministry of the Environment provides information about non-compliant discharges of contaminants to air and water that exceed legal allowable limits, from regulated industrial and municipal facilities. A reported non-compliance failure may be in regard to a Control Order, Certificate of Approval, Sectoral Regulation or specific regulation/act.

Government Publication Date: Dec 31, 2018

National Defense & Canadian Forces Fuel Tanks:

Federal NDFT

The Department of National Defense and the Canadian Forces maintains an inventory of all aboveground & underground fuel storage tanks located on DND lands. Our inventory provides information on the base name, location, tank type & capacity, tank contents, tank class, date of tank installation, date tank last used, and status of tank as of May 2001. This database will no longer be updated due to the new National Security protocols which have prohibited any release of this database.

Government Publication Date: Up to May 2001*

National Defense & Canadian Forces Spills:

Federal

NDSP

The Department of National Defense and the Canadian Forces maintains an inventory of spills to land and water. All spill sites have been classified under the "Transportation of Dangerous Goods Act - 1992". Our inventory provides information on the facility name, location, spill ID #, spill date, type of spill, as well as the quantity of substance spilled & recovered.

Government Publication Date: Mar 1999-Apr 2018

National Defence & Canadian Forces Waste Disposal Sites:

Federal

NDWD

The Department of National Defence and the Canadian Forces maintains an inventory of waste disposal sites located on DND lands. Where available, our inventory provides information on the base name, location, type of waste received, area of site, depth of site, year site opened/closed and status.

Government Publication Date: 2001-Apr 2007*

National Energy Board Pipeline Incidents:

Federal

NEBI

Locations of pipeline incidents from 2008 to present, made available by the Canada Energy Regulator (CER) - previously the National Energy Board (NEB). Includes incidents reported under the Onshore Pipeline Regulations and the Processing Plant Regulations related to pipelines under federal jurisdiction, does not include incident data related to pipelines under provincial or territorial jurisdiction.

Government Publication Date: 2008-Mar 31, 2020

National Energy Board Wells:

Federal

NEBP

The NEBW database contains information on onshore & offshore oil and gas wells that are outside provincial jurisdiction(s) and are thereby regulated by the National Energy Board. Data is provided regarding the operator, well name, well ID No./UWI, status, classification, well depth, spud and release date.

Government Publication Date: 1920-Feb 2003*

National Environmental Emergencies System (NEES):

Federal

NEES

Order No: 20291500065

In 2000, the Emergencies program implemented NEES, a reporting system for spills of hazardous substances. For the most part, this system only captured data from the Atlantic Provinces, some from Quebec and Ontario and a portion from British Columbia. Data for Alberta, Saskatchewan, Manitoba and the Territories was not captured. However, NEES is also a repository for previous Environment Canada spill datasets. NEES is composed of the historic datasets ' or Trends ' which dates from approximately 1974 to present. NEES Trends is a compilation of historic databases, which were merged and includes data from NATES (National Analysis of Trends in Emergencies System), ARTS (Atlantic Regional Trends System), and NEES. In 2001, the Emergencies Program determined that variations in reporting regimes and requirements between federal and provincial agencies made national spill reporting and trend analysis difficult to achieve. As a consequence, the department has focused efforts on capturing data on spills of substances which fall under its legislative authority only (CEPA and FA). As such, the NEES database will be decommissioned in December 2004.

Government Publication Date: 1974-2003*

National PCB Inventory:

Federal NPCB

Environment Canada's National PCB inventory includes information on in-use PCB containing equipment in Canada including federal, provincial and private facilities. Federal out-of-service PCB containing equipment and PCB waste owned by the federal government or by federally regulated industries such as airlines, railway companies, broadcasting companies, telephone and telecommunications companies, pipeline companies, etc. are also listed. Although it is not Environment Canada's mandate to collect data on non-federal PCB waste, the National PCB inventory includes some information on provincial and private PCB waste and storage sites. Some addresses provided may be Head Office addresses and are not necessarily the location of where the waste is being used or stored.

Government Publication Date: 1988-2008*

National Pollutant Release Inventory:

Federal

NPRI

Environment Canada has defined the National Pollutant Release Inventory ("NPRI") as a federal government initiative designed to collect comprehensive national data regarding releases to air, water, or land, and waste transfers for recycling for more than 300 listed substances.

Government Publication Date: 1993-May 2017

Oil and Gas Wells:

Private OGWE

The Nickle's Energy Group (publisher of the Daily Oil Bulletin) collects information on drilling activity including operator and well statistics. The well information database includes name, location, class, status and depth. The main Nickle's database is updated on a daily basis, however, this database is updated on a monthly basis. More information is available at www.nickles.com.

Government Publication Date: 1988-May 31, 2020

Ontario Oil and Gas Wells:

Provincial

OOGW

In 1998, the MNR handed over to the Ontario Oil, Gas and Salt Resources Corporation, the responsibility of maintaining a database of oil and gas wells drilled in Ontario. The OGSR Library has over 20,000+ wells in their database. Information available for all wells in the ERIS database include well owner/operator, location, permit issue date, and well cap date, license No., status, depth and the primary target (rock unit) of the well being drilled. All geology/stratigraphy table information, plus all water table information is also provide for each well record.

Government Publication Date: 1800-Jun 2020

Inventory of PCB Storage Sites:

Provincial

OPCB

The Ontario Ministry of Environment, Waste Management Branch, maintains an inventory of PCB storage sites within the province. Ontario Regulation 11/82 (Waste Management - PCB) and Regulation 347 (Generator Waste Management) under the Ontario EPA requires the registration of inactive PCB storage equipment and/or disposal sites of PCB waste with the Ontario Ministry of Environment. This database contains information on: 1) waste quantities; 2) major and minor sites storing liquid or solid waste; and 3) a waste storage inventory.

Government Publication Date: 1987-Oct 2004; 2012-Dec 2013

Orders:

This is a subset taken from Ontario's Environmental Registry (EBR) database. It will include all Orders on the registry such as (EPA s. 17) - Order for remedial work, (EPA s. 18) - Order for preventative measures, (EPA s. 43) - Order for removal of waste and restoration of site, (EPA s. 44) - Order for conformity with Act for waste disposal sites, (EPA s. 136) - Order for performance of environmental measures.

Government Publication Date: 1994-Jul 31, 2020

Canadian Pulp and Paper:

This information is part of the Pulp and Paper Canada Directory. The Directory provides a comprehensive listing of the locations of pulp and paper mills and the products that they produce.

Government Publication Date: 1999, 2002, 2004, 2005, 2009-2014

Parks Canada Fuel Storage Tanks:

Federal

CFT

Order No: 20291500065

PAP

Canadian Heritage maintains an inventory of known fuel storage tanks operated by Parks Canada, in both National Parks and at National Historic Sites. The database details information on site name, location, tank install/removal date, capacity, fuel type, facility type, tank design and owner/operator.

Government Publication Date: 1920-Jan 2005*

Pesticide Register:

Provincial PES

The Ontario Ministry of the Environment and Climate Change maintains a database of licensed operators and vendors of registered pesticides.

Government Publication Date: Oct 2011-Aug 31, 2020

<u>Pipeline Incidents:</u> Provincial PINC

List of pipeline incidents (strikes, leaks, spills). This is not a comprehensive or complete inventory of pipeline incidents in the province; this listing in an historical copy of records previously obtained under Access to Public Information. Records are not verified for accuracy or completeness. The coronavirus pandemic is cited by the agency responsible for tank regulations and data as an explanation for delays in releasing data pursuant to requests.

Government Publication Date: Feb 28, 2017

Private and Retail Fuel Storage Tanks:

Provincial

PRT

The Fuels Safety Branch of the Ontario Ministry of Consumer and Commercial Relations maintained a database of all registered private fuel storage tanks and licensed retail fuel outlets. This database includes an inventory of locations that have gasoline, oil, waste oil, natural gas and/or propane storage tanks on their property. The MCCR no longer collects this information. This information is now collected by the Technical Standards and Safety Authority (TSSA).

Government Publication Date: 1989-1996*

Permit to Take Water:

Provincial PTTW

This is a subset taken from Ontario's Environmental Registry (EBR) database. It will include all PTTW's on the registry such as OWRA s. 34 - Permit to take water.

Government Publication Date: 1994-Jul 31, 2020

Ontario Regulation 347 Waste Receivers Summary:

Provincial REC

Part V of the Ontario Environmental Protection Act ("EPA") regulates the disposal of regulated waste through an operating waste management system or a waste disposal site operated or used pursuant to the terms and conditions of a Certificate of Approval or a Provisional Certificate of Approval. Regulation 347 of the Ontario EPA defines a waste receiving site as any site or facility to which waste is transferred by a waste carrier. A receiver of regulated waste is required to register the waste receiving facility. This database represents registered receivers of regulated wastes, identified by registration number, company name and address, and includes receivers of waste such as: landfills, incinerators, transfer stations, PCB storage sites, sludge farms and water pollution control plants. This information is a summary of all years from 1986 including the most currently available data.

Government Publication Date: 1986-2016

Record of Site Condition:

Provincial RSC

The Record of Site Condition (RSC) is part of the Ministry of the Environment's Brownfields Environmental Site Registry. Protection from environmental cleanup orders for property owners is contingent upon documentation known as a record of site condition (RSC) being filed in the Environmental Site Registry. In order to file an RSC, the property must have been properly assessed and shown to meet the soil, sediment and groundwater standards appropriate for the use (such as residential) proposed to take place on the property. The Record of Site Condition Regulation (O. Reg. 153/04) details requirements related to site assessment and clean up.

RSCs filed after July 1, 2011 will also be included as part of the new (O.Reg. 511/09).

Government Publication Date: 1997-Sept 2001, Oct 2004-Jul 2020

Retail Fuel Storage Tanks:

Private RST

This database includes an inventory of retail fuel outlet locations (including marinas) that have on their property gasoline, oil, waste oil, natural gas and / or propane storage tanks.

Government Publication Date: 1999-Jan 31, 2020

Scott's Manufacturing Directory:

Private

SCT

Scott's Directories is a data bank containing information on over 200,000 manufacturers across Canada. Even though Scott's listings are voluntary, it is the most comprehensive database of Canadian manufacturers available. Information concerning a company's address, plant size, and main products are included in this database.

Government Publication Date: 1992-Mar 2011*

Ontario Spills:

Provincial SPL

List of spills and incidents made available the Ministry of the Environment, Conservation and Parks. This database identifies information such as location (approximate), type and quantity of contaminant, date of spill, environmental impact, cause, nature of impact, etc. Information from 1988-2002 was part of the ORIS (Occurrence Reporting Information System). The SAC (Spills Action Centre) handles all spills reported in Ontario. Regulations for spills in Ontario are part of the MOE's Environmental Protection Act, Part X.

The Ministry of the Environment, Conservation and Parks cites the coronavirus pandemic as an explanation for delays in releasing data pursuant to requests.

Government Publication Date: 1988-Nov 2019

Wastewater Discharger Registration Database:

Provincial

SRDS

Order No: 20291500065

Information under this heading is combination of the following 2 programs. The Municipal/Industrial Strategy for Abatement (MISA) division of the Ontario Ministry of Environment maintained a database of all direct dischargers of toxic pollutants within nine sectors including: Electric Power Generation; Mining; Petroleum Refining; Organic Chemicals; Inorganic Chemicals; Pulp & Paper; Metal Casting; Iron & Steel; and Quarries. All sampling information is now collected and stored within the Sample Result Data Store (SRDS).

Government Publication Date: 1990-Dec 31, 2017

Anderson's Storage Tanks:

Private TANK

The information provided in this database was collected by examining various historical documents, which identified the location of former storage tanks, containing substances such as fuel, water, gas, oil, and other various types of miscellaneous products. Information is available in regard to business operating at tank site, tank location, permit year, permit & installation type, no. of tanks installed & configuration and tank capacity. Data contained within this database pertains only to the city of Toronto and is not warranted to be complete, exhaustive or authoritative. The information was collected for research purposes only.

Government Publication Date: 1915-1953*

Transport Canada Fuel Storage Tanks:

Federal

TCFT

List of fuel storage tanks currently or previously owned or operated by Transport Canada. This inventory also includes tanks on The Pickering Lands, which refers to 7,530 hectares (18,600 acres) of land in Pickering, Markham, and Uxbridge owned by the Government of Canada since 1972; properties on this land has been leased by the government since 1975, and falls under the Site Management Policy of Transport Canada, but is administered by Public Works and Government Services Canada. This inventory provides information on the site name, location, tank age, capacity and fuel type.

Government Publication Date: 1970-Aug 2018

Variances for Abandonment of Underground Storage Tanks:

Provincial

VAR

Listing of variances granted for storage tank abandonment. This is not a comprehensive or complete inventory of tank abandonment variances in the province; this listing is a copy of tank abandonment variance records previously obtained under Access to Public Information. In Ontario, registered underground storage tanks must be removed within two years of disuse; if removal of a tank is not feasible, an application may be sought for a variance from this code requirement.

Records are not verified for accuracy or completeness.

Government Publication Date: Jul 31, 2020

Waste Disposal Sites - MOE CA Inventory:

Provincial

WDS

The Ontario Ministry of Environment, Waste Management Branch, maintains an inventory of known open (active or inactive) and closed disposal sites in the Province of Ontario. Active sites maintain a Certificate of Approval, are approved to receive and are receiving waste. Inactive sites maintain Certificate(s) of Approval but are not receiving waste. Closed sites are not receiving waste. The data contained within this database was compiled from the MOE's Certificate of Approval database. Locations of these sites may be cross-referenced to the Anderson database described under ERIS's Private Source Database section, by the CA number. All new Environmental Compliance Approvals handed out after Oct 31, 2011 for Waste Disposal Sites will still be found in this database.

Government Publication Date: Oct 2011-Aug 31, 2020

Waste Disposal Sites - MOE 1991 Historical Approval Inventory:

Provincial

WDSH

In June 1991, the Ontario Ministry of Environment, Waste Management Branch, published the "June 1991 Waste Disposal Site Inventory", of all known active and closed waste disposal sites as of October 30st, 1990. For each "active" site as of October 31st 1990, information is provided on site location, site/CA number, waste type, site status and site classification. For each "closed" site as of October 31st 1990, information is provided on site location, site/CA number, closure date and site classification. Locations of these sites may be cross-referenced to the Anderson database described under ERIS's Private Source Database section, by the CA number.

Government Publication Date: Up to Oct 1990*

Water Well Information System:

Provincial

WWIS

Order No: 20291500065

This database describes locations and characteristics of water wells found within Ontario in accordance with Regulation 903. It includes such information as coordinates, construction date, well depth, primary and secondary use, pump rate, static water level, well status, etc. Also included are detailed stratigraphy information, approximate depth to bedrock and the approximate depth to the water table.

Government Publication Date: Apr 30, 2020

Definitions

<u>Database Descriptions:</u> This section provides a detailed explanation for each database including: source, information available, time coverage, and acronyms used. They are listed in alphabetic order.

<u>Detail Report</u>: This is the section of the report which provides the most detail for each individual record. Records are summarized by location, starting with the project property followed by records in closest proximity.

<u>Distance:</u> The distance value is the distance between plotted points, not necessarily the distance between the sites' boundaries. All values are an approximation.

<u>Direction</u>: The direction value is the compass direction of the site in respect to the project property and/or center point of the report.

Elevation: The elevation value is taken from the location at which the records for the site address have been plotted. All values are an approximation. Source: Google Elevation API.

Executive Summary: This portion of the report is divided into 3 sections:

'Report Summary'- Displays a chart indicating how many records fall on the project property and, within the report search radii.

'Site Report Summary'-Project Property'- This section lists all the records which fall on the project property. For more details, see the 'Detail Report' section.

'Site Report Summary-Surrounding Properties'- This section summarizes all records on adjacent properties, listing them in order of proximity from the project property. For more details, see the 'Detail Report' section.

<u>Map Key:</u> The map key number is assigned according to closest proximity from the project property. Map Key numbers always start at #1. The project property will always have a map key of '1' if records are available. If there is a number in brackets beside the main number, this will indicate the number of records on that specific property. If there is no number in brackets, there is only one record for that property.

The symbol and colour used indicates 'elevation': the red inverted triangle will dictate 'ERIS Sites with Lower Elevation', the yellow triangle will dictate 'ERIS Sites with Higher Elevation' and the orange square will dictate 'ERIS Sites with Same Elevation.'

<u>Unplottables:</u> These are records that could not be mapped due to various reasons, including limited geographic information. These records may or may not be in your study area, and are included as reference.

Order No: 20291500065

Appendix C

Records Review

Munic	ipal Address	1995	1996	1997	1998	2001
Heart Lake Road	10818	Heart Lake Conservation Area	no listing	no listing	Heart Lake Conservation Area	Heart Lake Conservation Area
	10881	no listing	Mallany, H	Mallany, H	Mallany, H	Mallany, H
	11900	Rayner, G	Rayner, G	no listing	no listing	Rayner, G

December 2020

MINISTRY OF ENVIRONMENT INVENTORY OF COAL GASIFICATION PLANT WASTE SITES IN ONTARIO INVENTORY OF INDUSTRIAL SITES PRODUCING OR USING COAL TAR AND RELATED TARS IN ONTARIO

 MOECC REGION:
 Southwestern

 SITE EASTING:
 597,238 mE

 SITE NORTHING:
 4,844,244 mN

 SEARCH RADIUS:
 1,000 m

DISTANCE AWAY COMPANY NAME / OPERATOR / OWNER SITE ADDRESS / LOCATION EAST NORTH OPERATION TYPE INVENTORY
FROM SITE (m) COUNTY MUNICIPALITY (IN DATE ORDER WHERE APPLICABLE) YEARS (primary/inital) REFERENCE

There are no locations that meet your search criteria

MINISTRY OF ENVIRONMENT WASTE DISPOSAL SITE INVENTORY, JUNE 1991 REGIONAL INVENTORY OF ACTIVE WASTE DISPOSAL SITES

 MOECC REGION:
 Southwestern

 SITE EASTING:
 597,238 mE

 SITE NORTHING:
 4,844,244 mN

 SEARCH RADIUS:
 1,000 m

DISTANCE AWAY	SITE			LOT			UTN	I COORDINA									
FROM SITE (m)	NO	COUNTY	MUNICIPALITY	OR STREET NO	CONCESSION	NTS	ZONE	EAST	NORTH	D	С	0	н	L M	H SS	STAT'S	CLASS

There are no locations that meet your search criteria

MTE File No.: 47877-100 September 2020

MINISTRY OF ENVIRONMENT WASTE DISPOSAL SITE INVENTORY, JUNE 1991 REGIONAL INVENTORY OF CLOSED WASTE DISPOSAL SITES

MOECC REGION: Southwestern 597,238 mE SITE NORTHING: 4,844,244 mN SEARCH RADIUS: 1,000 m

DISTANCE AWAY	SITE			LOT		UTM COORDIN		DA	TE CLOSED	
FROM SITE (m)	NO	COUNTY	MUNICIPALITY	OR STREET NO	CONCESSION	NTS ZONE	EAST	NORTH	YEAR MONTH DAY	CLASS

There are no locations that meet your search criteria

MINISTRY OF ENVIRONMENT ONTARIO INVENTORY OF PCB STORAGE SITES

MOECC REGION: Southwestern

MUNICIPAL REGION/COUNTY: Peel

 SITE EASTING:
 597,238 mN

 SITE NORTHING:
 4,844,244 mN

 SEARCH RADIUS:
 1,000 m

DISTANCE AWAY

FROM SITE (m) COUNTY MUNICIPALITY COMPANY SITE NUMBER SITE ADDRESS EAST NORTH MINOR MAJOR

There are no locations that meet your search criteria

November 9, 2020 File: WP PA-02.02

Public Worles

3515 Wolfedele Rd. Ministruge, ON LSC 1VB

tel: 905-791-7830

pastregion.ca

MTE More Than Engineering 520 Bingemans Centre Drive Kitchener, ONT NZB 3X9

ATTENTION: Frances Heather

Dear Miss Heather:

SUINECT:

Heart Lake Road and Countryside Drive, Brampton

Your File: N/A

The Environmental Control Section, Wastewater Division, Public Works Department, Regional Municipality of Peel Is responsible for the enforcement of Wastewater Bylaw 53-2010.

We have reviewed our records with regards to the above intersection and find that we do not have a record of any violations, infractions or outstanding orders under Wastewater Bylaw 53-2010 and the former Sewer Use By-laws 90-90 and 9-75.

There is one (1) spill event for the above intersection fisted in our files.

For information pertaining to waste disposal sites within the Region of Peel, a copy of this request is being forwarded to Sara Basile of the infrastructure, Waste Management (905-791-7800, Ext. 4891). You can also contact the Ministry of the Environment Helton/Peel district office (1-800-335-5906 or 905-319-3847) for more information.

For information pertaining to storm water By-law issues, a copy of this request is being forwarded to Enforcement and By-Law Services, City of Brampton, Municipal Enforcement Division (905-458-3424, Ext. 63225).

Although a caraful review of the records in the custody of the Environmental Control Section has been conducted in response to your request, the Region of Peel makes no warrastiles or representations, express or implied, concerning the accuracy, reliability or completeness of the information contained in this letter. All information from these records is being provided on an "as is" basis, and the responsibility for any consequences of using the information for any purpose whelsoever rests with the person who has requested it.

Page 2: MTE More Than Engineering

If you have any questions, please feel free to contact me at (905) 791-7800, Ext. 3104.

Yours truly,

Public Works

3515 Wolfedele Rd. Mississauge, ON LSC 1V8 tel: 905-791-7808

peelrégiest ét

Kevin Parkes Inspector Environmental Control Section Wastewater Division Public Works Department

KP/CS

cc: Sara Basile, Infrastructure, Waste Management, Regional Municipality of Pael

Enforcement and By-Law Services, Municipal Enforcement Division, City of Brampton

	Environmental Control Incident Report							
Customer Service # : 196143 Date: ywy	vere-dd							
Spill	0 4 06 10 Incident# 0 4 - 237 .							
Countryside Drive between Obde and Heartis	ke, Bremeten							
460 Litres used motor oil								
Reported the City of Brampton								
<u> </u>	(905) 458 - 4888							
Resource Dispetched Arrival	Departure Off Duty							
Tim Robinson 10 : 25 10 :	40 14 : 30 15 : 00							
	<u> </u>							
: :	<u> </u>							
Investigation/Action/Status								
received a cell from the City of Brampton that there was some	used motor oil is the ditch on Country Side fir helessen							
Heartlake Road and Dode Road in Brampton. When I enrived th								
pade, become, and stew bales in the ditch to contain the oil. The								
There was no one on alte when I arrived. After approximately 1								
They find contained the oil and picked up 23 - 20 litre containers								
allowed to transport the oil. They then removed the oil from the	· · · · · · · · · · · · · · · · · · ·							
that they should him a cleanup contractor to clean up the spill.								
decembed 200 litre of all lime the drum and the remaining all in th								
was consveted by a City of Brampton Excavator and Fielding tra								
Yahida 1	Vehicle 2							
Durane	over							
Address	Astrono							
	Insurance Co.							
Police No. Plate No.	Falliny Ham Plate No.							
Оwлег	Controller							
City of Brampton	Name							
A44	Address							
Tabushina No. 458-4888	Увершило но.							

Billing K No Owner Controller	
Reg.: 4 OT: DT:	km: <u>34</u>
Region Materials & Services: Bags of sorbant	Absorb. Pads Absorb. Pillows
Lge. Brooms Sml. Booms Oth	өг
Contracted Services No	
Agencies Notified: Date/Time/initial Contact:	Date/Time/Initial Contact:
x NOs	City of Mississings
City of Stempton	Town of Caledon
South Ped	Peel Health
City of 1 counted tember	Credit Valoy Comervation
Towards Ray Process	Halton Reg. Denese.
Securito Reg. Conser.	Transfer Page 1
Linvirosment Caredia	TSSA/Fasi Safety
Other	
Other	
Councillors Notifleai:	Start Notified:
l	· · · · · · · · · · · · · · · · · · ·
Clean-up/Disposal	Garden
■ Carrier	
Disposal Method:	
Emergency Generator No.:	
Restoration Required:	
Prepared By: Tim Robinson	Dole: yyyy-m:m-dd
Inspector, EC:	2 0 0 4 05 10

Danielle Maddock

From: Public Information Services <publicinformationservices@tssa.org>

Sent: Friday, October 2, 2020 10:05 AM

To: Frances Heather

Subject: RE: TSSA Information Request

Hello,

Thank you for your request for confirmation of public information.

We confirm that there are no records in our database of any fuel storage tanks, elevating devices and boilers/pressure vessels at the subject address.

For a further search in our archives please complete our release of public information form found at https://www.tssa.org/en/about-tssa/release-of-public-information.aspx?_mid_=392 and email the completed form to publicinformationservices@tssa.org along the appropriate fee. TSSA's fee schedule can be found at: https://www.tssa.org/en/about-tssa/resources/Documents/Public-Information-Fee-Schedule Jan 2018.pdf. Fees are payable with a credit card (Visa or MasterCard).

Although TSSA believes the information provided pursuant to your request is accurate, please note that TSSA does not warrant this information in any way whatsoever.

Please refrain from sending documents to head office and only submit your requests electronically via email along with credit card payment. We are all working remotely and mailing in applications with cheques will lengthen the overall processing time.

Kind regards,

Roxana

Public Information Agent

Facilities and Business Services 345 Carlingview Drive Toronto, Ontario M9W 6N9

Tel: +1-416-734-6222 | Fax: +1-416-734-3568 | E-Mail: publicinformationservices@tssa.org

www.tssa.org

From: Frances Heather

Sent: October 2, 2020 8:54 AM To: Public Information Services **Subject:** TSSA Information Request **[CAUTION]:** This email originated outside the organisation.

Please do not click links or open attachments unless you recognise the source of this email and know the content is safe.

Good morning,

I would like to enquire if TSSA has any records for the following properties:

- 10818 Heartlake Road, Brampton ON
- 10881 Heartlake Road, Brampton ON
- 11900 Heartlake Road, Brampton ON
- 3731 Mayfield Drive, Brampton ON

Thank you, Frances Heather

Frances Heather, B.Sc., M.Sc. | Environmental Scientist MTE Consultants Inc.

T: 519-743-6500 x1374 | FHeather@mte85.com 520 Bingemans Centre Drive, Kitchener, Ontario N2B 3X9 www.mte85.com | Twitter | LinkedIn | Instagram | Facebook

COVID-19 Update: We remain operational and are currently available by email and phone, however, our offices are closed. Staff that are required to visit job sites or perform field work are required to follow MTE health and safety policies and procedures, as well as additional COVID-19 protocols, which can be viewed here.

Notice: The electronic information provided is confidential and privileged, and may not be used for purposes other than work related to the subject project. Redistribution or copies to others made without written permission from MTE Consultants Inc. is strictly prohibited. MTE assumes no liability or responsibility, and makes no guarantee or warranty with respect to the data contained, either expressed or implied.

This electronic message and any attached documents are intended only for the named recipients. This communication from the Technical Standards and Safety Authority may contain information that is privileged, confidential or otherwise protected from disclosure and it must not be disclosed, copied, forwarded or distributed without authorization. If you have received this message in error, please notify the sender immediately and delete the original message.

Appendix D

Interview, Inspection Records and Photographic Log

Note to interview candidate: please provide responses to each question, or note if unknown or not applicable as case may be. If needed, additional comments can be provided on last page.

Cito	Address	Heart Lake	Road and	MTE File No.:	47877-100				
Site	Address:	Countryside	e Drive, Brampton	Date:	October 21, 2020				
MTE	Representative) :	Sean Anderso	Sean Anderson, P.Eng. & Frances Heather					
Nam	e of Interview C	Candidate:	Mario Goolsar	ran, P.Eng.					
Title	of Interview Ca	ındidate:	Senior Project Ma	nager, Infrastructure Plan	ning, City of Brampton				
Rela	tionship to the	Site:	Representativ	e of site owner					
Year	s Familiar with	the Site:	4 years						
Sect 1.1		current owne	er(s) of the Site?	al names (if known).					
	City of Brampt		ioromp and rail logo	a namee (ii kiiewi)i					
1.2	Who is/are the current tenant(s) of the Site? Please provide a brief description of operations and years or occupancy.								
	Municipal road	lway							
1.3	When was the	Site first dev	eloped and by who	m?	☐ Unknown				
	(Mario to confi	rm)							
1.4		•	ner(s) of the Site? nership and fu ll l ega	al names (if known)	■ Unknown				
1.5		•	ant(s) of the Site? upation and a brief	■ Unknown					

Section 2: Building Information

Are there ar	y floor plans or er	ngineering drawings fo	existing or former buildings?
□ Yes	□ No	☐ Unknown	Not Applicable
lf yes, pleas	e provide.		
Are there an	y major ongoing o	or previous renovations	to the existing building(s)?
□ Voo	□ No	☐ Unknown	☑ Not Applicable
☐ Yes			! !
⊔ Yes If yes, descr	ibe		
lf yes, descr		structed on the existing	
lf yes, descr		structed on the existing □ Unknown	
If yes, descr	Iditions been cons □ No	_	building(s)?
If yes, descr Have any ac □ Yes	Iditions been cons □ No	_	building(s)?
If yes, descr Have any ac □ Yes If yes, descr	Iditions been cons □ No ibe.	_	building(s)? ☑ Not Applicable
If yes, descr Have any ac □ Yes If yes, descr	Iditions been cons □ No ibe.	□ Unknown	building(s)? ☑ Not Applicable ng(s)?

.6	Are there any source?	y current or forme	r heating systems that υ	use fuel oil (furnace oil) as a fuel							
	□ Yes	ĭ No	☐ Unknown								
	If yes, descri	be.									
.7	Are there cod	Are there cooling systems associated with the buildings(s)?									
	☐ Yes	ĭ No	☐ Unknown								
	If yes, descril materials.	be fuel source, ty	oe of cooling systems, a	nd any associated ozone- depleting							
8.	Are there any	y loading docks o	r shipping/receiving bays	s?							
	□ Yes	■ No									
	If yes, descri	be.									
9	Are there any	y former or currer	t roof leaks?								
	☐ Yes	□ No	☐ Unknown	Not Applicable							
	If yes, descril	be.									

2.10	Are there any su	ımps in the bui l ding	ı(s)?						
	☐ Yes	□ No	☐ Unknown	■ Not Applicable					
	If yes, describe	the sump pump disc	charge.						
2.11	Are there any ar	eas of mou l d/water	damage in the building	ı(s)?					
	☐ Yes	□ No	☐ Unknown	☑ Not Applicable					
	If yes, describe.								
2.12	Are there any co	oncerns related to in	ndoor air qua l ity in the b	puilding(s)?					
	☐ Yes	□ No	☐ Unknown	■ Not Applicable					
	If yes, describe.								
2.13	Has testing for r	adon gas been con	npleted in any building(s	s) at the Site?					
	☐ Yes	ĭ No	☐ Unknown						
	If yes, describe.								
2.14	Are there any asbestos, lead, urea foam formaldehyde insulation (UFFI) or PCB-containing materials in the building(s), or any previous activities involving the removal of these substances?								
	☐ Yes	□ No	Not Applicable						
	If yes, describe.								

Section 3: Site Services

3.1	Are any underg	ground utility draw	rings available for the Site?							
	▼ Yes	□ No	☐ Unknown							
	If yes, describe).								
	Existing utility	drawings have b	peen provided to MTE as part of current EA study.							
3.2	Are there any easements on the Site (e.g., right-of-way, utility easements related to hydro, gas, telephone, etc.)?									
	▼ Yes	□ No	☐ Unknown							
	If yes, describe	}.								
	Overhead hyd	ro.								
3.3	Are there back-up generators or emergency power systems at the Site?									
	☐ Yes	⊠ No	☐ Unknown							
	If yes, describe fuel source									
3.4	What type of po	What type of potable water supply is available at the Site?								
	☐ Municipa l	☐ Private	None							
	If private, describe water supply wells (number, locations, screen depths) and provide any available well logs or testing information.									
	Possible water	rmain in road.								
3.5	Is a water treat	tment system pres	ent at the Site?							
	□ Yes	⊠ No	☐ Unknown							
	If yes, describe	and provide any	available testing information and/or regulatory approvals.							

J.6	71	,	ge) system is available at the Site?							
	☐ Municipal	☐ Private	■ None							
	If private, descr testing informat		septic bed and tank, and provide any available permits or							
	No sewer lines	s on Heart Lake	Road. Possible sewer lines on Countryside Road.							
^ -										
3.7	• •		ater performed at the Site?							
	☐ Yes	⋈ No	□ Unknown							
	If yes, describe	•								
3.8	Are there any stormwater management ponds at the Site?									
	□ Yes	⋈ No	☐ Unknown							
	If yes, describe location.									
3.9	Are there any c	atchbasins at the	e Site?							
	x Yes	\square No	☐ Unknown							
	If yes, describe locations and discharge.									
	Existing catch	oasins on Coun	tryside Road portion of the Site.							
3.10	Are there any p flooding, etc.)?	problems with Sit	e drainage (e.g., basement flooding, surface water ponding,							
	□ Yes	ĭ No	☐ Unknown							
	If yes, describe									
		eart Lake Conse t to localized flo	ervation Area, which includes some swamp features that boding.							

3.11	Are there any ele	ectrical transformers	s located on the Site?
	▼ Yes	□ No	☐ Unknown
	If yes, who owns	them, do they cont	ain PCBs, have they been tested?
	Possible transfo	ormers related to o	overhead hydro service at the Site.
3.12	Are there any ex	isting or former rail	lines/spurs on the Site?
	□ Yes	⊠ No	☐ Unknown
	If yes, describe.		
Secti	on 4: Site Operat	tions	
	•		showing areas of production, manufacturing, chemical or
4.1		the buildings or pre	· · · · · · · · · · · · · · · · · · ·
	☐ Yes	ĭ No	□ Unknown
ī	If yes, describe.		
4.2	Are any process operations?	, production and ma	aintenance documents available related to site
	□ Yes	ĭ No	☐ Unknown
	If yes, please pro	ovide.	
4.3	Are there any cu	rrent or previous aç	gricultural activities on the Site?
	□ Yes	□ No	☑ Unknown
	If yes, approxima	ately what years, wh	nat crops, and what pesticides were applied?

4.4	Are there any	pesticides/herbi	cides/sludge applications at the Site?	
	☐ Yes	□ No	☑ Unknown	
	If yes, when, a	and what produc	s were used?	
4.5	Are there any at the Site?	current or forme	r vehicle maintenance, auto body or machine shop operation	ns
	☐ Yes	⊠ No	☐ Unknown	
	If yes, describe	e how the waste	liquid fluids are/were handled?	
4.6	Is there any h	ydraulic lift equip	oment (e.g., in-ground vehicle hoists, elevators) on the Site?	?
	☐ Yes	⊠ No	☐ Unknown	
	If yes, describe	e.		
4.7	Is there any fo	ormer or current	equipment, vehicle or plant floor wash down at the Site?	
	□ Yes	□ No	☑ Unknown	
	If yes, describe	e.		
4.8	Were there an	ny fires at the Sit	e (e.g., building fires, waste incineration, brush fires, etc.)?	
	☐ Yes	□ No	☑ Unknown	
	If yes, describe	e.		

4.9	Are there any former or current dust control activities at the Site?				
	☐ Yes ☐ Unknown				
	If yes, list dust control methods and products used.				
4.40					
4.10	Has salt or any other de-icing chemical ever been used for winter maintenance of walkways or parking areas?				
·	If yes, describe product used, storage and application practices.				
	Yes, salt applied to road by City of Brampton staff or contractors.				
Sooti	on F. Eugl Storage and Handling				
	on 5: Fuel Storage and Handling				
5.1	Are there any aboveground or underground fuel storage tanks located on Site?				
	☐ Yes ☐ Unknown				
	If yes, describe type, construction material, secondary containment, size, age, contents of each, and provide any testing and/or TSSA registration information.				
5.2	Were any aboveground or underground fuel storage tanks removed in the past?				
	☐ Yes ☐ No ☒ Unknown				
	If yes, describe type, construction material, secondary containment, size, contents of each, date(s) of removal, details of removal.				
	Please provide any available reports related to tank removal and confirmatory testing.				
5.3	Are there any current or former fuel pumps or fuelling systems on the Site?				
	☐ Yes ☐ No ☑ Unknown				
,	If yes, describe.				

5.4	Are there any jerry cans, drums or totes containing fuel/oil/lubricants on Site?					
	□ Yes	ĭ No	☐ Unknown			
	If yes, describe.					
Secti	ion 6: Waste Oils	, Chemicals, I	Liquid Wastes, Solid Wastes			
6.1	Are any waste c	oi l s generated a	and/or stored on Site?			
	□ Yes	⊠ No	☐ Unknown			
	If yes, describe	waste storage l	locations and disposal practices.			
6.2	Are there any oi	i l- water separa	tors and/or floor drains at the Site?			
	□ Yes	ĭ No	☐ Unknown			
	If yes, describe location, installation date, source of incoming liquid and effluent discharge location.					
6.2	Are any chemic	ale er celvente	stared or used at the Cite?			
6.3	-		stored or used at the Site?			
	☐ Yes	⊠ No	☐ Unknown			
	areas.	n inventory of c	chemicals, and describe chemical usage and chemical storage			
6.4	Are Material Safety Data Sheets (MSDS) or Safety Data Sheets (SDS) available for any chemical compounds used on the Site?					
	□ Yes	⋈ No	☐ Unknown			
	If yes, provide a	complete list o	of chemical compounds with MSDS or SDS.			
		-				

6.5	Are any liquid industrial wastes generated at the Site?				
	☐ Yes	□ No	☑ Unknown		
	If yes, how a	re they disposed?	?		
6.6		ions and waste g	ds available for the Site, including current and his enerator and waste receiver information maintair		
	□ Yes	□ No	☑ Unknown		
	If yes, please	e describe and pro	ovide copies of relevant records.		
6.7	Are solid was	stes (e.g., scrap,	household waste, recycling) generated on-Site?		
	☐ Yes	□ No	☑ Unknown		
	If yes, describe storage and disposal practices.				
6.8	Are batteries (non-household type) used on the Site?				
	□ Yes	□ No	☑ Unknown		
	If yes, describe storage and disposal practices.				
6.9	Has any liqui	Has any liquid or solid waste been dumped, placed or buried on the Site?			
	□ Yes	□ No	☑ Unknown		
	If yes, descri	be.			

6.10	Has any soil (fill, gravel, topsoil, etc.) been brought to and deposited on the Site (for construction, grading, filling low areas, berms, etc.)?			
	x Yes	□ No	☐ Unknown	
	If yes, describe.			
	Likely historical	fill placement to o	construct road. Native soil likely consists of peat.	
Secti	on 7: Spills			
7.1	Are there any re-	cords of spills (e.g.	, chemical, oil) or records of discharges of contaminants?	
	□ Yes	□ No	☑ Unknown	
	If yes, describe.			
	Please Contact Peel Region Alyssa Accardo (Acting) Manager, Environmental Control Wastewater Division Putlic Works Region of Peel Alyssa.Accardo@peelregion.ca T, 905-791-7800 ext, 4814			
7.2	Are spill prevention and contingency plans available (e.g., secondary containment measures, spill kits, spill response training for employees)?			
	☐ Yes	□ No	■ Unknown	
,	If yes, describe.			
Secti	on 8: Environme	ntal Compliance		
8.1	Is there any kno	wn or suspected so	oil and/or groundwater contamination at the Site?	
	□ Yes	□ No	■ Unknown	
	If yes, describe.			
	Contact Peel Re	egion		
8.2		ontaminant discharg ve air emissions)?	ges from the Site to the natural environment (e.g., stack	
	☐ Yes	ĭ No	☐ Unknown	
	If yes, describe ϵ	emissions contamin	ants, type, and operations.	

0.3		(formerly Certificate of Approval)?				
	□ Yes	⋈ No	☐ Unknown			
	If yes, pleas	e describe and pro	ovide an Environmental Compliance Approval (ECA) number.			
8.4	Is there a Jo	oint Hea l th and Sa	Ifety Committee?			
	Yes	□ No	☐ Unknown			
	If yes, do the	ey have any outsta	anding environmental concerns?			
	JHSC for C	ity of Brampton				
8.5	Are there any current or former regulatory compliance issues (such as zoning, labour or environment) related to the Site?					
	☐ Yes If yes, descr	⊠ No ibe.	□ Unknown			
8.6	Are there any previous environmental reports, environmental audit reports or environmental monitoring data (including data created in response to an order or request of the Ministry of the Environment, Conservation and Parks) available for the Site?					
	□ Yes	□ No	☑ Unknown			
	If yes, pleas	e provide.				
8.7	Are there ar	ny geotechnical re	ports for building/development available?			
	Yes	□ No	☐ Unknown			
	If yes, pleas	e provide.				
8.8	Are there ar	ny property apprai	sal or insurance inspection reports available?			
	☐ Yes	■ No	☐ Unknown			
	If yes, pleas	e provide.				

8.9	Are there any existing monitoring wells on the Site?				
	☐ Yes	ĭ No	☐ Unknown		
	If yes, describe.				
8.10	Are there any re concerns?	gulatory permits an	d records available related to potential environmental		
		□ No	☐ Unknown		
	If yes, describe.				
		th TRCA will be renservation Area la	equired for reconstruction due to close proximity to nds.		
8.11	Have any other inspections occurred on the Site (i.e., Ministry of Labour, Ministry of the Environment, Conservation and Parks, Municipality, Insurance Agency, etc.)?				
	☐ Yes	⊠ No	☐ Unknown		
	If yes, describe.				
8.12	Are there any pr		ighbouring properties such as chemical storage,		
	□ Yes	⊠ No	□ Unknown		
	If yes, describe.				
8.13	Are there any no properties?	oise or odour proble	ems related to the Site or surrounding neighbouring		
	□ Yes	ĭ No	☐ Unknown		
	If yes, describe.				

Section 9: Additional Information

9.1	Is there another	Is there another person we should contact for additional information?				
	□ Yes	ĭ No	☐ Unknown			
	If yes, please pr	ovide contact inforn	nation.			
9.2	Do you have an		nts pertaining to	the Site (environmental, operations	3,	
	▼ Yes	□ No				
	If yes, describe.					
	Previous EA for Countryside Drive was completed in 2005 and does not appear to have considered Phase 1 ESA. This will be required as part of the current EA					
	Consultation with TRCA should be conducted to understand their environmental concerns, and Peel Region should be contacted for information on previous spills (Mario to provide contact).					
	City records indicate that the subject intersection was first constructed with surface treatment in 1987.					
unde			riewed by MTE a	rledge of the Site and operations. I and compiled in the Environmental S	iite	

goolsarran@brampton.ca DN: CN = mario.goolsarran@brampton.ca Date: 2020.10.21 11:27:38 -04'00'

mario.

Signature of Interview Candidate:

Site Address: Heart Lake Road and MTE File No.: 47877-100

Countryside Drive, Brampton Date/Time: Oct. 2, 2020 (12:00-12:30)

MTE Representative: Sean Anderson, P.Eng.

Name of Site Contact: N/A

Weather Conditions: Clear, 15 degree Celcius

Section 1: Site Setting, Occupant Information, and Operations

Provide a sketch in the space below (or attach a site plan) showing topographic conditions and locations of structures, fuel storage tanks, watercourses, ditches, standing water, parking facilities, evidence of asphalt or floor repairs, roads, rights-of-way, and lagoons on or adjacent to the Site.					
Refer to Figure 2 of Phase I ESA					

	Municipal intersection right-of-way					
.2	What is the current type of property use (check all that apply)?				
	☐ Commercial use	☐ Industrial use				
		\square Residential use				
	☐ Institutional use	☐ Parkland use				
	☐ Agricultural or other use	☐ Vacant (confirm las	st known use)			
.3	Was any evidence observed of the following operations at the Site?					
	Agricultural / Potential Pesticide Use	□ Yes	⊠ No			
	Bulk liquid dispensing (e.g., gasoline outle	et) 🗆 Yes	No			
	Dry Cleaning (Depot or Facility)	☐ Yes	No			
	Machine Shop	☐ Yes	⊠ No			
	Manufacturing	□ Yes	⊠ No			
	Rail yards, tracks and spurs	☐ Yes	⊠ No			
	Vehicle maintenance or repairs	□ Yes	⊠ No			
	Waste Treatment, Disposal, or Recycling	☐ Yes	⊠ No			
ecti	ion 2: Building Information and Special	Attention Items				
2.1	Are there existing buildings at the Site?					
	□ Yes ⊠ No					
	If yes, list the existing buildings and describe observed uses, construction type, additions, etc.					

2.2	Was any evid	Was any evidence observed of loading docks or shipping/receiving bays?				
	□ Yes	⊠ No				
	If yes, describ	pe.				
2.3	Was any evid	lence observed of pits or other similar floor openings or depressions?				
	□ Yes	⊠ No				
	If yes, describ	pe.				
2.4	Was any evid	lence observed of heating systems associated with the building(s)?				
	☐ Yes	No No				
	Fuel source:	☐ Natural Gas ☐ Fuel Oil ☐ Electric ☐ Other (describe below)				
	T del 30dice.	1 Tational Cas				
2.5	Was any evidence observed of mould/water damage or roof leaks in the building(s)?					
	□ Yes	⊠ No				
	If yes, describ					
	11 you, accorn					
2.6	Was any evid	lence noted of odours or other concerns related to indoor air quality?				
	□ Yes	⊠ No				
	If yes, please	describe				
	n you, ploado	decorrise.				

2.7	Was any evidence ob	served of the following	suspected asbe	estos-containing material?	
	Building Insulation		□ Yes	⊠ No	
	Transite wall board, si	iding, or roof panels	☐ Yes	⊠ No	
	Pipe Wrap/Insulation		☐ Yes	⊠ No	
	Boiler Insulation		☐ Yes	⊠ No	
	Tank Linings		☐ Yes	⊠ No	
	Ceiling Tiles		☐ Yes	⊠ No	
	Floor Tiles		☐ Yes	⊠ No	
	Plaster		☐ Yes	⊠ No	
	Expansion Joint		□ Yes	⊠ No	
	Thermal Insulation		□ Yes	⊠ No	
	Spray Fire-Proofing		☐ Yes	⊠ No	
ŗ	If yes to any of the ab	ove, describe the locati	ion and condition	1.	
	I				
2.8	Was any evidence observed of potential PCB-containing equipment, including transformers, florescent light ballasts/capacitors?				
	☐ Yes	10			
_	If yes, describe.				
					
2.9	-	served of potential lead rior paint or lead pipes	-	terials in the building(s),	
	☐ Yes	10			
ŗ	If yes, describe.				
	Mas carravidance ch				
2.10		eserved of potential ozo anditioning equipment in			
	☐ Yes	lo			
ſ	If yes, describe.				
	I				
	I				
	1				

2.11	Was any evidence observed of potential UFFI-containing materials in the building(s)?				
	□ Yes	⊠ No			
ı	If yes, describe.				
2.12 Was any evidence observed of potential major or persistent sources of noise and/or vibration, odours, or electric and magnetic fields (e.g., high voltage power lines)?					
	□ Yes	⊠ No			
1	If yes, describe.				
Section	on 3: Site Servic	es			
3.1	Was any eviden	ce observed of the f	ollowing site services	(check all that apply))?
	Potable Water S Wastewater (sev Stormwater man Catch basins	Supply wage) system	☐ Municipal☐ Municipal☐ Yes☒ Yes	□ Private Well□ Septic System☑ No□ No	▼ None ▼ None
	Electricity Service Telecommunicate Natural Gas Service	tion Service	☐ Underground☐ Underground☐ Underground	OverheadOverheadNone	□ None□ None
	If applicable, describe on-Site water supply wells (and any treatment systems) and/or septic systems.				
Existing catch basins along curbs of Countryside Drive. Overhead hydro/telecommunication lines above intersection.					
3.2	Was any eviden	ce observed of back	-up generators or em	nergency power syste	ms?
	□ Yes	⊠ No			
ı	If yes, describe f	uel source.			

3.3	Was any evidence observed of potential drainage issues (e.g., floodplain, surface water ponding, flooding, etc.)?		
	□ Yes	⊠ No	
	If yes, describe.		
Secti	on 4: Site Operat	tions	
4.1	Was any evidence observed of hydraulic equipment (e.g., in-ground vehicle hoists, elevators, loading docks, cranes, presses, compactors) on the Site?		
	□ Yes	⊠ No	
	If yes, describe.		
4.2	Was any eviden	ce observed of equipment, vehicle or plant floor wash down at the Site?	
	□ Yes	⊠ No	
	If yes, describe.		
4.3	-	ce observed of fires (e.g., building fires, waste incineration, brush fires, etc.)?	
	☐ Yes	⊠ No	
	If yes, describe.		
4.4	Was any eviden	ce observed of dust control activities at the Site?	
	□ Yes	⊠ No	
	If yes, list dust co	ontrol methods and products used.	

4.5	Was any evidence observed of salt or any other de-icing chemical storage or application?		
	□ Yes No		
	If yes, describe product(s) observed, storage and application practices.		
Secti	ection 5: Fuel Storage and Handling		
5.1	Was any evidence observed of existing aboveground or underground fuel storage tanks observed at the Site?		
	□ Yes No		
	If yes, describe type and contents, any observations related to construction material, secondary containment, rusting, or surface spills, and any label information regarding capacity, year, spill containment type, etc.		
5.2	Was any evidence observed of former aboveground or underground fuel storage tanks removed in the past (e.g., fill or vent pipes, copper fuel lines, boiler room pipe openings)?		
	□ Yes No		
	If yes, describe.		
5.3	Was any evidence observed of fuel pumps or fueling systems on the Site?		
	□ Yes ⊠ No		
	If yes, describe.		
5.4	Was any evidence observed of jerry cans, drums or totes containing fuel/oil/lubricants?		
	□ Yes ⊠ No		
	If yes, describe.		

Section 6: Waste Oils, Chemicals, Liquid Wastes, Solid Wastes

Was any evidence observed of oil-water separators, sumps, and/or floor drains at the Site					
□ Yes ⊠ No					
If yes, describe location, suspected	d source of incomin	ng liquid, and effluent discharge lo			
Was any evidence observed of chemicals, solvents, unidentified substances, or hazardou materials (e.g. mercury or nuclear gauges) stored or used at the Site, including washbasi					
☐ Yes					
If yes, provide an inventory of substances, obtain copies of Safety Data Sheets SDS) where available, and describe usage and storage practices.					
Was any evidence observed of the	e following solid wa	aste storage practices?			
Refuse dumpsters/bins	□ Yes	⊠ No			
Refuse dumpsters/bins Recycling dumpsters/bins	□ Yes □ Yes	⊠ No ⊠ No			
Refuse dumpsters/bins Recycling dumpsters/bins Drums	□ Yes □ Yes □ Yes	⊠ No ⊠ No ⊠ No			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles	☐ Yes ☐ Yes ☐ Yes ☐ Yes	⊠ No ⊠ No ⊠ No ⊠ No			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles Illegal dumping	☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes	No No No No No No No No No N			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles Illegal dumping Surface impoundment	☐ Yes	INO			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles Illegal dumping Surface impoundment Scrap metals	☐ Yes	X No			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles Illegal dumping Surface impoundment	☐ Yes	INO			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles Illegal dumping Surface impoundment Scrap metals Batteries (non-household type)	 ☐ Yes 	X No			
Refuse dumpsters/bins Recycling dumpsters/bins Drums Waste piles Illegal dumping Surface impoundment Scrap metals Batteries (non-household type)	☐ Yes	INO			

6.5	including stockpiles?		
	□ Yes □ No		
	If yes, describe suspected purpose (e.g., grading, filling low areas, berms, etc.).		
	Possible past placement of fill to raise grade of roadway. Wetlands to the east and south/west of the intersection are at a lower grade than the Site.		
Secti	on 7: Spills		
7.1	Was any evidence observed of spills (e.g., chemical, oil), discharges of contaminants at the Site, or run-off from adjacent properties, including staining, stressed vegetation, etc.?		
	☐ Yes ☒ No If yes, describe.		
	ii yes, describe.		
Secti	on 8: Environmental Compliance		
8.1	Was any evidence observed of contaminant discharges from the Site to the natural environment (e.g., stack emissions, fugitive air emissions)?		
	□ Yes No		
	If yes, describe emissions contaminants, type, and operations.		
8.2	Was any evidence observed of existing wells on the Site (e.g., water supply wells, monitoring wells, gas wells)?		
	□ Yes No		
	If yes, describe, including reference to available online well records.		

Section 9: Study Area

9.1	Who is/are the current occupant(s)/tenant(s) of the adjacent property to the north of the Site? Provide a brief description of operations and housekeeping observed during the inspection.		
	Ongoing land development project with evidence of earthworks.		
9.2	Who is/are the current occupant(s)/tenant(s) of the adjacent property to the east of the Site? Provide a brief description of operations and housekeeping observed during the inspection. Wetland.		
9.3	Who is/are the current occupant(s)/tenant(s) of the adjacent property to the south of the Site? Provide a brief description of operations and housekeeping observed during the inspection. Wetland.		
9.4	Who is/are the current occupant(s)/tenant(s) of the adjacent property to the west of the Site? Provide a brief description of operations and housekeeping observed during the inspection. Wetland and wooded area.		
9.5	Was any evidence observed of water bodies, wetlands, or potential environmentally sensitive areas within 30 metres of the Site? ☑ Yes □ No If yes, describe. Adjacent wetlands to the east and south/west of the intersection.		

Section 10: Additional Information

10.1	Were there any limitations to the inspection (e.g., snow cover, inaccessible areas, inaccessible roof, locked rooms, etc.)?								
	□ Yes	⊠ No	□ Unknown						
	If yes, describe.								
10.2	Do you have any historical information		ments pertaining to the Site (environmental, operations,						
	☐ Yes If yes, describe.	⊠ No							
Signa	ature of MTE Repr	esentative	Completed electronically by Sean Anderson, P.Eng.						

Photograph No. 1 – Southeast-facing view of the Site depicting Heart Lake Road.

Photograph No. 2 – South-facing view of the Site.

Photograph No. 3 – South-facing view of the Site, depicting Countryside Drive.

Photograph No. 4 – South-facing overview of the Site.

Photograph No. 5 –Southwest-facing view of a soil berm associated with an ongoing land development project on the adjacent property to the north of the Intersection.

Photograph No. 6- Northeast-facing view of Countryside Drive.

Photograph No. 7- South-facing view of Heart Lake Road and the wetland to the south.

Photograph No. 8- East-facing of the wetland to the east of Site.

Photograph No. 9- North-facing view of Countryside Drive.

Photograph No. 10- West-facing view of the Intersection.

Photograph No. 11- Northeast-facing view of the Site, depicting Countryside Drive.

Appendix I

Transportation and Traffic Analysis Report Paradigm Transportation Solutions Limited April 2021

Transportation and Traffic Analysis Report

Environmental Assessment Study for Heart Lake Road and Countryside Drive Intersection

Paradigm Transportation Solutions Limited

Project Summary

Project Number 200333

April 2021

Client

MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener ON N2B 3X9

Client Contact

Dave Hallman, P.Eng. Senior Project Manager/Advisor

Consultant Project Team

Adrian Soo, P.Eng. Patrick Neal, BCE

Paradigm Transportation Solutions Limited

5A-150 Pinebush Road Cambridge ON N1R 8J8 p: 519.896.3163 905.381.2229 416.479.9684

www.ptsl.com

Version 1.0.0

Transportation and Traffic Analysis Report Heart Lake Road & Countryside Drive

Signing Licencee/Engineer, P.Eng.

Disclaimer

This document has been prepared for the titled project or named part thereof (the "project") and except for approval and commenting municipalities and agencies in their review and approval of this project, should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorization of Paradigm Transportation Solutions Limited being obtained. Paradigm Transportation Solutions Limited accepts no responsibility or liability for the consequence of this document being used for a purpose other than the project for which it was commissioned. Any person using or relying on the document for such other purpose agrees and will by such use or reliance be taken to confirm their agreement to indemnify Paradigm Transportation Solutions Limited for all loss or damage resulting there from. Paradigm Transportation Solutions Limited accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned and the approval and commenting municipalities and agencies for the project.

To the extent that this report is based on information supplied by other parties, Paradigm Transportation Solutions Limited accepts no liability for any loss or damage suffered by the client, whether through contract or tort, stemming from any conclusions based on data supplied by parties other than Paradigm Transportation Solutions Limited and used by Paradigm Transportation Solutions Limited in preparing this report.

Executive Summary

Context

The City of Brampton (the City) conducted a function and design review of the Heart Lake Road corridor between Sandalwood Parkway East and Mayfield Road (November 2019). The study recommended various improvements for the Heart Lake Road corridor including upgrades to the Heart Lake Road/Countryside Drive intersection. A roundabout was proposed for further investigation as part of an overall traffic calming scheme for the Heart Lake Road corridor.

Paradigm Transportation Solutions Limited (Paradigm) was retained to undertake and complete the transportation engineering analysis to investigate and determine the feasibility of implementation of potential improvements, including but not limited to a roundabout at the intersection of Heart Lake Road/Countryside Drive.

Conclusions

The conclusions of the transportation and traffic analysis are as follows:

 Under base year conditions intersections within study area are characterized by acceptable delays and demands within capacity.

Exceptions are noted at Heart Lake Road with Countryside Drive, the Highway 410 Southbound Off-Ramp, and Sandalwood Parkway.

At these locations several critical movements are identified. Specifically, at the subject focus intersection of Heart Lake Road/Countryside Drive, the westbound left turn movement is reported to operate over-capacity. The poor operations are noted to be further exacerbated under future 2031 and 2041 traffic conditions.

A review of the five-year collision history (2015 to 2019 inclusive) indicates there were no fatal collisions recorded.

Heart Lake Road with Countryside Drive and Sandalwood Parkway were identified as two locations with a high collision frequency. The majority of reported collisions were found to be single motor vehicle collisions related to driver error/behaviour and not a function of the roadway or intersection design.

At the subject focus intersection of Heart Lake Road/ Countryside Drive the reported number of correctible collisions

to warrant the consideration of traffic signal control are just short of meeting the threshold criteria.

A sight distance review was conducted for the Heart Lake Road/Countryside Drive intersection where it was confirmed there is more than adequate approach and departure sight distance available.

It is noted even with the adequate sight distance available a high frequency of collisions was occurring. The reported collisions were determined to be attributed to aggressive driver behaviour. This resulting situation correlates with the poor operations during the peak hours stemming from a lack of gaps within the traffic stream along Heart Lake Road leading to drivers taking increased risk and more aggressive manoeuvres.

Based upon these findings it alludes the current intersection traffic control warrants improvement.

The intersection of Heart Lake Road/Countryside Drive was found to fall just short of meeting threshold criteria for the consideration of traffic signal control under base year traffic conditions. Under 2031 and 2041 traffic conditions the intersection meets the signal justification criteria.

Under traffic signal control the intersection is reported to operate at acceptable levels of service and well within capacity under 2041 traffic conditions.

In addition to traffic signal control to mitigate the poor operations, roundabout control was investigated. It was determined Heart Lake Road/Countryside Drive would be suitable for roundabout implementation.

Three roundabout configurations were investigated where it was determined a single-lane roundabout with single lane entry on the northbound and southbound approaches along with dual lane entry on the westbound approach would operate at acceptable levels of service and well within capacity under 2041 traffic conditions.

The feasibility of implementing an appropriately sized facility within the right-of-way will need to be confirmed from a detailed design perspective.

Contents

1	Introduction	1
1.1 1.2 1.3	Background Purpose and Scope Traffic Data	1
2	Existing Conditions	4
2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.5 2.5.1 2.5.2 2.6 2.7	Land Use Roads and Traffic Control Transit Active Transportation Cycling. Walking. Traffic Volumes Intersection Volumes Corridor Traffic Volumes Analysis Methodology Traffic Operations	4 8 8 9 9
3	Safety Review	19
3.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 3.3	Collision Analysis Overall Summary Intersection Collisions Mid-Block Collisions Sight Distance Review Departure Sight Distance Review Approach Sight Distance Review Sight Line Obstructions Safety Performance Summary	.19 .26 .26 .28 .30 .30
4	Traffic Forecasting	
4.1 4.1.1 4.1.2 4.2	Future Growth	.32
5	Future Operations	39
5.1 5.2 5.3	Road Network2031 Traffic Operations2041 Traffic Operations	.39
6	Mitigation Measures	49
6.1 6.2	Auxiliary Left-Turn Lane Traffic Signal Control	

	6.2.1 6.3		dabout dabout			
			Operations			
	6.4		nary of Mitigation Measures			
	7	Cond	clusions	56		
Apı	pend	dice	S			
	Appe	ndix A	Traffic Data			
	Appe	ndix B	Base Year Synchro Analysis Outputs			
		ndix C				
		ndix D				
		ndix E				
		ndix F	2041 Synchro Analysis Outputs			
		ndix G				
	Appe	ndix H				
		ndix J	Traffic Signal Control Synchro Analysis Outputs Roundabout Screening			
		ndix K				
Fig	ures	6				
	Figur	e 1.1:	Study Area	2		
			Existing Lane Configuration and Traffic Control			
			: Base Year Traffic Volumes – AM Peak Hour			
			: Base Year Traffic Volumes – PM Peak Hour			
			Collision Locations			
			: 2031 Traffic Volumes – AM Peak Hour			
	_		: 2031 Traffic Volumes – PM Peak Hour			
	_		: 2041 Traffic Volumes – AM Peak Hour			
	Figur	e 4.2B	: 2041 Traffic Volumes – PM Peak Hour	38		
Tak	oles					
	Table	2.1:	Existing Traffic Data			
	Table		Vehicle Level of Service Definitions			
	Table	_	Base Year Traffic Operations			
	Table	-	Summary of Intersection Collsions			
	Table		Summary of Mid-Block Collisions	20		
	Table	3.3:	Intersection Collisions: January 2015 – December	0 E		
	Table	2 1.	2019 Mid-Block Collisions: January 2015 – December 201	25 a		
	i abie	3.4.	mid-Block Collisions: January 2015 – December 201			
	Table	3.5	Required Sight Distance Criteria			
	Table		Departure Sight Distance Analysis Summary			
	rable 3.0. Departure dignit distance Analysis duminary23					

Table 3.7:	Approach Sight Distance Analysis Summary	30
Table 4.1:	Calculated Growth Rates	33
Table 5.1:	2031 Traffic Operations	42
Table 5.2:	2041 Traffic Operations	
Table 6.1:	Left-Turn Lane Warrant Summary	49
Table 6.2:	Heart Lake Road at Countryside Drive Operations	_
	Traffic Signal Control	51
Table 6.3:	Roundabout Screening Results	52
Table 6.4:	Roundabout Configurations	
Table 6.5:	2031 Roundabout Operations - Option 1	
Table 6.6:	2031 Roundabout Operations - Option 2	54
Table 6.7:	2031 Roundabout Operations - Option 3	54
Table 6.8:	2041 Roundabout Operations - Option 1	55
Table 6.9:	2041 Roundabout Operations - Option 2	55
Table 6.10:	2041 Roundabout Operations - Option 3	

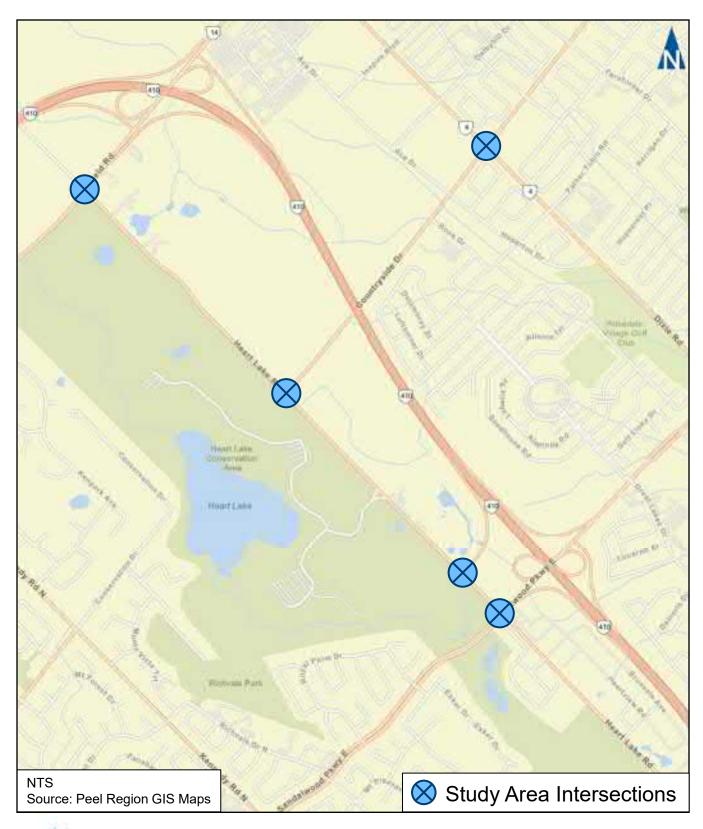
1 Introduction

1.1 Background

The City of Brampton (the City) conducted a function and design review of the Heart Lake Road corridor between Sandalwood Parkway East and Mayfield Road (November 2019). The study recommended various improvements for the Heart Lake Road corridor including upgrades to the Heart Lake Road/Countryside Drive intersection. A roundabout was proposed for further investigation as part of an overall traffic calming scheme for the Heart Lake Road corridor.

Paradigm Transportation Solutions Limited (Paradigm) was retained to undertake and complete the transportation engineering analysis to investigate and determine the feasibility of implementation of potential improvements, including but not limited to a roundabout at the intersection of Heart Lake Road/Countryside Drive.

1.2 Purpose and Scope


As part of this Transportation Analysis Report, analysis was conducted for existing and future operations within a study area encompassing five intersections. The study area comprises the intersections of Heart Lake Road with Mayfield Road, Countryside Drive, the Highway 410 Off-Ramp, and Sandalwood Parkway. Additionally, the intersection of Countryside Drive with Dixie Road. **Figure 1.1** illustrates the study area.

The objectives of this report are as follows:

- Review all available background documents, and identify relevant information;
- Analyze the operations of the existing transportation facilities within the study area;
- Develop traffic forecasts for 2031 and 2041 horizon years, representing the horizon years consistent with the City EMME model;
- Identify existing and future operational and safety deficiencies;
 and
- Identify applicable operational and safety improvements.

The analysis within this report has been carried out in general accordance with the City of Brampton's "Traffic Impact and Parking Study Terms of Reference", April 2019.

Study Area

1.3 Traffic Data

This study was initiated and authored amidst the COVID-19 global pandemic. As a result, unexpected obstacles were encountered which impacted the ability to collect new traffic data. The Province of Ontario implemented restrictions for day-to-day activities in response to the global pandemic. Restrictions included the closure of non-essential businesses and social distancing measures to curb the spread of the virus (i.e., lockdown and stay-at-home precautions). As a result, typical traffic volumes and travel patterns have been impacted. The collection of new turning movement counts would not provide an accurate reflection of typical conditions in the study area.

City staff provided all available traffic data. Intersection count data was not available for the following locations:

- Mayfield Road and Heart Lake Road;
- Countryside Drive and Dixie Road; and
- Heart Lake Road and Highway 410 Off-Ramp.

City staff offered direction regarding the noted gaps in the traffic data. To fill the voids of the existing study area intersection count data, Paradigm undertook turning movement counts on 19 November 2020.

In addition, traffic volumes were extracted from the November 2019 Stantec *Function and Design Review*¹ report. Furthermore, City staff also undertook a count at the Heart Lake Road/Countryside Drive intersection on 09 March 2021, further discussion is provided in Section 2.5.

The City also provided the following traffic data:

- ► EMME model plots for 2011 (base year), and future 2031 and 2041 horizon years;
- Signal timing data for all signalized study area intersections; and
- ▶ Collision data for intersections and mid-block locations within the study area for the five-year period of 2015 – 2019.

Appendix A contains the traffic data for reference.

Prepared by Stantec for the City of Brampton, *Function and Design Review of Heart Lake Road Corridor*, November 2019.

Paradigm Transportation Solutions Limited | Page 3

2 Existing Conditions

2.1 Land Use

West of Heart Lake Road, the land uses are identified as open space encompassing the Heart Lake Conservation park. The areas east of Heart Lake Road are currently undeveloped open space, with portions of industrial land uses south of Mayfield Road and residential land uses south of Countryside Drive.

2.2 Roads and Traffic Control

The characteristics of the roads and intersections in vicinity of the subject site are described below. Reference was made to the *City of Brampton Official Plan*².

Heart Lake Road is a north-south two-lane minor arterial road with a posted maximum speed limit of 60 km/h. South of Mayfield Road, Heart Lake Road operates under the jurisdiction of the City of Brampton, whereas north of Mayfield Road it operates under the jurisdiction of the Town of Caledon. Between Mayfield Road and Sandalwood Parkway, the roadway provides a two-lane cross-section with one travel lane in each direction. South of Sandalwood Parkway a four-lane cross-section with two travel lanes in each direction is provided.

Heart Lake Road currently provides 3.5-metre lane widths with a 2-metre gravel shoulder on either side of the road. Solid white edge of pavement markings are provided along the corridor. Centreline markings vary from single solid yellow, single dashed yellow, double solid yellow, and double with solid and dashed marks throughout the corridor. Roadside illumination is provided along the east side of the roadway in sporadic locations mainly in the vicinity of intersections.

Adjacent to the gravel shoulders, Heart Lake Road has ditching and vegetation along both sides throughout roadway corridor.

Vegetation in vicinity to the Highway 410 southbound off-ramp is noted to obstruct sight lines for drivers approaching Heart Lake Road.

Countryside Drive is an east-west four-lane minor arterial road with a posted maximum speed limit of 70 km/h operating under the jurisdiction of the City of Brampton. Countryside Drive provides 3.5-metre travel lane widths.

² City of Brampton Official Plan, Schedule B: City Road Hierarchy, Office Consolidation September 2020.

Paradigm Transportation Solutions Limited | Page 4

An urban cross-section with curb and gutter is provided along the roadway.

Countryside Drive forms "tee" intersection at Heart Lake Road with stop control provided on the westbound Heart Lake Road approach. Separate left and right turn lanes are provided on the westbound approach, along with an auxiliary right turn lane on the northbound approach.

▶ **Highway 410** is a north-south Provincial highway operating under the jurisdiction of the Ministry of Transportation, Ontario (MTO). The off-ramp has a posted advisory speed limit of 60 km/h. The approach to Heart Lake Road provides a two-lane cross-section with 3.5-metre lane widths.

The southbound off-ramp forms a stop-controlled intersection with Heart Lake Road.

Dixie Road is a north-south major arterial road with a posted maximum speed limit of 70 km/h operating under the jurisdiction of Peel Region. The roadway provides a two-lane cross-section north of Countryside Drive and a four-lane cross-section south of Countryside Drive. Dixie Road provides 3.5-metre-wide travel lanes with a 5-metre-wide raised median south of Countryside Drive. The roadway provides an urban cross-section with curb and gutter are provided along side the roadway.

Dixie Road forms a signalized intersection with Countryside Drive. Auxiliary left turn lanes are provided on all intersection approaches and auxiliary right turn lanes are provided on the eastbound, westbound, and northbound intersection approaches.

Mayfield Road is an east-west six-lane major arterial with a posted maximum speed limit of 80 km/h operating under the jurisdiction of Peel Region.

Mayfield Road provides 3.7-metre lanes with a 1.7-metre raised median both immediately east and immediately west of Heart Lake Road.

The roadway provides an urban cross-section with curb and gutter are provided along side the roadway.

Mayfield Road forms a signalized intersection with Heart Lake Road. Auxiliary left and right turn lanes are provided on all intersection approaches.

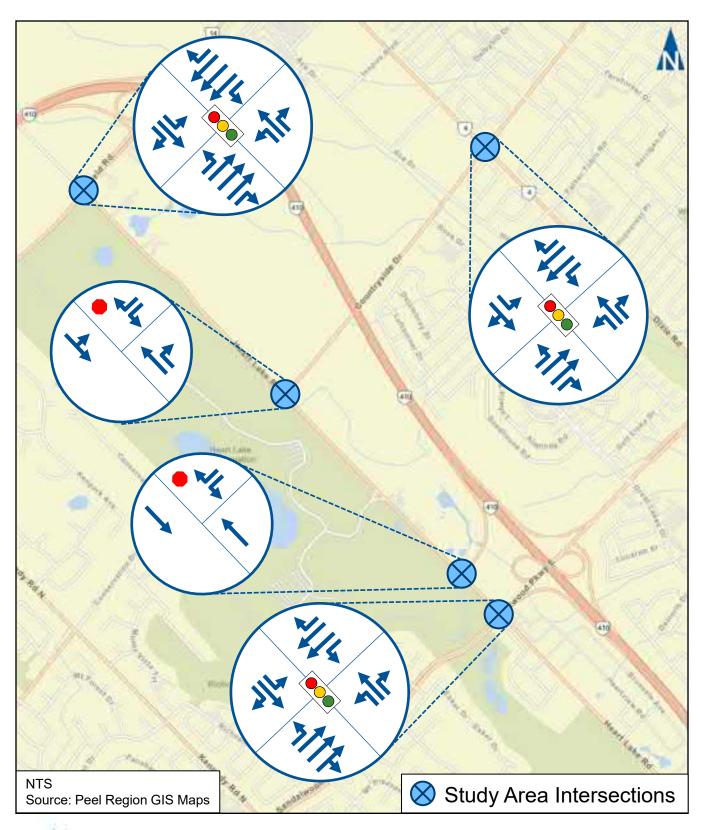
▶ Sandalwood Parkway is an east-west six-lane major arterial road with a posted maximum speed limit of 60 km/h operating under the jurisdiction of the City of Brampton.

Sandalwood Parkway has 3.5-metre lanes with a 2-metre raised median immediately east and immediately west of Heart Lake Road. The median width east of Heart Lake Road is maintained at 2 metres beyond the bridge over Highway 410, while the median west of Heart Leak Road expands to 5 metres.

Curb and gutter are provided along the outside border of both outside lanes throughout the study area. Yellow lane markings are painted around the centre median, while white striped lane lines separate the same direction travel lanes in each direction.

Sandalwood Parkway forms a signalized intersection with Heart Lake Road. Auxiliary left and right turn lanes are provided on all intersection approaches.

Figure 2.1 illustrates the existing lane arrangements and traffic control devices.


2.3 Transit

Brampton Transit provides bus transit service throughout the study area. At the time of writing, transit route information described were noted to be operating on reduced/altered service schedules due to the ongoing COVID-19 pandemic.

The Heart Lake Road corridor is served by a mixture of local and regional transit services, primarily centered along Hurontario Street and Bovaird Drive. Based on current information posted on the Brampton Transit website, the study area is served by the following routes:

- ▶ Route 18 Dixie provides service between Inspire Boulevard east of Dixie Road and the intersection of Meyerside Drive/Dixie Road. Service is provided seven days a week with the nearest stop being located along Dixie Road south of Dolbyhill Drive. Weekday service operates between 4:19 AM and 10:35 PM with headways between 3 and 12 minutes during the morning and afternoon peak periods. Saturday service operates from 5:38 AM to 8:43 PM with headways in the order of 30 minutes during the morning peak period and in the order of 20 minutes for the remainder of the service day. Sunday service operates from 6:45 AM to 7:16 PM with headways in the order of 30 minutes.
- Route 19 Fernforest provides service between the Bramalea Terminal and Ross Drive south of Countryside Drive. Service is provided on weekdays only with several stops located along Countryside Drive. Weekday service operates from 5:10 AM to 7:58 PM with 40-minutes headways during the morning and afternoon peak hours.

Existing Lane Configurations and Traffic Control

- Route 23 Sandalwood provides service between the Highway 50 Zum Queen Station Stop and Mount Pleasant Village Route 23 Stop. Weekday service operates from 4:10 AM to 1:04 AM with 20-minute headways during the morning and afternoon peak hours. Saturday service operates from 5:15 AM to 11:00 PM with headways in the order of 30 minutes. Sunday service is also offered from 7:00 AM to 11:03 PM with headways in the order of 30 minutes.
- Route 208 Mayfield provides service between the Bramalea Terminal and Mayfield Secondary School. Weekday service operates from 7:25 AM to 7:45 AM and 10:49 AM to 11:09 AM. This route provides service only to and from Mayfield Secondary School.

2.4 Active Transportation

2.4.1 Cycling

Countryside Drive is identified as a multi-use pathway, beginning approximately 30 metres west of Ross Drive and continuing east beyond Dixie Road to Goreway Drive³. The multi-use path is located along the south side of Countryside Drive before transitioning to the north side east of Bramalea Drive.

Dixie Road provides a multi-use pathway along the west side of the roadway from south of Countryside Drive. The multi-use pathway transitions to a recreational trail approximately 600 metres south of Countryside Drive at Naperton Drive.

The Esker Lake Trail is a City recreational trail located parallel to and west of Heart Lake Road. The path begins at Mayfield Road and continues south through the Heart Lake Conservation Park, crosses over Sandalwood Parkway approximately 170 metres west of Heart Lake Road and connects to a signed route along Heart Lake Road south of its intersection with Copperfield Road.

A boulevard bike path is provided along both sides of Sandalwood Parkway east of Heart Lake Road.

2.4.2 Walking

Sidewalks are provided along the west side of Heart Lake Road south of Sandalwood Parkway; however, sidewalks are not provided along the Heart Lake Road corridor between Mayfield Drive and Sandalwood Parkway.

³ City of Brampton, "Brampton Cycling Map".

Countryside Drive provides sidewalks along both sides of the road throughout the study area. The sidewalk along the south is approximately 2.5 metres-wide, while along the north the sidewalk is approximately 1.5 metres wide. West of Ross Drive, a buffer of approximately 5.0 metres between the vehicle travel lanes and the sidewalk is provided. The exception is for portion of the roadway on the bridge crossing Highway 410 where sidewalks are directly adjacent to the vehicle travel lanes. Aforementioned in Section 2.4.1, sidewalk on the south side transitions to a multi-use path for both cyclists and pedestrians approximately 30 metres west of Ross Drive. A delineated crosswalk is provided across the east intersection leg at the intersection of Heart Lake Road/Countryside Drive.

Sandalwood Parkway provides a 1.5-metre wide sidewalk along both sides of the road. The intersection of Heart Lake Road/Sandalwood Parkway provides delineated ladder crosswalks and pedestrian signal heads with countdown timers at all approaches. Also, a pedestrian refuge island is provided at the southwest quadrant of the intersection.

South of Countryside Drive, a 3.5-metre multi-use trail is provided along the west side of Dixie Road, while a 2.5-metre sidewalk is provided along the east side. The intersection of Countryside Drive/Dixie Road provides delineated ladder crosswalks and pedestrian signal heads at all approaches.

East of Heart Lake Road, Mayfield Road has a 1.5-metre sidewalk along both sides of the road. A 2.5-metre buffer is provided between the sidewalks and the vehicle travel lanes. West of Heart Lake Road, Mayfield Road has a 2.5-metre sidewalk along the south with no buffer between the sidewalk and vehicle travel lane. The sidewalk terminates 70 metres west of Heart Lake Road. The intersection of Heart Lake Road and Mayfield Road provides painted ladder crosswalks and pedestrian signal heads with countdown timers at all approaches.

2.5 Traffic Volumes

2.5.1 Intersection Volumes

As agreed with City of Brampton staff, the latest and most appropriate turning movement count (TMC) data for use would include the City's 2018 TMC at the Heart Lake Road intersections with Countryside Drive and Sandalwood Parkway.

For the remainder of the study area intersections, City staff agreed the next most applicable data for use would be the Paradigm collected 2020 data. However, upon a detailed review by Paradigm and as confirmed with City staff, the AM peak hour counts were deemed to be atypical and not appropriate for use. City staff agreed the Paradigm

collected data were to be used for the PM peak hour, whereas, the historical Stantec's intersection count data would be used for the AM peak hour.

The traffic forecasts were submitted to City staff for interim review. Following the review City staff advised the originally provided 2018 TMC for the intersection of Heart Lake Road/Countryside Drive was identified as abnormally high. Staff noted the volume discrepancy was likely a function of adjacent parallel road construction activities when the count was collected. In response, City staff completed a new count at this location in March 2021 for use, advising to apply a 20% factor at this count location to increase volumes to account for COVID conditions.

Table 2.1 summarizes the traffic data used at each study area intersection.

TABLE 2.1: EXISTING TRAFFIC DATA

Interpolation	Traffic Count					
Intersection	AM Peak Hour	PM Peak Hour				
		Paradigm				
Heart Lake Road/	Extracted from 2019					
Mayfield Road	Stantec Report	Collected				
		November 2020				
	City of Brampton	City of Brampton				
Heart Lake Road/						
Countryside Drive	Updated March	Updated March				
	2021 Count	2021 Count				
		Paradigm				
Countryside Drive/	Extracted from 2019					
Dixie Road	Stantec Report	Collected				
		November 2020				
		Paradigm				
Heart Lake Road/	Extracted from 2019					
Highway 410 Off-Ramp	Stantec Report	Collected				
		November 2020				
	City of Brampton	City of Brampton				
Heart Lake Road/						
Sandalwood Parkway	Collected	Collected				
	October 2018	October 2018				

AM Peak Hour Volumes

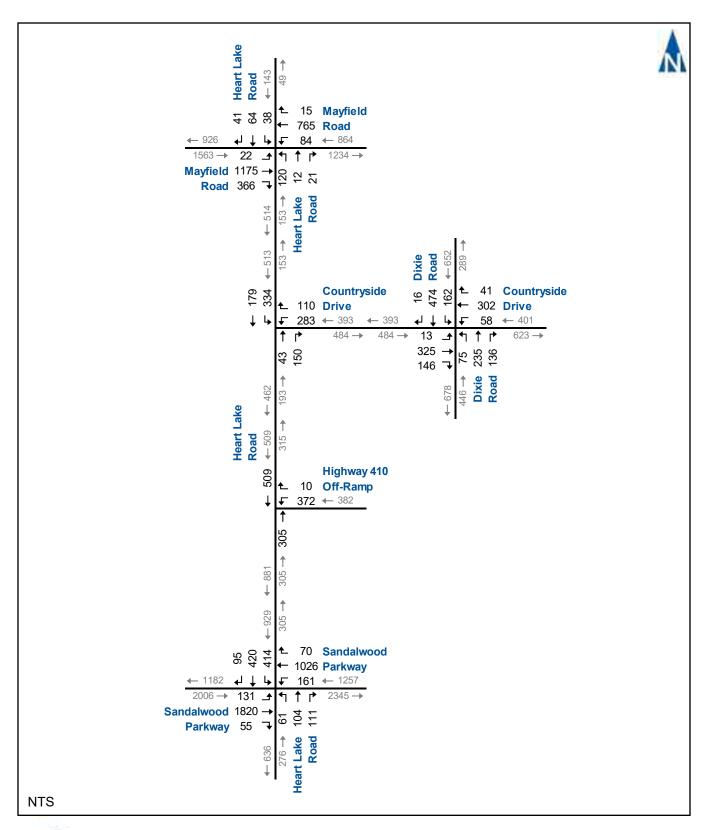
The traffic data extracted from the 2019 Stantec report were determined to be dated 2016. The 2016 volumes were grown to match the adjacent intersection locations counts using annually compounded growth rates calculated from the City's EMME model plots. The

volumes upstream and downstream from the Heart Lake Road intersections with Countryside Driveway and Sandalwood Parkway were balanced with the internal network volumes (i.e., the volumes along Countryside Drive west of Dixie Road were balanced with the volumes east of Heart Lake Road).

PM Peak Hour Volumes

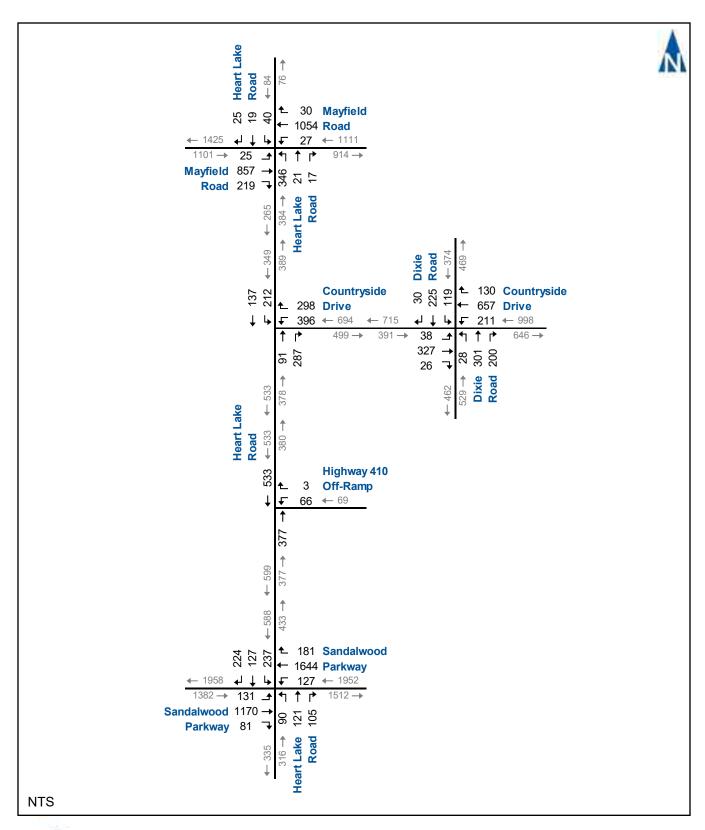
The data utilized to represent base year PM peak hour volumes were the 2020/2021 data and therefore were considered representative of base year conditions.

Figure 2.2A and **Figure 2.2B** illustrate the base year AM and PM peak hour traffic volumes, respectively.


2.5.2 Corridor Traffic Volumes

The average two-way daily traffic along the Heart Lake Road and Countryside Drive corridors is reported to range between 7,500 – 10,300 vehicles and 11,930 – 16,440 vehicles, respectively.

The planning level daily capacity of a two-lane roadway with left turn lanes is estimated to be 18,300 vehicles per day (based on a level-of-service D/E threshold per the Highway Capacity Manual).


The planning level daily capacity of a four-lane roadway with left turn lanes is estimated to be 36,800 vehicles per day (based on a level-of-service D/E threshold per the Highway Capacity Manual).

This indicates Heart Lake Road and Countryside Drive both currently provide the appropriate number of lanes and sufficient capacity for an acceptable level of service under base year conditions.

Base Year Traffic Volumes AM Peak Hour

Base Year Traffic Volumes PM Peak Hour

2.6 Analysis Methodology

Intersection level of service (LOS) is a recognized method of quantifying the average delay experienced by drivers at intersections. It is based on the delay related to the number of vehicles desiring to make a through or turning movement, compared to the estimated capacity for that movement. The capacity is based on several criteria including, but not limited to, vehicle headways, intersection geometry, vehicle composition, opposing traffic flows, and for signalized intersections, signal timing.

The LOS criteria for unsignalized intersections are somewhat different from the criteria used for signalized intersections, primarily because different transportation facilities create different driver perceptions. The expectation is that a signalized intersection is designed to carry higher volumes of traffic and experience greater delay than that of an unsignalized intersection.

Table 2.2 summarizes the LOS criteria for signalized and unsignalized intersections. The highest possible rating is LOS A, in which the average total delay is equal or less than 10 seconds per vehicles. When the average delay exceeds 80 seconds for signalized intersections, 50 seconds for unsignalized intersections or when the volume-to-capacity ratio is greater than 1.00, the movement is classified as LOS F and improvements are usually implemented, if they are feasible. LOS E is generally used as a guideline for the determination of road improvement needs on through lanes, while LOS F may be acceptable for left-turn movements at peak times, depending on capacity and safety considerations.

TABLE 2.2: VEHICLE LEVEL OF SERVICE DEFINITIONS

Level of Service (LOS)	Signalized Intersection Average Control Delay (seconds per vehicle)	Unsignalized Intersection Average Control Delay (seconds per vehicle)
Α	0 – 10	0 – 10
В	> 10 – 20	> 10 - 15
С	> 20 – 35	> 15 – 25
D	> 35 – 55	> 25 - 35
E	> 55 – 80	> 35 – 50
F	> 80	> 50

Capacity is evaluated in terms of the ratio of demand flow to capacity with an at-capacity condition represented by a volume-to-capacity (V/C) ratio of 1.00 (i.e., volume demands equals capacity). While the LOS and v/c for each movement are related, they are calculated independently. Therefore, it is possible to have a poor intersection level of service associated with a low v/c ratio or a good level of

service associated with a high v/c ratio. The designation LOS F does not automatically imply that the volume demands at an intersection or on a specific movement exceed the theoretical capacity, nor does a LOS better than E automatically imply that unused capacity is available.

The City of Brampton Traffic Impact and Parking Study Terms of Reference⁴ identifies critical operating conditions as follows:

- V/C ratios for overall intersections operations, through movements or shared through/turning movements increase to 0.90 or above;
- V/C ratios for exclusive turning movements increase to 1.00 or above; and
- ▶ 95th percentile queue lengths for an individual movement are projected to exceed available turning lane storage.

An operational analysis was conducted at the study area intersections for the AM and PM peak hours using Synchro software, which implements the methods of the Highway Capacity Manual. The key parameters used in the analysis include:

- Existing lane configurations;
- Heavy vehicle percentages derived from existing traffic count data, where available. The default 2.0% was used where detailed data was unavailable;
- Intersection peak hour factor (PHF) of 1.00;
- Pedestrian volumes derived from existing traffic count data, if available;
- Signal timing data for all signalized intersections as provided by City staff; and
- Synchro default values for all other inputs.

2.7 Traffic Operations

This section documents operational deficiencies and constraints, if any, experienced by drivers at the intersections within the study area. The operational deficiencies and constraints identified at this stage will be fundamental to the process of defining remedial measures.

City of Brampton, "Traffic Impact and Parking Study Terms of Reference", April 2019.

Paradigm Transportation Solutions Limited | Page 15

Table 2.3 summarizes the weekday AM and PM peak hour intersection operations including LOS, delay, V/C ratios, and 95th percentile queue lengths. Critical movements are highlighted.

Under base year conditions the majority of the study area intersections are reported to operate at acceptable levels of service and within capacity. All reported queues would be accommodated by the provided storage. No vehicle queues would encroach back to adjacent intersections. The following exceptions are noted:

Heart Lake Road/Countryside Drive

 The westbound left turn movement is reported to operate over-capacity under both the AM and PM peak hours.

Heart Lake Road/Highway 410 Southbound Off-Ramp

- The westbound left turn movement is reported to operate over-capacity under the AM peak hour; and
- All movements operate at acceptable levels of service and within capacity under the PM peak hour.

Heart Lake Road/Sandalwood Parkway

- Under the AM peak hour, the overall intersection is reported to be operating at a near-capacity condition (V/C = 0.97)
 - Additionally, the westbound left and southbound through movements are reported to be approaching capacity (V/C = 0.87 and 0.90, respectively).
 - The southbound left turn movement is reported to operate slightly over-capacity (V/C = 1.05) and the 95th percentile queue would exceed the available storage blocking the adjacent through lane.
- Under the PM peak hour, the westbound through movement is reported to be approaching capacity (V/C = 0.93).
- It is noted under base year conditions, the southbound left turn volumes under the AM peak hour satisfy the volume threshold (i.e., 300 vehicles per hour) for consideration of dual left turn lanes based upon Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads guidance. This intersection could easily accommodate a dual left turn movement since the second left turn lane is physically provided in the field, but the current pavement markings prohibit its use.

Appendix B contains the detailed Synchro analysis outputs for reference.

TABLE 2.3: BASE YEAR TRAFFIC OPERATIONS

		Approach/		AM Peak	Hour			PM Peak	Hour	
Intersection		Movement	LOS ¹	Delay ²	V/C ³	Q ⁴	LOS ¹	Delay ²	V/C ³	Q ⁴
	Ove	rall Intersection	В	16	0.38	_	С	23	0.49	
	OVC	Left	В	10	0.08	8	В	19	0.11	13
	EB	Triple Thru	В	13	0.36	84	C	21	0.34	83
		Right	В	12	0.23	15	В	18	0.13	18
Heart Lake		Left	A	7	0.25	15	В	14	0.08	10
Road &	WB	Triple Thru	A	7	0.21	41	В	17	0.37	90
Mayfield	VVD	Right	A	6	0.21	< 1	В	14	0.02	2
Road		Left	D	50	0.43	44	D	38	0.63	84
Signalized	NB	Thru	D	46	0.43	8	C	29	0.03	8
Olgitalized	IND	Right	D	45	0.03	< 1	C	29	0.03	< 1
		Left	E	66	0.43	23	E	66	0.48	23
	SB	Thru	E	69	0.43	34	E	61	0.48	13
	SD		E	62	0.03	2	E	59	0.17	< 1
lla antialea		Right	F			107	F			
Heart Lake	WB	Left	A	158 9	1.18	3	В	116 10	1.11 0.31	119 11
Road &		Right		_	0.11					
Countryside Drive	NB	Thru		opposed N				opposed I		
Unsignalized	<u> </u>	Right		opposed N				opposed I		
Unsignanzeu	SB	Left/Thru	A	6	0.24	8	A	6	0.18	5
	Ove	rall Intersection	В	14	0.46	-	<i>B</i>	16	0.48	40
	EB	Left	В	17	0.05	5	В	17	0.19	10
		Dual Thru	В	18	0.37	26	В	17	0.29	25
	WB	Right	В	17	0.11	12	В	15	0.02	3
Countryside		Left	В	18	0.22	14	С	25	0.67	44
Drive & Dixie		Dual Thru	В	18	0.34	24	В	19	0.58	50
Road		Right	В	17	0.03	6	В	16	0.08	10
Signalized	NB	Left	Α	9	0.19	11	A	10	0.05	7
		Thru	Α	9	0.24	25	В	12	0.35	51
		Right	Α	8	0.08	7	В	10	0.13	12
	SB	Left	Α	9	0.27	20	В	11	0.23	24
		Thru/Right	В	11	0.51	56	В	12	0.29	42
Heart Lake	WB	Left	F	107	1.08	111	С	20	0.22	7
Road &		Right	Α	< 1	0.00	< 1	Α	< 1	0.00	< 1
Hwy 410	NB	Thru		opposed N				opposed I		
Unsignalized	SB	Thru		opposed N		nt		opposed I		nt
	Ove	rall Intersection	D	45	0.97	-	D	40	0.79	-
		Left	В	20	0.46	33	Е	70	0.81	62
Heart Lake Road &	EB	Dual Thru- Thru/Right	С	34	0.78	226	С	27	0.50	115
= :		Left	R	73	0.87	87	С	20	0.50	28
Sandalwood	WB	Dual Thru	С	28	0.59	167	D	48	0.93	307
Parkway		Right	В	19	0.05	11	С	23	0.17	29
Signalized		Left	D	43	0.37	23	D	39	0.23	35
	NB	Thru	D	47	0.25	44	D	46	0.24	51
		Right	D	45	0.07	16	D	43	0.07	16

Interception	Approach/ Movement		AM Peak Hour				PM Peak Hour			
Intersection			LOS ¹	Delay ²	V/C ³	Q^4	LOS ¹	Delay ²	V/C ³	Q^4
		Left	F	108	1.05	176	D	46	0.57	84
	SB	Thru	Е	73	0.90	173	D	46	0.25	53
		Right	D	42	0.13	24	D	46	0.21	35
¹ Level of Service; ² Average vehicle delay, seconds; ³ Volume to capacity ratio; ⁴ 95th percentile queue, metres										

3 Safety Review

A safety performance review has been undertaken as part of this assessment with the purpose of establishing the safety performance at the subject Heart Lake Road/Countryside Drive intersection and nearby adjacent intersections and roadway segments. This safety review is intended to be complementary to the operational analysis.

The safety performance review consists of two parts. The first is a review of available collision data to identify any trends or patterns that could suggest a safety or operational deficiency in the existing road or intersection configurations. The second part is a thorough analysis of factors affecting safety performance as noted by an experienced transportation engineer conducted during an in-field visit, which includes a review of configuration/geometry, visibility, and roadside conditions.

The collision review focuses on the collision history and possible causes and any obvious safety deficiencies that could be identified through in-field observations, aerial photographs, and/or topographic plan drawings. The trends and patterns of collisions (and related potential causes) through analysis details concerns and issues that were further investigated in the field. An understanding of noted issues provides beneficial information necessary for selecting applicable traffic safety countermeasures.

3.1 Collision Analysis

3.1.1 Overall Summary

Collision data along with the associated turning movement count data for each intersection and mid-block section along the Heart Lake Road corridor were reviewed. Collision data was provided by the City of Brampton for the period of January 2015 – December 2019.

Collision summary tables have been developed to isolate possible trends, such as collision type, location, and severity. Specific findings for intersections and mid-block sections are discussed in subsequent sections. **Figure 3.1** illustrates the locations and number of collisions along the Heart Lake Road corridor. **Appendix C** contains the detailed analysis tables for each intersection and mid-block location.

Based upon a review of the provided data, a total of 186 collisions were reported, with 140 collisions reported occurring at intersections and 46 occurring at mid-block locations within the study area.

Table 3.1 and **Table 3.2** provide an overall summary of all intersection collisions and mid-block collisions that occurred within the study area network for the most recent five-year period.

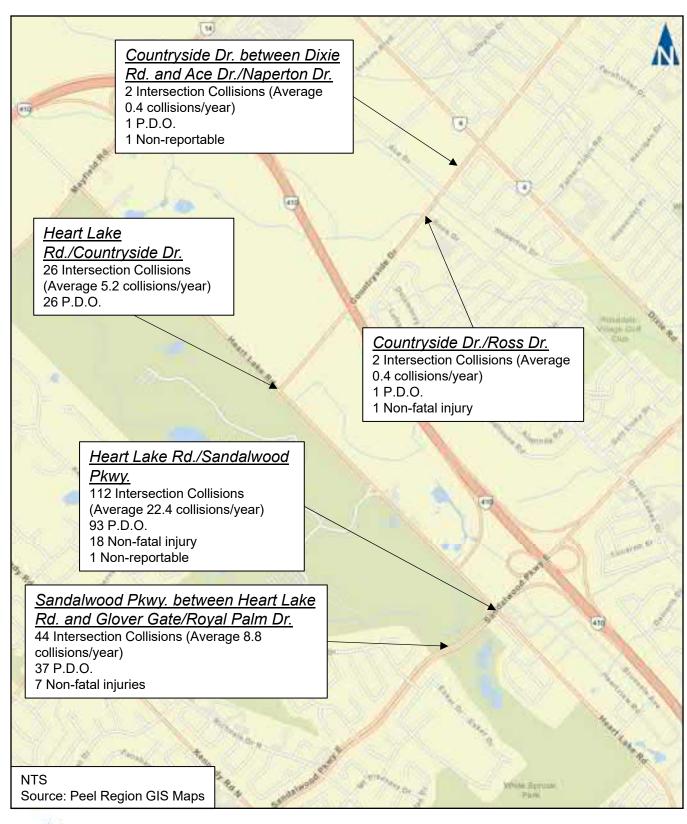
TABLE 3.1: SUMMARY OF INTERSECTION COLLSIONS

Intersection	Average Number of Collisions Per Year
Heart Lake Road at Sandalwood Parkway	22.4
Heart Lake Road at Countryside Drive	5.2
Countryside Drive at Ross Drive	0.2

TABLE 3.2: SUMMARY OF MID-BLOCK COLLISIONS

Roadway Segment	Average Number of Collisions Per Year
Sandalwood Parkway between Heart Lake Road and Glover Gate-Royal Palm Drive	8.8
Countryside Drive between Dixie Road and Ace Drive-Naperton Drive	0.4

The average number of yearly collisions at the intersections of Heart Lake Road with Countryside Drive and Sandalwood Parkway are determined to be high and indicates these intersections are collision-prone due to the high frequency. The number of reported collisions occurring at both of these locations were found to be consistent over the five-year data period examined.


Similarly, the average number of yearly collisions along Sandalwood Parkway between Glover Gate/Royal Palm Drive and Heart Lake Road are considered to be high.

The results indicate the majority of collisions that occurred during the analyzed data period were mainly "Turning Movement" and "Rear-end" collisions which were predominately reported during the evening between 6:00 PM – 9:00 PM on dry road surface conditions. Further review of the detailed collision reports reveals the majority of the collisions were related to driver error and not necessarily a function of the roadway or intersection designs.

The identified impact types infer that aggressive driving behaviour may be the potential cause for several of the collisions. Based upon notes included within the collision reports, common driver actions included failing to yield right-of-way, improper turns, following too closely, disobeying traffic control, and speeding.

In summary, the collision incidences are considerably high at the intersections of Heart Lake Road/Sandalwood Parkway and Heart Lake Road/Countryside Drive. The reported collisions were not typically severe in nature with the majority being property damage only, a nominal amount of non-fatal injury collisions, and no fatal collisions.

Further investigation of each intersection and mid-block location has been undertaken and is discussed in the subsequent sections to determine the potential issues and causes for the reported collisions.

Collision Locations

3.1.2 Intersection Collisions

Table 3.3 provides a summary of any identifiable key patterns and trends for the intersection collisions. The locations with the highest number of reported collisions include Heart Lake Road at Countryside Drive and Sandalwood Parkway. It is noted Sandalwood Parkway is a signalized intersection.

The intersection of Heart Lake Road/Sandalwood Parkway experienced the highest number of collisions (112) over the data period examined. At this intersection the most common collision impact type identified was "turning movement" (52 collisions, or 46% of the total) and "rear-end" was the next most reported impact type (33 collisions, or 29% of the total). Further investigation of the collision data and details for this intersection location indicates the majority of the turning movement collisions were attributable to motorists making improper turns as the result of aggressive driving behaviour (i.e., more susceptible to taking risks).

The intersection of Heart Lake Road/Countryside Drive experienced 26 collisions over the data period examined, with the most common impact type reported being "single motor vehicle" (SMV) collisions (10 collisions, or 38% of the total). A closer analysis of the collision data for this intersection location indicates that the SMV collisions do not have an attributable feature, but rather they occur due to different event and/or environmental conditions (i.e., influence of a wild animal, slippery road conditions, disobeying traffic control, etc.). "Rear-end" collisions were the second most reported impact type (7 collisions, or 27% of the total). When examining the combination of 17 collisions that are described as "SMV" or "rear-end", 11 of the 17 collisions, or 65%, are attributable to aggressive driving behaviour such as following too closely or disobeying traffic control.

At the other intersections and mid-block segments within the study area the reported collision data is generally unremarkable, with no identifiable trends or patterns evident.

According to the Ontario Traffic Manual (OTM) Book 12 Traffic Signals, an intersection would require an average of at least five "correctible" collisions per year over a three-year period to justify the installation of traffic signals. This approach focuses only on the type of collision that could be prevented by traffic signals controlling the right-of-way, which includes angle and turning movement collisions. The types of collisions that are excluded are rear-end, approach, sideswipe, single motor vehicle, and collisions classified as "other".

The unsignalized stop-controlled side street intersection of Heart Lake Road/Countryside Drive was reviewed to determine whether the

reported collisions would warrant consideration for the installation of traffic signals. It is concluded that traffic signals would not be warranted based upon the reported number of collisions at this location; however, it is noted that the number of angle and turning movement collisions are just below the noted criteria for consideration. From a safety perspective, there is sufficient rationale for the consideration of traffic signal control at this location.

TABLE 3.3: INTERSECTION COLLISIONS: JANUARY 2015 - DECEMBER 2019

Heart Lake Road Intersection with:	Collision Types/Trends and Patterns/Notable Location Attributes
Heart Lake Road/ Countryside Drive	 Total of 26 collisions (average 5.2 collisions per year); 10 SMV collisions (38%), 7 rear-end collisions (27%), 5 angle collisions (19%), and 4 turning movement collisions (15%) were recorded; and No fatal collisions, no non-fatal injury collisions, and 26 property damage only collisions (100%).
Heart Lake Road/ Sandalwood Parkway	 Total of 112 collisions (average 22.4 collisions per year); 52 turning movement collisions (46%), 33 rear-end collisions (29%), 8 angle collisions (7%), 7 SMV other collisions (6%), 6 sideswipe collisions (5%), 3 approaching collisions (3%), and 2 "other" collisions (2%) were recorded; and No fatal collisions, 18 non-fatal injury collisions (16%), 93 property damage only collisions (83%), and 1 non-reportable (1%).
Countryside Drive/ Ross Drive	 Total of 2 collisions (average 0.4 collisions per year); 1 turning movement collision (50%) and 1 angle collision (50%) were recorded; and No fatal collisions, 1 non-fatal injury collision (50%), and 1 property damage only collision (50%).

3.1.3 Mid-Block Collisions

Table 3.4 provides a summary of any key patterns and trends for the mid-block collision locations.

At the mid-block locations, the total number and average number of collisions are low and are generally unremarkable with no trends or patterns evident. The most notable location is the section of Sandalwood Parkway between Glover Gate-Royal Palm Drive and Heart Lake Road, where a total of 44 collisions were reported. Of these collisions, 25 were reported to have occurred in non-dry roadway conditions (i.e., wet, ice, slush, or snow). Of the 25 collisions that occurred in non-dry conditions, 15 collisions were a result of a loss of control, while the remaining 10 collisions were a results of aggressive driving behaviour, which was either speeding or following too close in this case.

Of the 44 collisions, a total of 22 collisions are attributable to aggressive driving behaviour, such as speeding, following too close, failing to yield the right-of-way, or improper lane changes. However, it is noted within this mid-block section there is a horizontal curve, which could create loss of vehicle control when paired with poor roadway conditions and aggressive driving.

TABLE 3.4: MID-BLOCK COLLISIONS: JANUARY 2015 - DECEMBER 2019

Road Section:	Collision Types/Trends and Patterns/Notable Location Attributes
Sandalwood Parkway between Heart Lake Road and Glover Gate-Royal Palm Drive	 Total of 44 collisions (average 8.8 collisions per year); 15 rear-end collisions (34%), 13 SMV other collisions (30%), 9 sideswipe collisions (20%), 5 approaching collisions (11%), and 1 angle collision (2%) were recorded; and No fatal collisions, 7 non-fatal injury collisions (16%), and 37 property damage only collisions (84%).
Countryside Drive between Dixie Road and Ace Drive- Naperton Drive	 Total of 2 collisions (average 0.4 collisions per year); 1 SMV collision (50%) and 1 sideswipe (50%) were recorded; and No fatal collisions, no non-fatal injury collisions, 1 property damage only collision (50%), and 1 non-reportable collision (50%).

3.2 Sight Distance Review

The sight distance at the stop-controlled intersection of Heart Lake Road/Countryside Drive has been assessed via an in-depth field review in addition to an accompanying desktop review. The assessment has been carried out based on the methodology contained in the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads⁵.

Sight distance requirements were considered for vehicles departing from Countryside Drive (departure sight distance) and for vehicles approaching Countryside Drive (approach sight distance). The following object heights were utilized in the field measurements:

- Driver Eye Height: 1.05 metres;
- ► Top of Car: 1.30 metres (for departure sight distance, height of approaching vehicle); and
- Vehicle Headlight or Tail/Brake Light: 0.60 metres (for approach stopping sight distance, height of vehicle/target object).

The main measurements for departing traffic were taken from approximately 5.0 metres back from the existing edge of pavement for vehicles departing, representing the position of a driver/vehicle performing a turning movement.

The main measurements for approaching traffic were taken from within the centre of either travel lane on Heart Lake Road, assuming a vehicle position perpendicular to Countryside Drive.

The sight distance requirements are based upon a design speed of 70 km/h (10 km/h above the posted maximum limit of 60 km/h).

Table 3.5 summarizes the required sight distances for a design speed of 70 km/h

Transportation Association of Canada, *Geometric Design Guide for Canadian Road*, June 2017.

Paradigm Transportation Solutions Limited | Page 28

TABLE 3.5: REQUIRED SIGHT DISTANCE CRITERIA

Sight Distance Cuitoria	Sight Distance Requirement
Sight Distance Criteria	Design Speed (70 km/h)
Minimum Departure (Left Turn) Sight Distance ¹	150.0 metres
Minimum Departure (Right Turn) Sight Distance ²	130.0 metres
Minimum Stopping Sight Distance ³	105.0 metres

Notes:

3.2.1 Departure Sight Distance Review

The departure sight distance represents the minimum distance required for a vehicle to safely enter the major roadway and complete a turning movement without significantly impeding traffic flow or providing the opportunity for conflict.

In design, the departure sight distance is measured from the standard driver eye height (1.05 metres) located on the crossing road, from a position located approximately 5.0 metres back from the travelled potion of the intersection roadway (i.e., edge of pavement) to a target top of car height of 1.30 metres above the roadway surface. **Table 3.6** summarizes the available and TAC recommended sight distances for a departing left-turn and right-turn movement across a two-lane road with a 70 km/h design speed.

TABLE 3.6: DEPARTURE SIGHT DISTANCE ANALYSIS SUMMARY

Departure Movement	Availab Distance Me		TAC Requirement	Requirements Met?	
Movement	Direction	Distance	Requirement	Metr	
	Heart Lak	e Road/Cour	ntryside Drive		
Left-Turn	Looking Right	410	150	Yes	
Movement	Looking Left	330	150	Yes	
Right-Turn	Looking Right	-	N/A	N/A	
Movement	Looking Left	340	130	Yes	

¹TAC Guide, Table 9.9.4: Design Intersection Sight Distance – Case B1, Left Turn from Stop

²TAC Guide, Table 9.9.6: Design Intersection Sight Distance – Case B2, Right Turn from Stop

³TAC Guide, Table 2.5.2: Stopping Sight Distance on Level Roadways for Automobiles

The required sight distance is met for turning movements departing Countryside Drive in both directions. It is noted the available sight distance would satisfy situations where vehicles are travelling at higher speeds (more than 100 km/h) along Heart Lake Road and vehicles departing from Countryside Drive can perform turning movements safely without being overtaken or impeding approaching traffic.

3.2.2 Approach Sight Distance Review

For vehicles approaching Countryside Drive, the minimum stopping sight distance is the distance required for the approaching vehicle to stop safely and avoid a collision. Stopping sight distance is the sum of the distance travelled by a motorist during the perception and reaction time and the braking distance. Stopping sight distance is measured from the standard driver eye height of 1.05 metres to a fixed object 0.60 metres off the surface of the roadway.

Table 3.7 summarizes the available and TAC recommended minimum sight distances. Stopping sight distance requirements are met for northbound and southbound approaching vehicles.

TABLE 3.7: APPROACH SIGHT DISTANCE ANALYSIS SUMMARY

Approach Direction	Available Sight Distance Measured (m)	TAC Sight Distance Requirement (m)	Requirements Met?
	Heart Lake Road/0	Countryside Drive	
Northbound	330	105	Yes
Southbound	410	105	Yes

3.2.3 Sight Line Obstructions

Based upon the field investigation conducted, potential sight line obstructions observed when looking to the left and to the right from Countryside Drive exist due to existing vegetation and may potentially impact and obstruct sight lines.

The potential obstructions can be satisfactorily resolved through landscaping, trimming and upkeep of the overgrown vegetation in vicinity of the intersection.

Approach sight triangles were also considered to ensure in the event a motorist departing from Countryside Drive does not stop or yield prior to approaching Heart Lake Road, such that there are adequate sight lines to minimize the potential for a collision. It was assumed an approaching vehicle on Heart Lake Road would be travelling at a design speed of 70 km/h and the vehicle approaching from Countryside Drive would be travelling at 15 km/h. The distance

travelled in 3.0 seconds for the approaching vehicles would be 60.0 metres and 15.0 metres, respectively.

Based upon the approach sight distance assessment, there would be clear sight lines within the immediate proximity of the Countryside Drive intersection approach.

3.3 Safety Performance Summary

Based upon the most recent five-year collision data there are consistent year to year number of reported collisions at the Heart Lake Road/Countryside Drive intersection. The majority of reported collisions were found to be single motor vehicle collisions related to the driver and determined not to be a function of the roadway or intersection design.

This is further validated from the sight distance review conducted. Sight distance is available for approaching and departing vehicles exceeds guideline requirements for safe operations.

However, it is noted that the number of reported "correctible" collisions are just shy of the threshold criteria to warrant the consideration of traffic signal control based on collisions alone. Regardless, from an operational perspective the preceding analysis indicates the Countryside Drive westbound left turn movement under stop control operates at an over-capacity condition and would be mitigated through traffic signal control.

Furthermore, the reported collisions are attributed to aggressive driver behaviour. This resulting situation correlates with the poor operations during the peak hours stemming from a lack of gaps within the traffic stream along Heart Lake Road leading to drivers taking increased risk and more aggressive manoeuvres.

4 Traffic Forecasting

This section documents the approach to forecast intersection turning movement volumes for horizon years 2031 and 2041. The developed growth rates are based on provided EMME modelling outputs and traffic count data obtained.

The City provided EMME model plots for the 2011 (base year), and 2031 and 2041 (future year) horizons which captured all roadway sections including the subject study area segments and adjacent roadways. Specifically, model output plots of link volumes, roadway capacity, number of lanes, and speed were provided for the AM and PM peak hours.

The provided EMME model output plots have been utilized to determine applicable growth rates to generate future traffic volume forecasts.

4.1 Future Growth

4.1.1 Background Growth

Traffic growth rates for each planning horizon for the study area intersections have been developed from the EMME model output link volumes. For this analysis, the land use and population and employment assumptions of the current traffic model are deemed to be representative of the planned growth in the study area and the City at large. The calculated growth rates will be utilized and applied to the base year traffic volumes derived to estimate the future traffic forecasts.

Applicable roadway link volumes for the AM and PM peak hours were assessed. The data was analyzed on an individual road-by-road basis, as well examining the overall growth for all study area roadway links.

Table 4.1 summarizes the calculated annual compounded growth rates, sorted by overall study area as well as on a roadway-by-roadway basis. It should be noted that although the volumes are provided by direction in the EMME model plots, the two-way volumes (i.e., total volume on each segment) are the values summarized in the table.

Appendix D contains the analysis worksheets for reference.

TABLE 4.1: CALCULATED GROWTH RATES

	Percentage Growth per Annum						
Roadway	2011 -	- 2031	2031 – 2041				
	AM	PM	AM	PM			
Countryside Drive	4.3%	5.4%	-0.4%	-0.7%			
Heart Lake Road	3.3%	5.5%	1.0%	1.1%			
Highway 410 Off-Ramp	22.2%	11.5%	9.3%	5.8%			
Mayfield Road	1.1%	1.8%	0.5%	0.7%			
Sandalwood Parkway	2.9%	2.8%	0.7%	0.2%			
Dixie Road	4.4%	4.7%	2.0%	2.0%			
Overall Study Area	2.9%	4.0%	0.6% 0.6%				
Overall Average Rate	3.4	5%	0.6%				

The calculated annual growth rates indicate significant growth is expected to occur along the study area roads up to the 2031 horizon. In reviewing link volumes between 2031 and 2041 it is noted that growth reaches a plateau, as is typical. High growth cannot be sustained for such long periods, and it was determined growth occurring between 2031 and 2041 follows a lower rate. For the overall study area roadways, a 0.6% per annum growth rate was calculated between 2031 and 2041. City staff have confirmed that the corridor growth rates calculated between 2011 – 2031 are reflective of the proposed developments situated on the east side of Heart Lake Road, north and south of Countryside Drive.

To develop the 2031 traffic forecasts, the calculated overall average rate has been applied to the derived base year traffic volumes.

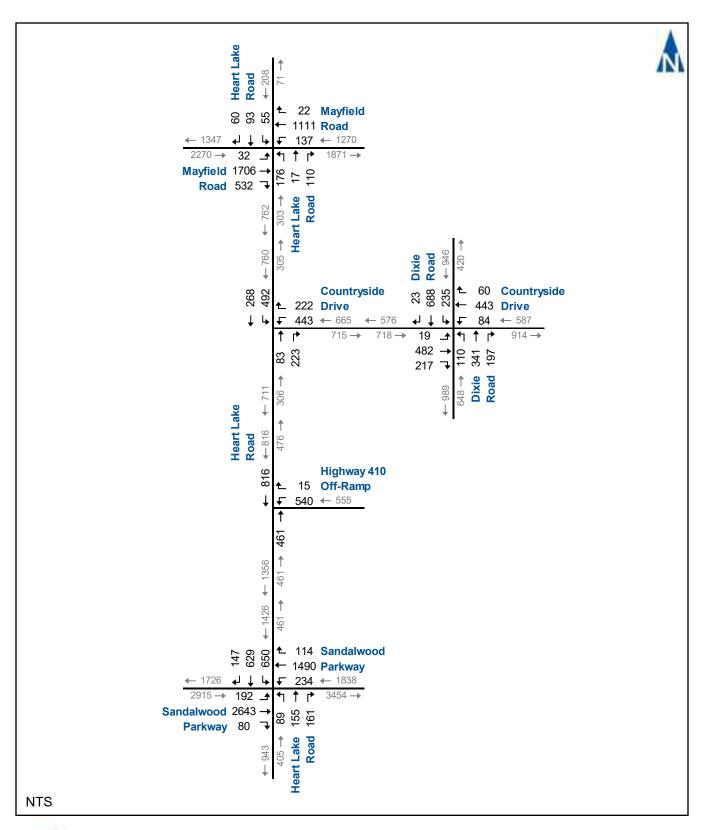
To develop the 2041 traffic forecasts, the calculated overall average rate has been applied to the 2031 traffic volumes.

4.1.2 Other Area Developments

The City of Brampton staff advised of one applicable development for consideration for the future horizons. The following development was identified to be included within the future traffic forecasts:

Countryside Village Neighbourhood 601: 401 townhomes and 78 apartment units with 7,534 ft² of ground floor retail.

Supporting documentation with relevant site traffic assignments for the Countryside Village Neighbourhood 601 was provided by City staff.


Appendix D contains the other area development site traffic component of the traffic forecasts for reference.

4.2 Future Traffic Volumes

The aforementioned growth rates were applied to base year traffic volumes to develop the future 2031 and 2041 traffic forecasts. The other area development (Countryside Village Neighbourhood 601) was also accounted within the forecasts for the 2031 and 2041 horizon years assuming build-out and occupancy by 2031.

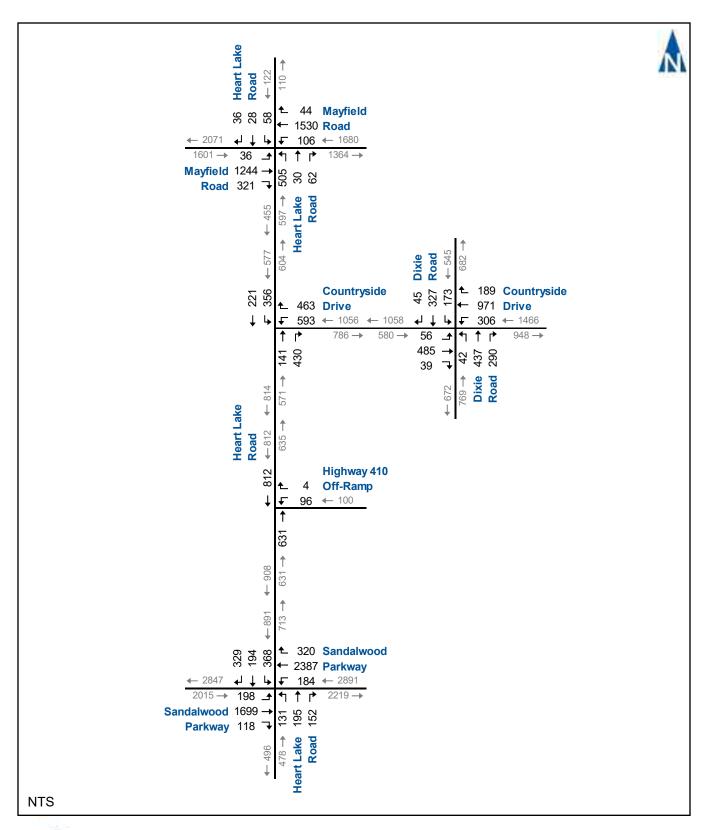
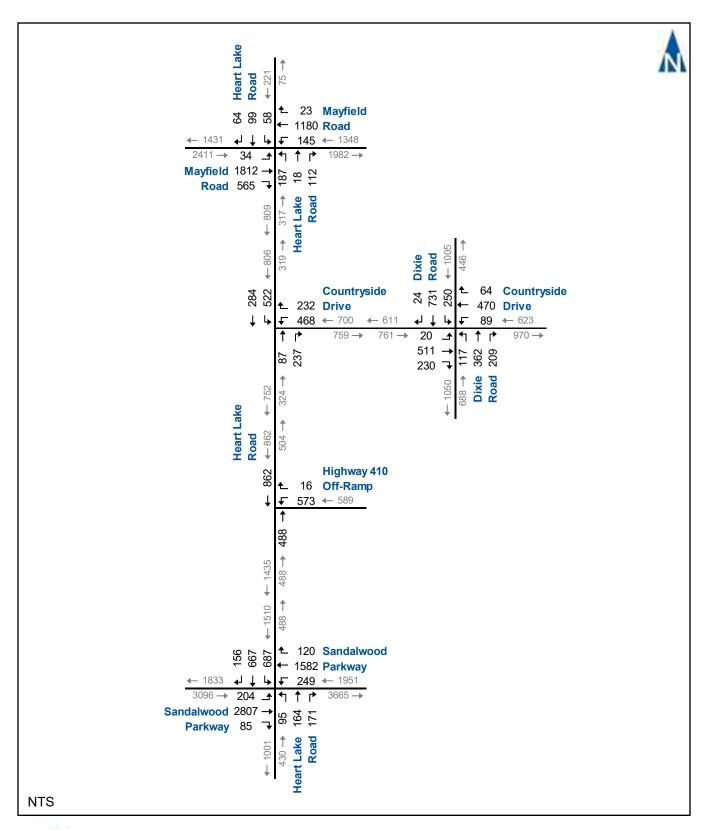
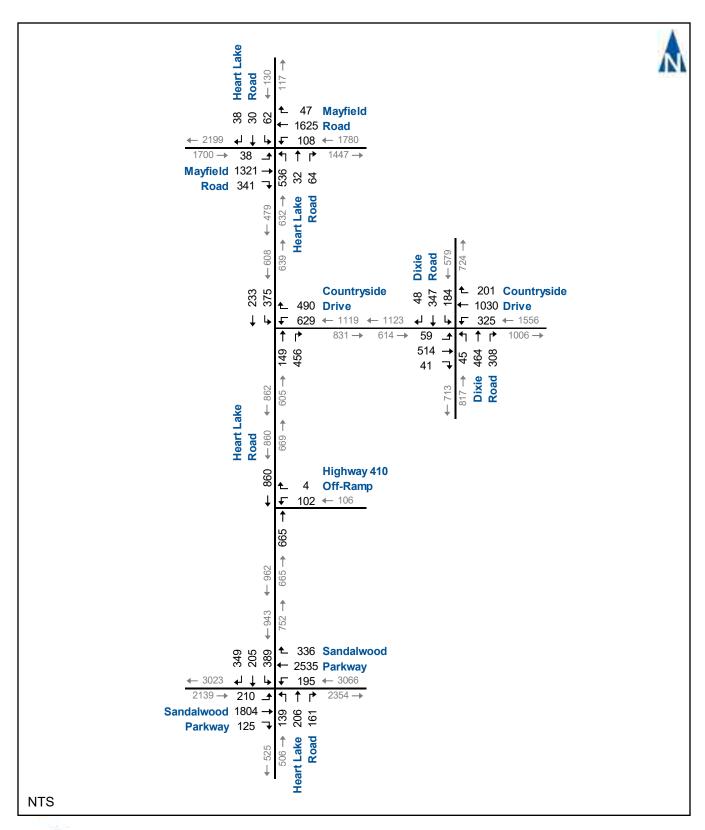

Figure 4.1A and **Figure 4.1B** illustrate the 2031 traffic forecasts for the AM and PM peak hours, respectively.

Figure 4.2A and **Figure 4.2B** illustrate the 2041 traffic forecasts for the AM and PM peak hours, respectively.



2031 Traffic Volumes AM Peak Hour



2031 Traffic Volumes PM Peak Hour

2041 Traffic Volumes AM Peak Hour

2041 Traffic Volumes PM Peak Hour

5 Future Operations

5.1 Road Network

Based upon a review of the 2015 Brampton Transportation Master Plan, the following planned roadway improvements were identified and accounted for within our analysis:

- Sandalwood Parkway:
 - Widening to 6-lanes between Hurontario Street and Heart Lake Road with an anticipated timeframe of 2024.

5.2 2031 Traffic Operations

To assess operating conditions for the 2031 horizon, an operational analysis was undertaken using the same methodology, parameters, and traffic control devices as in the analysis of base year conditions. The exception would be the optimization of signal timing phases and splits to ensure best operations for all movements.

Note that further improvements to intersections other than the intersection of Heart Lake Road/Countryside Drive is outside of the scope of work for this study. However, high-level discussion is provided of applicable mitigation measures.

Further improvements for the subject intersection of Heart Lake Road/Countryside Drive are discussed in **Section 6**.

Table 5.1 summarizes the operational analysis results including level-of-service (LOS), average vehicle delay in seconds, volume-to-capacity (v/c) ratio, and 95th percentile queue length in metres for the 2031 horizon year. Critical movements are highlighted in yellow.

Appendix E contains the Synchro analysis outputs for reference.

Under 2031 traffic conditions the majority of the study area intersections are forecast to continue operating at acceptable levels of service and within capacity. All reported queues would be accommodated by the provided storage. No vehicle queues would encroach back to adjacent intersections.

The previously identified critical movements and poorly operating intersections under base year conditions are forecast to continue operating poorly. Further exacerbated under future conditions. The following is noted:

Heart Lake Road/Countryside Drive

 The westbound left turn movement is reported to operate over-capacity under both the AM and PM peak hours.

Heart Lake Road/Highway 410 Southbound Off-Ramp

- The westbound left turn movement is reported to operate over-capacity under the AM peak hour; and
- All movements operate at acceptable levels of service and within capacity under the PM peak hour.
- To mitigate the poor forecast operational performance, upgrading the traffic control from unsignalized stop control to traffic signal control is warranted for consideration. The intersection would meet spacing criteria as it is located approximately 250.0 metres north of the signalized Heart Lake Road/Sandalwood Parkway intersection.

Furthermore, it is noted the forecast 2031 volumes would satisfy the Ontario Traffic Manual (OTM) Book 12 – Traffic Signals Justification warrant criteria for consideration of traffic signal control.

Heart Lake Road/Sandalwood Parkway

 Under the AM peak hour, the overall intersection is forecast to operate over-capacity (V/C =1.43).

The eastbound left and southbound through movements are reported to be approaching capacity (V/C = 0.89 and 0.98, respectively).

The eastbound shared through/right movement, westbound left turn movement, and southbound left turn movement are forecast to operate over-capacity (V/C = 1.29, 1.44, and 1.39, respectively).

The 95th percentile queues for the eastbound left, and westbound left turn movements would be accommodated within the available storage. The southbound left turn queue would exceed the available storage and potentially block the adjacent through lane.

 Under the PM peak hour, the overall intersection is forecast to operate over-capacity (V/C =1.14).

The eastbound left, westbound left, westbound, shared through/right movement, and southbound left turn movement are forecast to operate over-capacity (V/C = 1.19, 1.06, 1.08, and 1.05, respectively).

The 95th percentile queues for the eastbound left, and westbound left turn movements would be accommodated within the available storage. The southbound left turn queue would exceed the available storage and potentially block the adjacent through lane.

 As noted under base year conditions, the southbound left turn volumes under the AM peak hour satisfy the volume threshold (i.e., 300 vehicles per hour) for consideration of dual left turn lanes based upon Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads guidance. This intersection could easily accommodate a dual left turn movement since the second left turn lane is physically provided in the field, but the current pavement markings prohibit its use.

No further intersection geometric improvements are identified as the intersection is considered built-out, as all intersection approaches currently provide auxiliary left and right turn lanes.

TABLE 5.1: 2031 TRAFFIC OPERATIONS

		Approach/		AM Peak	Hour			PM Peak	Hour	
Intersection		Movement	LOS ¹	Delay ²	V/C ³	Q ⁴	LOS ¹	Delay ²	V/C ³	Q ⁴
		rall Intersection	С	21	0.59	-	С	30	0.71	-
	010	Left	В	15	0.12	11	D	37	0.37	18
	EB	Triple Thru	C	21	0.59	138	C	31	0.58	107
		Right	В	18	0.33	17	С	26	0.20	17
Heart Lake		Left	В	18	0.55	31	С	21	0.45	22
Road &	WB	Triple Thru	A	10	0.32	55	С	24	0.58	110
Mayfield	I VVD	Right	A	8	0.01	< 1	В	17	0.03	42
Road		Left	D	48	0.54	65	D	43	0.81	206
Signalized	NB	Thru	D	42	0.04	11	С	26	0.04	13
org/ranzoa	ואט	Right	D	42	0.10	20	C	26	0.04	10
		Left	E	63	0.10	30	E	70	0.59	30
	SB	Thru	E	66	0.43	44	E	60	0.33	17
	36	Right	E	58	0.04	10	E	58	0.21	< 1
Hoort Loke		Left	F	> 50	4.23	>200	F	> 50	3.76	>200
Heart Lake Road &	WB	Right	A	10	0.23	7	г В	13	0.51	24
Countryside Drive	NB	Thru		opposed I				opposed I		
Unsignalized	SB	Right Left/Thru		opposed I 8		1				
Orisignalized			A B	16	0.39 0.67	15	А С	20	0.36 0.74	13
	Ovei	rall Intersection	B			-				1.1
	ГР	Left	В	17 20	0.08	6 38	B B	16	0.33	14 34
	EB	Dual Thru	В		0.53			15	0.31	5 5
Carrete valida		Right	В	19	0.44	33 19	B C	13	0.02	75
Countryside	MD	Left		19	0.37			33	0.82	
Drive & Dixie	WB	Dual Thru	В	19	0.49	35 7	В	18	0.61	76
Road		Right	В	17	0.04		В	14	0.14	12
Signalized	ND	Left	В	18	0.50	26	В	17	0.13	15
	NB	Thru	A	10	0.36	41	С	24	0.61	127
		Right	A	8	0.12	9	В	17	0.18	19
	SB	Left	В	12	0.45	35	С	33	0.66	72
		Thru/Right	В	17	0.75	115	С	22	0.52	97
Heart Lake	WB	Left	F	> 50	3.23	>200	F	> 50	0.75	35
Road &		Right	Α	< 1	0.00	< 1	Α	< 1	0.00	< 1
Hwy 410	NB	Thru		opposed I				opposed I		
Unsignalized	SB	Thru		opposed N		ent		opposed I		ent
	Ovei	rall Intersection	F	132	1.43	-	E	71	1.14	440
		Left	F	81	0.89	93	F	185	1.19	118
Heart Lake Road &	EB	Dual Thru- Thru/Right	F	179	1.29	451	С	34	0.73	191
Sandalwood		Left	F	276	1.44	149	F	133	1.06	102
Parkway	WB	Dual Thru- Thru/Right	D	46	0.81	197	F	85	1.08	395
Signalized		Left	Е	74	0.79	42	D	42	0.39	48
	NB	Thru	D	48	0.32	64	D	51	0.40	80
	'10	Right	D	45	0.14	25	D	46	0.17	30

Intersection	Approach/			AM Peak	Hour		PM Peak Hour			
		Movement	LOS ¹	Delay ²	V/C ³	Q ⁴	LOS ¹	Delay ²	V/C ³	Q ⁴
		Left	F	253	1.39	359	F	119	1.05	178
	SB	Thru	Е	80	0.98	288	D	51	0.39	79
		Right	D	36	0.17	33	D	54	0.50	86
¹ Level of Service; ²	¹ Level of Service; ² Average vehicle delay, seconds; ³ Volume to capacity ratio; ⁴ 95th percentile queue, metres									

5.3 2041 Traffic Operations

To assess operating conditions for the 2041 horizon, an operational analysis was undertaken using the same methodology, parameters, and traffic control devices as in the analysis of the 2031 horizon conditions. The exception would be the optimization of signal timing phases and splits to ensure best operations for all movements.

Note that further improvements to intersections other than the intersection of Heart Lake Road/Countryside Drive is outside of the scope of work for this study. However, high-level discussion is provided of applicable mitigation measures.

Further improvements for the subject intersection of Heart Lake Road/Countryside Drive are discussed in **Section 6**.

Table 5.2 summarizes the operational analysis results including level of service (LOS), average vehicle delay in seconds, volume-to-capacity (v/c) ratio, and 95th percentile queue length in metres for the 2041 horizon year. Critical movements are highlighted in yellow.

Appendix F contains the Synchro analysis outputs for reference.

Similar to the 2031 analysis, with the addition on the nominal anticipated growth between 2031 and 2041 the study area intersection operations would be slightly exacerbated.

The previously identified critical movements and poorly operating intersections under 2031 traffic conditions are forecast to continue operating poorly under 2041 traffic conditions. The following is noted:

Heart Lake Road/Countryside Drive

 The westbound left turn movement is reported to operate over-capacity under both the AM and PM peak hours.

Countryside Drive/Dixie Road

- Under the PM peak hour, the overall intersection is identified as a critical movement (V/C = 0.86). However, this is not deemed a critical issue as it forecast to operate within capacity.
 - Similarly, the westbound and southbound left turn movements are identified as critical movements (V/C = 0.86) but are noted to operate within capacity.
- No mitigation measures are identified to be required at this intersection.

Heart Lake Road/Highway 410 Southbound Off-Ramp

- The westbound left turn movement is reported to operate over-capacity under both the AM and PM peak hour; and
- To mitigate the poor forecast operational performance, upgrading the traffic control from unsignalized stop control to traffic signal control is warranted for consideration. The intersection would meet spacing criteria as it is located approximately 250.0 metres north of the signalized Heart Lake Road/Sandalwood Parkway intersection.

Furthermore, it is noted the forecast 2041 volumes would satisfy the Ontario Traffic Manual (OTM) Book 12 – Traffic Signals Justification warrant criteria for consideration of traffic signal control.

Heart Lake Road/Sandalwood Parkway

 Under the AM peak hour, the overall intersection is forecast to operate over-capacity (V/C =1.43).

The eastbound left and westbound shared through/right movements are reported to be approaching capacity (V/C = 0.91 and 0.87, respectively).

The eastbound shared through/right movement, westbound left turn movement, southbound left turn, and southbound through movements are forecast to operate over-capacity (V/C = 1.38, 1.45, 1.51, and 1.04, respectively).

The 95th percentile queues for the eastbound left turn movement would be accommodated within the available storage. The westbound left and southbound left turn queues would exceed the available storage and potentially block the adjacent through lane.

 Under the PM peak hour, the overall intersection is forecast to operate over-capacity (V/C =1.18).

The westbound left turn movement is reported to be approaching capacity (V/C = 0.88).

The eastbound left, westbound left, westbound shared through/right movement, and southbound left turn movement are forecast to operate over-capacity (V/C = 1.26, 1.18, and 1.08, respectively).

The 95th percentile queues for the westbound left turn movement would be accommodated within the available storage. The eastbound left and southbound left turn queues would exceed the available storage and potentially block the adjacent through lane.

 As noted under base year conditions, the southbound left turn volumes under the AM peak hour satisfy the volume threshold (i.e., 300 vehicles per hour) for consideration of dual left turn lanes based upon Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads guidance. This intersection could easily accommodate a dual left turn movement since the second left turn lane is physically provided in the field, but the current pavement markings prohibit its use.

No further intersection geometric improvements are identified as the intersection is considered built-out, as all intersection approaches currently provide auxiliary left and right turn lanes.

TABLE 5.2: 2041 TRAFFIC OPERATIONS

		Approach/		AM Peak	Hour			PM Peak	Hour	
Intersection		Movement	LOS ¹	Delay ²	V/C ³	Q ⁴	LOS ¹	Delay ²	V/C ³	Q ⁴
		rall Intersection	С	22	0.64	-	C	31	0.76	
	OVC	Left	В	16	0.14	11	D	37	0.40	18
	EB	Triple Thru	C	22	0.63	138	C	29	0.58	105
		Right	В	18	0.35	16	C	23	0.30	16
Heart Lake		Left	С	24	0.55	37	В	20	0.46	19
Road &	WB	Triple Thru	A	9	0.34	50	С	22	0.59	106
Mayfield	VVD	Right	A	7	0.01	< 1	В	15	0.03	4
Road		Left	D	52	0.63	80	E	63	0.03	249
Signalized	NB	Thru	D	43	0.03	12	C	28	0.05	15
Orginalizad	IND	Right	D	44	0.12	23	C	28	0.03	11
-		Left	E	63	0.12	31	E	71	0.61	32
	SB	Thru	E	66	0.59	47	E	59	0.01	18
	30	Right	E	58	0.04	11	E	58	0.02	1
Heart Lake		Left	F	> 50	5.26	>200	F	> 50	4.56	>200
Road &	WB	Right	A	10	0.24	7	В	14	0.54	27
		Thru		opposed l		•				
Countryside Drive NE	NB	Right		opposed I						
Unsignalized	SB	Left/Thru	A	8	0.42	17	_	9	0.39	15
Offsignalized		rall Intersection	B	17	0.42	17	А С	23	0.39	15
	Ovei	Left	В	17	0.08	6	В	16	0.35	16
	EB	Dual Thru	В	20	0.55	40	В	14	0.33	37
		Right	В	19	0.33	36	В	12	0.03	5
Countryside		Left	В	19	0.41	20	D	37	0.86	87
Drive & Dixie	WB	Dual Thru	В	19	0.41	37	В	18	0.62	82
Road	VVD	Right	В	16	0.04	8	В	13	0.02	16
Signalized		Left	С	27	0.64	37	В	19	0.17	16
Olgitalized	NB	Thru	В	10	0.04	45	С	28	0.17	140
	IND		A	8	0.36	9	В	19	0.00	19
		Right Left	В	13	0.13	40	E	58	0.19	84
	SB		В			142	C			
Hoort Lake		Thru/Right Left	F	19 > 50	0.80 3.89	>200	F	25 > 50	0.58	105 47
Heart Lake Road &	WB		A	< 1	0.00	< 1	A	< 1	0.93	< 1
Hwy 410	NB	Right Thru								
Unsignalized	SB	Thru		opposed Nopposed N				opposed I opposed I		
Offsignalized		rall Intersection	<i>F</i>	158	1.48	enii 	<i>F</i>	91	1.18	711L
	Ovei	Left	F	85	0.91	99	F	207	1.26	129
	EB	Dual Thru-								
Heart Lake Road &		Thru/Right	F	220	1.38	493	D	43	0.84	232
Sandalwood		Left	F	281	1.45	157	F	81	0.88	92
Parkway	WB	Dual Thru- Thru/Right	D	51	0.87	214	F	125	1.18	445
Signalized		Left	F	87	0.85	48	D	41	0.40	50
				1				·		
i i	NB	Thru	D	47	0.33	68	D	51	0.42	84

Intersection		Approach/	AM Peak Hour				PM Peak Hour			
		Movement	LOS ¹	Delay ²	V/C ³	Q ⁴	LOS ¹	Delay ²	V/C ³	Q ⁴
		Left	F	286	1.51	391	F	123	1.08	190
	SB	Thru	F	97	1.04	319	D	50	0.40	83
		Right	D	36	0.19	36	D	54	0.52	91
¹ Level of Service; ²	¹ Level of Service; ² Average vehicle delay, seconds; ³ Volume to capacity ratio; ⁴ 95th percentile queue, metres									

6 Mitigation Measures

The operations of the subject Heart Lake Road/Countryside Drive intersection indicated over-capacity movements under base year and future traffic conditions.

The mitigation measures within this section will focus on potential improvements for the intersection of Heart Lake Road/Countryside Drive. Although the other intersections within the study area are forecast to operate poorly in the horizon years analyses, examining improvements at these intersections is outside the scope of this study.

6.1 Auxiliary Left-Turn Lane

The Ministry of Transportation of Ontario's *Design Supplement to the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads*⁶ provides guidance on the assessment of and/or need for auxiliary left-turn lanes at unsignalized intersections.

The southbound left-turn movement at the intersection of Heart Lake Road/Countryside Drive was assessed using the nomographs to determine the need for left-turn lanes on a two-lane undivided highway with a design speed of 70 km/h.

Table 6.1 summarizes the warrant results.

TABLE 6.1: LEFT-TURN LANE WARRANT SUMMARY

Analysia Harizan	Left-Turn Lane Required?					
Analysis Horizon	AM Peak Hour	PM Peak Hour				
Base Year	Yes	Yes				
2031	Yes	Yes				
2041	Yes	Yes				

The warrant analysis concludes an auxiliary left-turn lane is warranted at the unsignalized intersection of Heart Lake Road/Countryside Drive.

Appendix G contains the left-turn lane nomographs.

⁶ Transportation Association of Canada, MTO Design Supplement for TAC Geometric Design Guide for Canadian Roads – Appendix 9A, Ministry of Transportation of Ontario, 2017.

Paradigm Transportation Solutions Limited | Page 49

6.2 Traffic Signal Control

The current stop-control intersection of Heart Lake Road/Countryside Drive was investigated to determine whether the future traffic forecasts volumes would warrant the installation of traffic signal control.

The warrant analysis was conducted in accordance with the methodology outlined in the Ontario Traffic Manual (OTM) Book 12 – Traffic Signals, using Justification 7 which is based on projected volumes.

It is noted that under base year traffic conditions the traffic volumes are just under the threshold criteria to warrant the consideration of traffic signal control.

The analysis indicates that traffic signal control would be warranted for installation under 2031 and 2041 traffic conditions.

Appendix H contains the detailed warrant worksheets for reference.

6.2.1 Traffic Operations

An operational analysis was conducted for 2031 and 2041 horizons for the intersection of Heart Lake Road/Countryside Drive with a traffic signal control implemented. Along with signal control, the intersection was analyzed with the provision of an auxiliary southbound left turn lane.

Table 6.2 summarizes the operational analysis results with the mitigative measures implemented. The results include level of service (LOS), average vehicle delay in seconds, volume-to-capacity (v/c) ratio, and 95th percentile queue length in metres for the 2031 and 2041 horizon years. Critical movements are highlighted in yellow.

All movements at the intersection of Heart Lake Road/Countryside Drive are forecast to operate within capacity and with acceptable delays.

Appendix I contains the Synchro analysis outputs for reference.

TABLE 6.2: HEART LAKE ROAD AT COUNTRYSIDE DRIVE OPERATIONS – TRAFFIC SIGNAL CONTROL

Interesetion	1	Approach/		AM Peal	k Hour			PM Peal	k Hour	
Intersection		Movement	LOS ¹	Delay ²	V/C ³	Q ⁴	LOS ¹	Delay ²	V/C ³	Q ⁴
		2031	Horizon	Year Tra	affic Op	eration	S			
	Over	rall Intersection	С	25	0.68	•	С	24	0.68	-
Heart Lake	WB	Left	С	32	0.67	111	С	28	0.68	153
Road &	VVD	Right	С	21	0.14	15	В	19	0.29	17
Countryside	ND	Thru	С	34	0.21	28	D	48	0.43	52
Drive	NB	Right	С	33	0.14	19	Α	9	0.30	22
Signalized	SB	Left	С	21	0.65	89	С	32	0.64	89
	SD	Thru	В	15	0.28	47	С	25	0.30	56
		2041	Horizon	Year Tra	affic Op	eration	S			
	Over	rall Intersection	С	26	0.71	-	С	25	0.72	-
Heart Lake	WB	Left	С	33	0.71	119	С	31	0.74	170
Road &	VVD	Right	С	22	0.15	15	В	20	0.31	18
Countryside NE	ND	Thru	D	36	0.24	29	D	50	0.48	56
	IND	Right	С	35	0.15	20	В	10	0.33	29
Signalized	CD.	Left	С	22	0.68	96	С	32	0.66	93
	SB	Thru	В	15	0.30	49	С	25	0.31	58

6.3 Roundabout

An initial screening of the intersection of Heart Lake Road/Countryside Drive was undertaken to determine if a roundabout would be feasible for implementation. Roundabouts are typically not recommended for implementation under the following circumstances:

- On roadways with typical daily volumes greater than 20,000 vehicles per day; or
- On sections of roadways where circulatory flow between an entry point and the next exit point is greater than 1,800 vehicles per hour; or
- At intersections with right-of-way constraints.

Based upon the above criteria, the Heart Lake Road/Countryside Drive intersection does not meet any of the criteria. As such, further investigation of a roundabout was pursued.

Screening was completed to determine at a planning level, whether a single-lane roundabout or a multi-lane roundabout would be required. A review of Ministry of Transportation, Ontario (MTO), Region of Waterloo, and the Region of Peel roundabout screening tools were undertaken. Use of the MTO Roundabout Feasibility Initial Screening Tool Version 1.0 identified the capacity guidelines for multi-lane entries as follows:

- ► Entry flow + circulating flow < 1,400 vph, single-lane entry likely sufficient:
- 1,400 vph < entry flow + circulating flow < 2,200 vph, two-lane entry likely sufficient; and
- ► Entry flow + circulating flow > 2,200 vph, consider three-lane entry.

Table 6.3 summarizes the results of the screening for the ultimate (2041) horizon traffic volumes. **Appendix J** contains the detailed roundabout screening tool analysis for reference.

TABLE 6.3: ROUNDABOUT SCREENING RESULTS

Interception Log	Num	Number of Lanes Required					
Intersection Leg	Entry	Circulating	Exit				
North	1	1	1				
South	1	1 – 2	1				
East	1	1 – 2	1				

The results of the screening indicate the following:

- All intersection approaches would be adequately served by a single lane entry;
- Roundabout exits would be adequately served by a single lane exit; and
- A partial portion of the roundabout may require two circulating lanes.

It is noted the capacity guidelines for single lane circulatory is 900 – 1,200 vph. The circulating volumes for the south and east legs are noted to be slightly above the 1,200 vph threshold under 2041 traffic conditions.

Under the existing roadway configuration, the east leg of the Heart Lake Road/Countryside Drive intersection has a four-lane cross-section. That is, two approach lanes and two receiving lanes. Therefore, consideration for a dual entry was accounted for on this approach. While the northbound approach provides a two lanes approach as well, a single lane approach was investigated to minimize the size of roundabout for assessment.

Table 6.4 summarizes the following roundabout configurations investigated and analyzed.

Westbound Northbound Southbound Option **Circulating Lanes** Approach Approach Approach Single Circulating Single lane Single lane Single lane 1 lane entry entry entry Single Circulating Dual lane Single lane Single lane 2 entry lane entry entry Single lane Partial dual Dual lane Single lane 3 entry circulating lanes entry entry

TABLE 6.4: ROUNDABOUT CONFIGURATIONS

6.3.1 Traffic Operations

An ARCADY roundabout operational analysis was undertaken for the three roundabout configurations for the future forecast 2031 and 2041 traffic conditions. **Table 6.5 – 6.10** summarizes the operational results. **Appendix K** contains the ARCADY analysis outputs for reference.

Based upon the operational results, it is determined that Option 1 can be eliminated as a potential roundabout configuration. The single circulating lane with single lane entries on all intersection approaches

will result in the westbound (east leg – Countryside Drive) approach approaching capacity under the 2031 and 2041 traffic conditions.

Option 2 confirms a roundabout with a single circulating lane, dual entry on the westbound (east leg – Countryside Drive) approach, and single lane entry on the northbound and southbound approaches will operate at acceptable levels of service and well within capacity under future traffic conditions.

Option 3 generates similar results to Option 2, with operations slightly improved with the additional partial dual circulating lane portion. However, based upon the results of Option 2, the necessity of a dual circulating lane portion is confirmed not to be required.

TABLE 6.5: 2031 ROUNDABOUT OPERATIONS - OPTION 1

Analysis Period	Intersection Approach	Queue (PCE)	Delay (sec)	V/C	Overall LOS	Intersection Delay (sec)
AM Peak	North Leg	10	15.3	0.78		
Hour	South Leg	1	5.2	0.32	В	10.1
Houi	East Leg	1	6.4	0.56		
PM Peak	North Leg	2	10.6	0.65		
Hour	South Leg	< 1	7.3	0.56	С	19.6
Hour	East Leg	37	31.2	0.92		

TABLE 6.6: 2031 ROUNDABOUT OPERATIONS - OPTION 2

Analysis Period	Intersection Approach	Queue (PCE)	Delay (sec)	V/C	Overall LOS	Intersection Delay (sec)
AM Peak	North Leg	10	15.3	0.78		
Hour	South Leg	1	5.2	0.32	Α	9.4
Hour	East Leg	1	4.5	0.37		
DM Dook	North Leg	2	10.7	0.65		
PM Peak Hour	South Leg	< 1	7.3	0.56	Α	7.6
Hour	East Leg	< 1	6.0	0.52		

TABLE 6.7: 2031 ROUNDABOUT OPERATIONS - OPTION 3

Analysis Period	Intersection Approach	Queue (PCE)	Delay (sec)	V/C	Overall LOS	Intersection Delay (sec)
AM Dook	North Leg	10	15.3	0.78		
AM Peak	South Leg	1	5.2	0.32	Α	8.8
Hour	East Leg	1	3.0	0.37		
DM Dook	North Leg	2	10.7	0.65		
PM Peak Hour	South Leg	< 1	7.3	0.56	Α	7.0
Hour	East Leg	2	4.9	0.61		

TABLE 6.8: 2041 ROUNDABOUT OPERATIONS - OPTION 1

Analysis Period	Intersection Approach	Queue (PCE)	Delay (sec)	V/C	Overall LOS	Intersection Delay (sec)
AM Dook	North Leg	17	20.9	0.84		
AM Peak Hour	South Leg	1	5.5	0.35	В	12.8
Hour	East Leg	1	6.9	0.59		
DM Dook	North Leg	4	12.5	0.70		
PM Peak Hour	South Leg	1	8.1	0.60	D	32.2
Hour	East Leg	72	55.9	0.98		

TABLE 6.9: 2041 ROUNDABOUT OPERATIONS - OPTION 2

Analysis Period	Intersection Approach	Queue (PCE)	Delay (sec)	V/C	Overall LOS	Intersection Delay (sec)
AM Peak	North Leg	17	20.9	0.84		
Hour	South Leg	1	5.5	0.35	В	12.0
Hour	East Leg	1	4.7	0.40		
PM Peak	North Leg	5	12.8	0.70		
Hour	South Leg	1	8.1	0.60	Α	8.5
Houl	East Leg	1	6.4	0.55		

TABLE 6.10: 2041 ROUNDABOUT OPERATIONS - OPTION 3

Analysis Period	Intersection Approach	Queue (PCE)	Delay (sec)	V/C	Overall LOS	Intersection Delay (sec)
AM Peak	North Leg	17	20.9	0.84		
	South Leg	1	5.5	0.35	В	11.4
Hour	East Leg	1	3.1	0.40		
PM Peak	North Leg	5	12.8	0.70		
Hour	South Leg	1	8.1	0.60	Α	8.1
	East Leg	2	5.5	0.65		

6.4 Summary of Mitigation Measures

The preceding analysis confirms that upgrading from stop-control to either traffic signal control or roundabout control would be warranted and would improve and mitigate the forecast poor operations under future traffic conditions.

Regarding roundabout control, the feasibility of implementing an appropriated sized facility within the right-of-way will need to be confirmed from a detailed design perspective.

7 Conclusions

The conclusions of the transportation and traffic analysis are as follows:

 Under base year conditions intersections within study area are characterized by acceptable delays and demands within capacity.

Exceptions are noted at Heart Lake Road with Countryside Drive, the Highway 410 Southbound Off-Ramp, and Sandalwood Parkway.

At these locations several critical movements are identified. Specifically, at the subject focus intersection of Heart Lake Road/Countryside Drive, the westbound left turn movement is reported to operate over-capacity. The poor operations are noted to be further exacerbated under future 2031 and 2041 traffic conditions.

A review of the five-year collision history (2015 to 2019 inclusive) indicates there were no fatal collisions recorded.

Heart Lake Road with Countryside Drive and Sandalwood Parkway were identified as two locations with a high collision frequency. The majority of reported collisions were found to be single motor vehicle collisions related to driver error/behaviour and not a function of the roadway or intersection design.

At the subject focus intersection of Heart Lake Road/ Countryside Drive the reported number of correctible collisions to warrant the consideration of traffic signal control are just short of meeting the threshold criteria.

A sight distance review was conducted for the Heart Lake Road/Countryside Drive intersection where it was confirmed there is more than adequate approach and departure sight distance available.

It is noted even with the adequate sight distance available a high frequency of collisions was occurring. The reported collisions were determined to be attributed to aggressive driver behaviour. This resulting situation correlates with the poor operations during the peak hours stemming from a lack of gaps within the traffic stream along Heart Lake Road leading to drivers taking increased risk and more aggressive manoeuvres.

Based upon these findings it alludes the current intersection traffic control warrants improvement.

► The intersection of Heart Lake Road/Countryside Drive was found to fall just short of meeting threshold criteria for the consideration of traffic signal control under base year traffic conditions. Under 2031 and 2041 traffic conditions the intersection meets the signal justification criteria.

Under traffic signal control the intersection is reported to operate at acceptable levels of service and well within capacity under 2041 traffic conditions.

In addition to traffic signal control to mitigate the poor operations, roundabout control was investigated. It was determined Heart Lake Road/Countryside Drive would be suitable for roundabout implementation.

Three roundabout configurations were investigated where it was determined a single-lane roundabout with single lane entry on the northbound and southbound approaches along with dual lane entry on the westbound approach would operate at acceptable levels of service and well within capacity under 2041 traffic conditions.

The feasibility of implementing an appropriately sized facility within the right-of-way will need to be confirmed from a detailed design perspective.

Appendix A

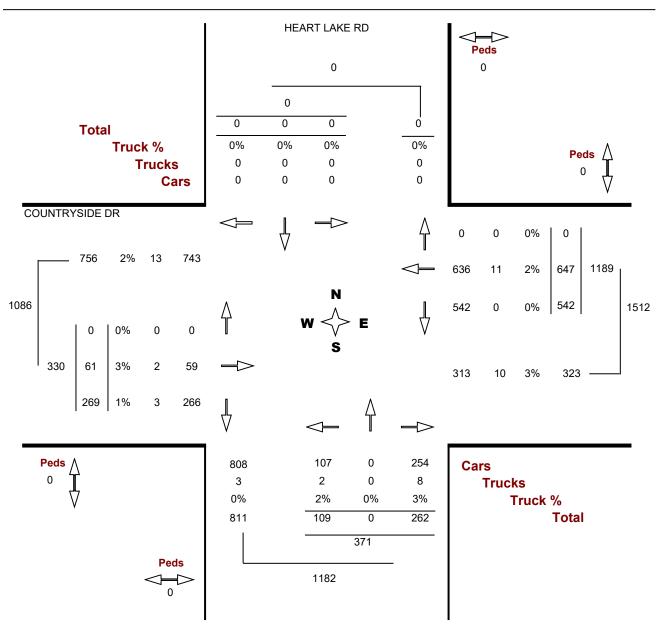
Traffic Data

Turning Movements Report - AM Period

Location...... COUNTRYSIDE DR @ HEART LAKE RD

Municipality. Brampton

Traffic Cont. Stop sign


Major Dir..... North south

GeoID...... 2298

Count Date. Wednesday, 13 June, 2018

Count Time. 07:00 AM — 09:00 AM

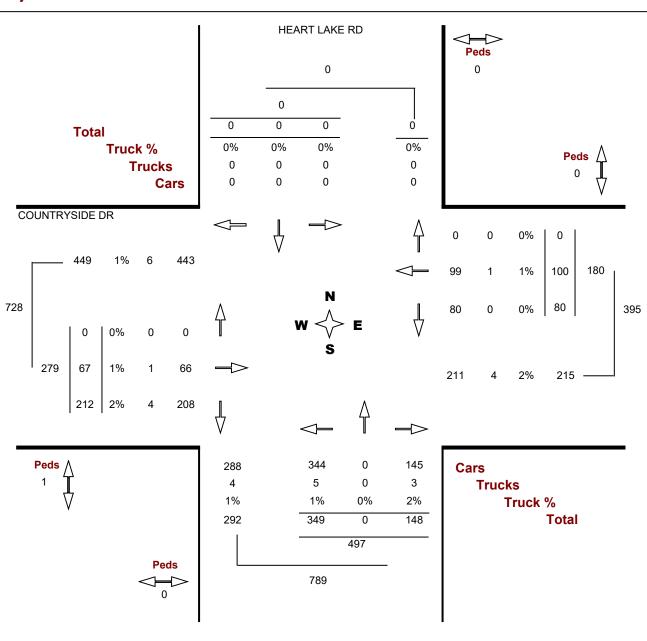
Peak Hour.. 07:30 AM — 08:30 AM

Turning Movements Report - MD Period

Location...... COUNTRYSIDE DR @ HEART LAKE RD

Municipality. Brampton

Traffic Cont. Stop sign


Major Dir..... North south

GeoID...... 2298

Count Date. Wednesday, 13 June, 2018

Count Time. 11:00 AM — 02:00 PM

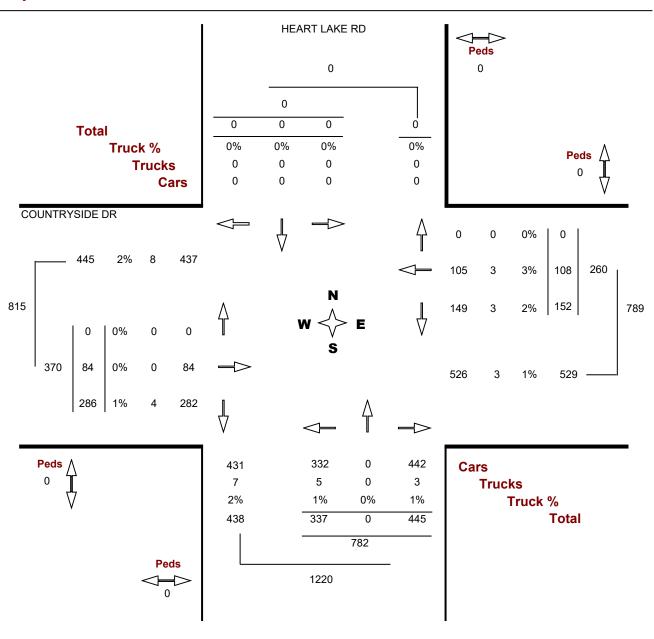
Peak Hour.. 12:45 PM — 01:45 PM

Turning Movements Report - PM Period

Location...... COUNTRYSIDE DR @ HEART LAKE RD

Municipality. Brampton

Traffic Cont. Stop sign


Major Dir..... North south

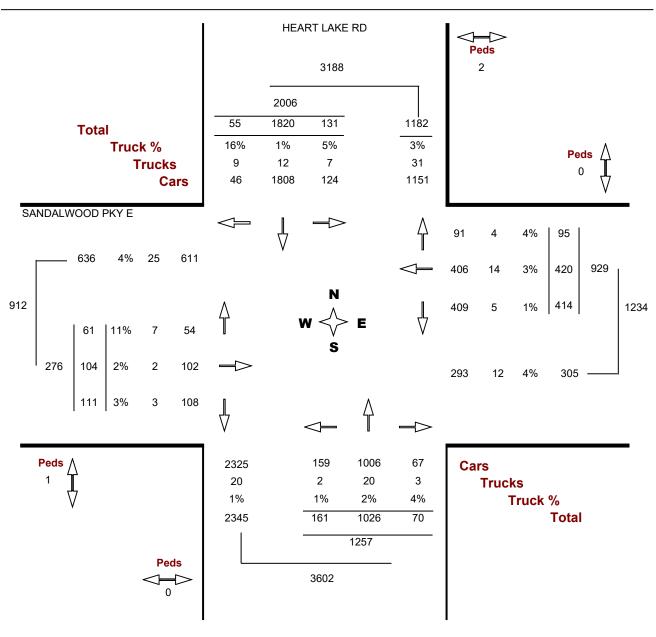
GeoID...... 2298

Count Date. Wednesday, 13 June, 2018

Count Time. 03:00 PM — 06:00 PM

Peak Hour.. 04:15 PM — 05:15 PM

Turning Movements Report - AM Period

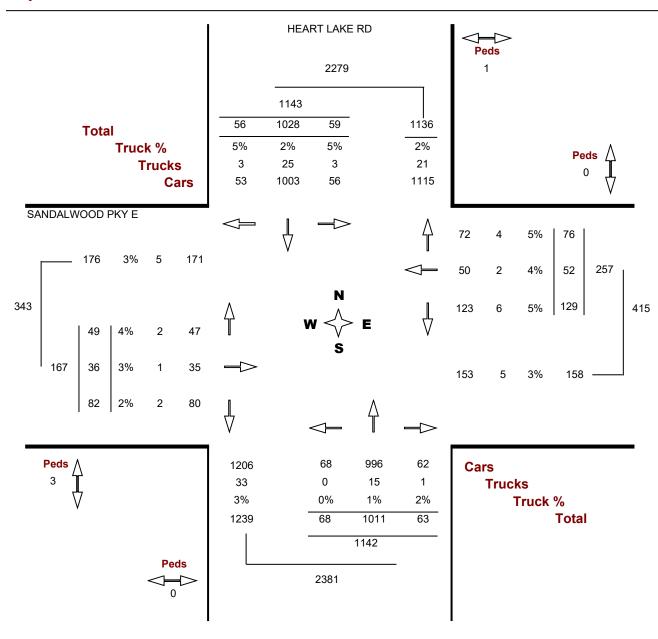

4134

Location...... HEART LAKE RD @ SANDALWOOD PKY E GeoID.......

Municipality. Brampton Count Date. Tuesday, 23 October, 2018

Traffic Cont. Traffic signal Count Time. 07:00 AM — 09:00 AM

Major Dir.... None Peak Hour. 07:30 AM — 08:30 AM

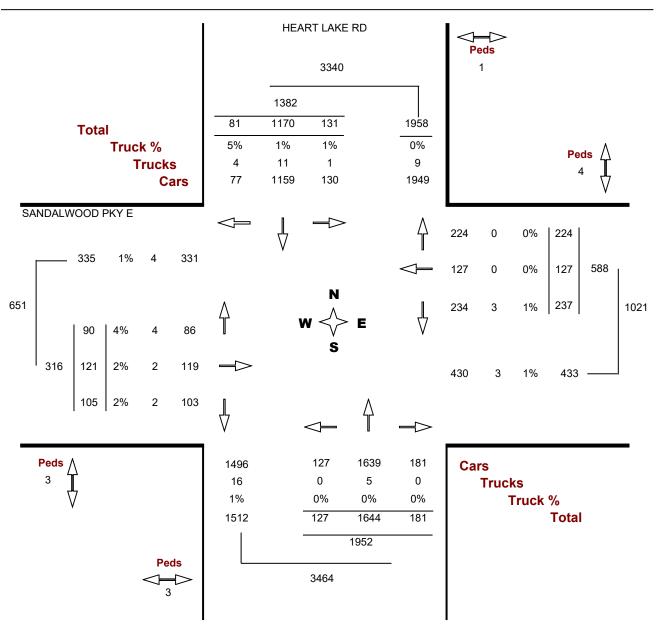

Turning Movements Report - MD Period

Location...... HEART LAKE RD @ SANDALWOOD PKY E GeolD...... 4134

Municipality. Brampton Count Date. Tuesday, 23 October, 2018

Traffic Cont. Traffic signal **Count Time.** 11:00 AM — 02:00 PM

Major Dir.... None Peak Hour. 01:00 PM — 02:00 PM


Turning Movements Report - PM Period

Location...... HEART LAKE RD @ SANDALWOOD PKY E GeolD...... 4134

Municipality. Brampton Count Date. Tuesday, 23 October, 2018

Traffic Cont. Traffic signal Count Time. 03:00 PM — 06:00 PM

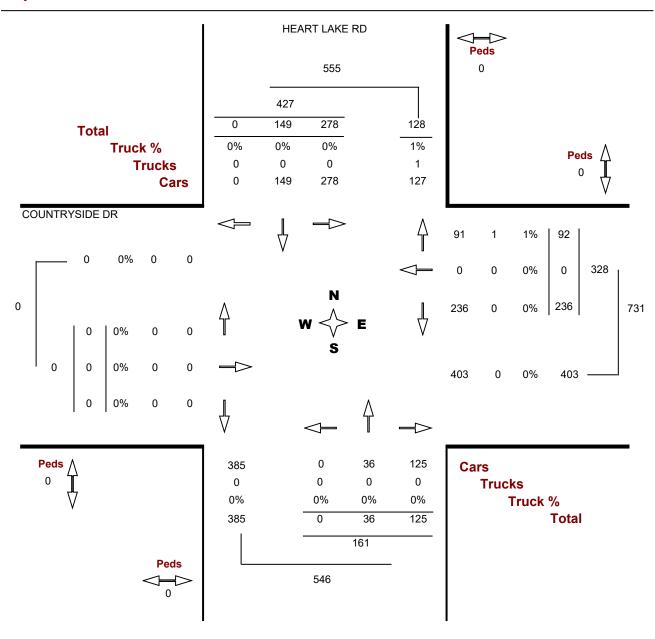
Major Dir.... None Peak Hour. 05:00 PM — 06:00 PM

Turning Movements Report - AM Period

Location...... COUNTRYSIDE DR @ HEART LAKE RD

Municipality. Brampton

Traffic Cont. Stop sign


Major Dir.... North south

GeoID...... 2298

Count Date. Tuesday, 09 March, 2021

Count Time. 07:00 AM — 09:00 AM

Peak Hour.. 07:30 AM — 08:30 AM

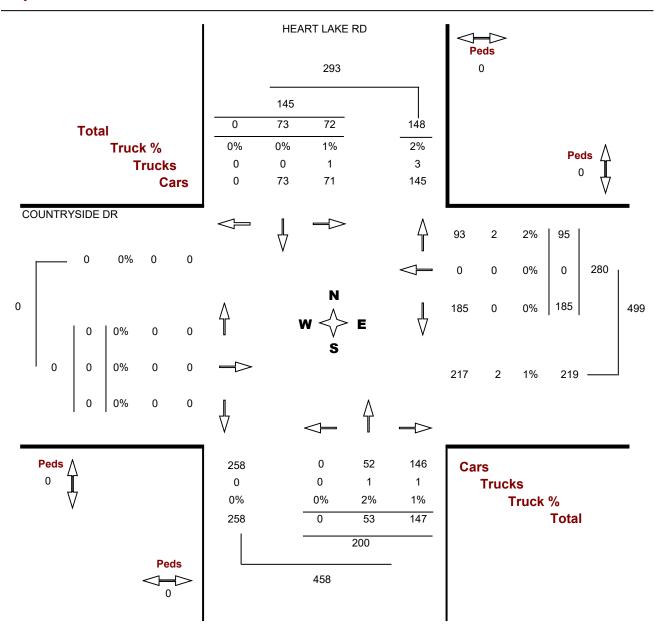
2021/03/09 Page 1 of 1

Turning Movements Report - MD Period

Location...... COUNTRYSIDE DR @ HEART LAKE RD

Municipality. Brampton

Traffic Cont. Stop sign


Major Dir..... North south

GeoID...... 2298

Count Date. Tuesday, 09 March, 2021

Count Time. 11:00 AM — 02:00 PM

Peak Hour.. 01:00 PM — 02:00 PM

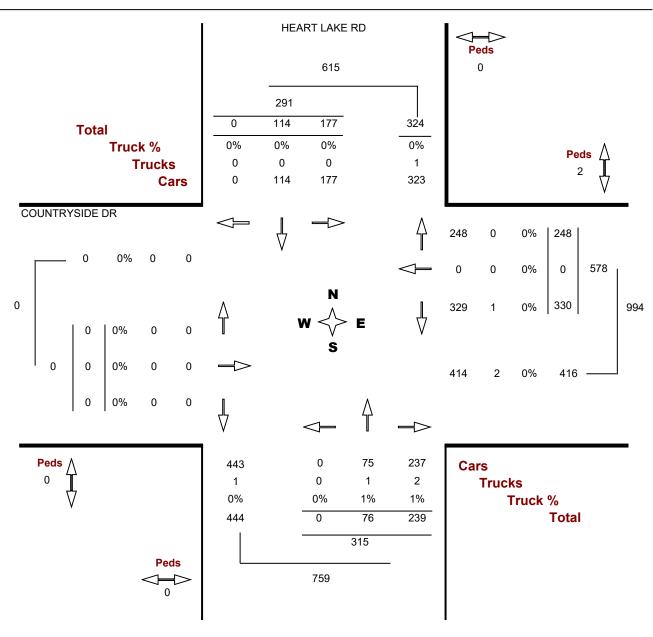
2021/03/09 Page 1 of 1

Turning Movements Report - PM Period

Location...... COUNTRYSIDE DR @ HEART LAKE RD

Municipality. Brampton

Traffic Cont. Stop sign


Major Dir..... North south

GeoID...... 2298

Count Date. Tuesday, 09 March, 2021

Count Time. 03:00 PM — 06:00 PM

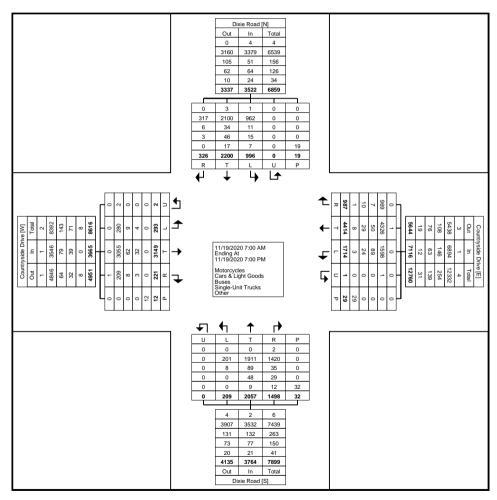
Peak Hour.. 03:45 PM — 04:45 PM

2021/03/09 Page 1 of 1

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 1

Turning Movement Data


			•	side Drive						side Drive	J					Road						Road			
Start Time			East	bound					West	bound					North	nbound					South	nbound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	2	87	. 5	0	0	94	27	54	9	0	0	90	0	20	18	. 0	0	38	24	52	. 5	0	1	81	303
7:15 AM	4	77	6	0	0	87	42	55	13	0	1	110	1	18	19	0	0	38	20	62	4	0	0	86	321
7:30 AM	2	90	11	0	0	103	49	82	21	0	1	152	4	19	23	0	1	46	23	53	2	0	1	78	379
7:45 AM	6	. 86	16	0	0	108	43	71	36	0	1	150	4	31	17	. 0	0	52	27	85	6	0	1	118	428
Hourly Total	14	340	38	0	0	392	161	262	79	0	3	502	9	88	77	0	1	174	94	252	17	0	3	363	1431
8:00 AM	7	95	14	0	0	116	57	83	22	0	2	162	4	27	26	0	0	57	34	69	10	0	0	113	448
8:15 AM	4	. 88	12	. 0	0	104	32	57	21	0	1	110	4	36	26	. 0	0	66	29	64	. 5	0	0	98	378
8:30 AM	3	84	4	0	0	91	45	94	24	0	0	163	2	22	25	0	1	49	33	63	6	0	0	102	405
8:45 AM	6	86	3	0	0	95	44	83	15	0	1	142	0	35	14	0	2	49	24	49	2	0	0	75	361
Hourly Total	20	353	33	0	0	406	178	317	82	0	4	577	10	120	91	. 0	3	221	120	245	23	0	0	388	1592
9:00 AM	12	55	4	0	0	71	33	78	21	0	0	132	6	28	20	0	0	54	13	42	5	0	0	60	317
9:15 AM	3	51	5	0	0	59	28	54	19	0	1	101	0	22	20	0	2	42	23	40	10	0	0	73	275
9:30 AM	5	44	4	0	0	53	22	62	10	1	0	95	1	21	19	0	1	41	11	37	1	0	0	49	238
9:45 AM	0	53	1	0	0	54	32	56	14	0	0	102	3	38	24	0	3	65	20	48	7	0	0	75	296
Hourly Total	20	203	14	0	0	237	115	250	64	1	1	430	10	109	83	0	6	202	67	167	23	0	0	257	1126
10:00 AM	4	44	3	0	0	51	27	49	20	0	0	96	2	21	20	0	1	43	7	29	7	0	0	43	233
10:15 AM	4	48	3	0	0	55	18	58	6	0	1	82	1	26	31	0	0	58	13	32	10	0	1	55	250
10:30 AM	7	56	4	0	0	67	28	70	7	0	0	105	1	28	21	0	2	50	10	31	5	0	0	46	268
10:45 AM	7	32	2	0	2	41	33	53	11	0	10	97	6	29	25	0	0	60	16	44	8	0	2	68	266
Hourly Total	22	180	12	0	2	214	106	230	44	0	11	380	10	104	97	0	3	211	46	136	30	0	3	212	1017
11:00 AM	5	51	4	0	0	60	30	49	17	0	2	96	2	27	36	0	0	65	19	44	8	0	0	71	292
11:15 AM	3	48	3	0	1	54	29	67	14	0	0	110	6	31	23	0	0	60	14	45	10	0	2	69	293
11:30 AM	3	27	0	0	0	30	35	57	14	0	0	106	2	27	18	0	0	47	12	32	7	0	0	51	234
11:45 AM	3	35	4	0	0	42	30	55	11	0	0	96	1	33	24	0	0	58	11	29	5	0	0	45	241
Hourly Total	14	161	11	0	1	186	124	228	56	0	2	408	11	118	101	0	0	230	56	150	30	0	2	236	1060
12:00 PM	7	39	4	0	0	50	26	67	15	0	0	108	4	35	33	0	0	72	22	30	7	0	0	59	289
12:15 PM	6	60	2	0	0	68	28	65	19	0	0	112	1	30	29	0	0	60	19	40	1	0	0	60	300
12:30 PM	6	60	4	0	0	70	23	60	20	0	0	103	2	31	28	0	0	61	18	47	5	0	0	70	304
12:45 PM	9	44	3	0	1	56	23	58	15	0	0	96	0	40	23	0	0	63	21	46	7	0	0	74	289
Hourly Total	28	203	13	0	1	244	100	250	69	0	0	419	7	136	113	0	0	256	80	163	20	0	0	263	1182
1:00 PM	6	39	2	0	0	47	31	76	10	0	1	117	2	32	24	0	1	58	22	33	9	0	1	64	286
1:15 PM	9	34	2	1	0	46	23	61	16	0	0	100	2	28	26	0	0	56	19	34	7	0	0	60	262
1:30 PM	7	41	2	0	0	50	24	60	20	0	0	104	1	33	25	0	0	59	14	39	3	0	0	56	269
1:45 PM	8	46	2	0	0	56	28	81	20	0	0	129	5	29	30	0	2	64	21	41	7	0	0	69	318
Hourly Total	30	160	8	1	0	199	106	278	66	0	1	450	10	122	105	0	3	237	76	147	26	0	1	249	1135

2:00 PM	5	56	2	0	0	63	29	74	21	0	1	124	6	33	40	0	0	79	18	55	10	0	0	83	349
2:15 PM	2	65	8	0	0	75	34	84	23	0	0	141	8	45	30	0	1	83	22	39	9	0	0	70	369
2:30 PM	5	82	2	0	0	89	33	93	22	0	0	148	5	44	37	0	1	86	17	42	7	0	0	66	389
2:45 PM	8	73	4	0	0	85	38	117	16	0	0	171	4	61	38	0	1	103	12	46	8	0	0	66	425
Hourly Total	20	276	16	0	0	312	134	368	82	0	1	584	23	183	145	0	3	351	69	182	34	0	0	285	1532
3:00 PM	5	71	1		0	77	41	119	19	0	1	179	7	56	37	0	2	100	18	61	9	0	0	88	444
3:15 PM	6	72	4	0	0	82	41	139	27	0	0	207	14	66	38	0	0	118	14	54	12	0	0	80	487
3:30 PM	11	103	4	0	1	118	41	132	41	0	0	214	5	90	39	0	0	134	28	51	4	0	1	83	549
3:45 PM	13	93	6	0	0	112	43	126	28	0	0	197	12	58	55	0	1	125	22	38	11	0	2	71	505
	35	339	15	0	1	389	166	516	115	0	1	797	38	270	169	0	3	477	82	204	36	0	3	322	1985
Hourly Total													1				1		 				1		
4:00 PM	9	89	3	. 0	. 0	101	45	143	28	. 0	0	216	7	64	36	0		107	23	36	10	0		69	493
4:15 PM	8	97	8	0	1	113	41	143	28	0	3	212	11	73	41	0	2	125	26	51	4	0	0	81	531
4:30 PM	9	77	0	0	0	86	34	151	43	0	0	228	6	92	42	0	3	140	20	44	6	0	1	70	524
4:45 PM	12	. 81	7	0	2	100	53	168	42	0	0	263	8	61	29	0	2	98	16	55	6	0	2	. 77	538
Hourly Total	38	344	18	0	3	400	173	605	141	0	3	919	32	290	148	0	8	470	85	186	26	0	4	297	2086
5:00 PM	13	71	5	0	3	89	53	164	34	0	1	251	6	85	55	0	0	146	41	50	5	0	2	96	582
5:15 PM	4	97	5	0	. 0	106	52	166	33	0	1	251	5	78	59	0	1	142	28	56	15	0	0	99	598
5:30 PM	9	78	9	0	0	96	53	159	21	0	0	233	9	77	57	0	0	143	34	64	4	0	0	102	574
5:45 PM	3	95	4	0	0	102	45	153	23	0	0	221	7	55	47	0	0	109	20	43	7	0	0	70	502
Hourly Total	29	341	23	0	3	393	203	642	111	0	2	956	27	295	218	0	1	540	123	213	31	0	2	367	2256
6:00 PM	4	56	7	0	. 1	67	47	148	21	0	0	216	8	59	35	0	0	102	25	39	9	0	1	73	458
6:15 PM	7	64	7	0	0	78	33	105	15	0	0	153	4	57	46	0	0	107	20	42	5	0	0	67	405
6:30 PM	5	59	3	0	0	67	38	109	19	0	0	166	5	58	35	0	1	98	33	36	10	0	0	79	410
6:45 PM	7	70	3	1	0	81	30	106	23	0	0	159	5	48	35	0	0	88	20	38	6	0	0	64	392
Hourly Total	23	249	20	1	1	293	148	468	78	0	0	694	22	222	151	0	1	395	98	155	30	0	1	283	1665
Grand Total	293	3149	221	2	12	3665	1714	4414	987	1	29	7116	209	2057	1498	0	32	3764	996	2200	326	0	19	3522	18067
Approach %	8.0	85.9	6.0	0.1	-	-	24.1	62.0	13.9	0.0	-	-	5.6	54.6	39.8	0.0	-	-	28.3	62.5	9.3	0.0	-	-	-
Total %	1.6	17.4	1.2	0.0	-	20.3	9.5	24.4	5.5	0.0	-	39.4	1.2	11.4	8.3	0.0	-	20.8	5.5	12.2	1.8	0.0	-	19.5	-
Motorcycles	0	0	1	0	-	1	0	1	0	0	-	1	0	0	2	0	-	2	1	3	0	0	-	4	8
% Motorcycles	0.0	0.0	0.5	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.1	-	-	0.1	0.1	0.1	0.0			0.1	0.0
Cars & Light Goods	280	3055	209	2	_	3546	1598	4326	969	1	_	6894	201	1911	1420	0	_	3532	962	2100	317	0	_	3379	17351
% Cars & Light Goods	95.6	97.0	94.6	100.0	-	96.8	93.2	98.0	98.2	100.0	-	96.9	96.2	92.9	94.8		-	93.8	96.6	95.5	97.2	-	-	95.9	96.0
Buses	9	62	8	0	-	79	89	50	7	0	_	146	8	89	35	0		132	11	34	6	0		51	408
% Buses	3.1	2.0	3.6	0.0	-	2.2	5.2	1.1	0.7	0.0	_	2.1	3.8	4.3	2.3		_	3.5	1.1	1.5	1.8		_	1.4	2.3
Single-Unit Trucks	4	32	3	0		39	24	29	10	0.0		63	0	48	29	0		77	15	46	3	0		64	243
% Single-Unit	1.4	1.0	1.4	0.0	-	1.1	1.4	0.7	1.0	0.0	-	0.9	0.0	2.3	1.9	-	-	2.0	1.5	2.1	0.9	-	-	1.8	1.3
Articulated Trucks	0	0	0	0		0	3	8	1	0	-	12	0	9	11	0	-	20	7	17	0	0		24	56
% Articulated	0.0	0.0	0.0	0.0	_	0.0	0.2	0.2	0.1	0.0	_	0.2	0.0	0.4	0.7	-	_	0.5	0.7	0.8	0.0	-	_	0.7	0.3
Trucks												-	ļ										-		
Bicycles on Road	0	. 0	0	0		0	0	0	0	0	-	0	0	0	1	0	-	1	0	0	0	0		0	1
% Bicycles on Road	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.1	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	<u>-</u>	-	-	. 0	-	-	-	-	-	0	-	-	-	-	<u>-</u>	4	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	12.5	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	-	12	-	-				29		-		-		28	-	-		-	-	19	-	-
% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	87.5	-	-	-	-	-	100.0	-	-

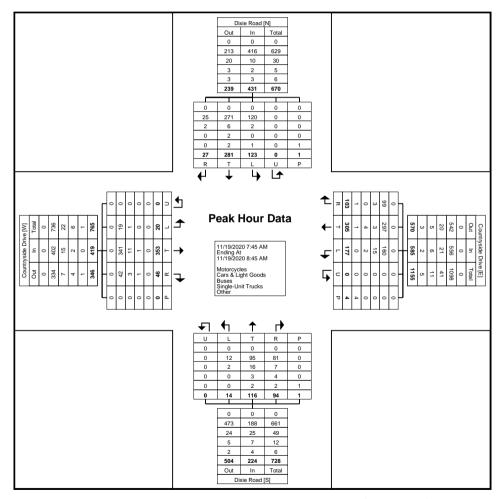
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 4


Turning Movement Peak Hour Data (7:45 AM)

							ı anı	_		iciit i	Car	loui	Data	•	,			I						I.
		•						•																
		East	bound					West	bound					North	bound					South	bound			
Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
6	86	16	0	0	108	43	71	36	0	1	150	4	31	17	. 0	0	52	27	85	6	0	1	118	428
7	95	14	0	0	116	57	83	22	0	2	162	4	27	26	0	0	57	34	69	10	0	0	113	448
4	88	12	0	0	104	32	57	21	0	1	110	4	36	26	0	0	66	29	64	5	0	0	98	378
3	84	4	0	0	91	45	94	24	0	0	163	2	22	25	. 0	1	49	33	63	6	0	0	102	405
20	353	46	0	0	419	177	305	103	0	4	585	14	116	94	0	1	224	123	281	27	0	1	431	1659
4.8	84.2	11.0	0.0	-	-	30.3	52.1	17.6	0.0	-	-	6.3	51.8	42.0	0.0	-	-	28.5	65.2	6.3	0.0	-	-	-
1.2	21.3	2.8	0.0	-	25.3	10.7	18.4	6.2	0.0	-	35.3	0.8	7.0	5.7	0.0	-	13.5	7.4	16.9	1.6	0.0	-	26.0	-
0.714	0.929	0.719	0.000	-	0.903	0.776	0.811	0.715	0.000	-	0.897	0.875	0.806	0.904	0.000	-	0.848	0.904	0.826	0.675	0.000	-	0.913	0.926
0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
0.0	0.0	0.0	_	-	0.0	0.0	0.0	0.0	_	-	0.0	0.0	0.0	0.0	<u>-</u>	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
19	341	42	0	-	402	160	297	99	0	-	556	12	95	81	0	-	188	120	271	25	0	-	416	1562
95.0	96.6	91.3	-	-	95.9	90.4	97.4	96.1	-	-	95.0	85.7	81.9	86.2	-	-	83.9	97.6	96.4	92.6	-	-	96.5	94.2
1	11	3	0	-	15	15	3	3	0	-	21	2	16	7	0	-	25	2	6	2	0	-	10	71
5.0	3.1	6.5	-	-	3.6	8.5	1.0	2.9	-	-	3.6	14.3	13.8	7.4	-	-	11.2	1.6	2.1	7.4	-	-	2.3	4.3
0	1	1	0	-	2	2	4	0	0	-	6	0	3	4	0	-	7	0	2	0	0	-	2	17
0.0	0.3	2.2	-	-	0.5	1.1	1.3	0.0	-	-	1.0	0.0	2.6	4.3	-	-	3.1	0.0	0.7	0.0	-	-	0.5	1.0
0	0	0	0	-	0	0	1	1	0	-	2	0	2	2	0	-	4	1	2	0	0	-	3	9
0.0	0.0	0.0	-	-	0.0	0.0	0.3	1.0	-	-	0.3	0.0	1.7	2.1	-	-	1.8	0.8	0.7	0.0	-	-	0.7	0.5
0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-
-	-	-	-	0	-	-	-	-	-	4	-	-	-	-		1	-	-	-	-		1	_	-
-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	_	-
	6 7 4 3 20 4.8 1.2 0.714 0 0.0 19 95.0 1 5.0 0 0.0 0	6 86 7 95 4 88 3 84 20 353 4.8 84.2 1.2 21.3 0.714 0.929 0 0 0.0 0.0 19 341 95.0 96.6 1 11 5.0 3.1 0 1 0.0 0.3 0 0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	East Left Thru Right 6 86 16 7 95 14 4 88 12 3 84 4 20 353 46 4.8 84.2 11.0 1.2 21.3 2.8 0.714 0.929 0.719 0 0 0 0 0.0 0.0 0.0 19 341 42 95.0 96.6 91.3 1 11 3 5.0 3.1 6.5 0 1 1 0.0 0.3 2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 86 16 0 7 95 14 0 4 88 12 0 3 84 4 0 20 353 46 0 4.8 84.2 11.0 0.0 1.2 21.3 2.8 0.0 0.714 0.929 0.719 0.000 0 0 0 0 0 0.0 0.0 0.0 - 19 341 42 0 95.0 96.6 91.3 - 1 11 3 0 5.0 3.1 6.5 - 0 1 1 0 0.0 0.3 2.2 - 0	Left Thru Right U-Turn Peds 6 86 16 0 0 7 95 14 0 0 4 88 12 0 0 3 84 4 0 0 20 353 46 0 0 4.8 84.2 11.0 0.0 - 1.2 21.3 2.8 0.0 - 0.714 0.929 0.719 0.000 - 0 0 0 0 - 0.0 0.0 0 - - 19 341 42 0 - 95.0 96.6 91.3 - - 1 11 3 0 - 5.0 3.1 6.5 - - 0 1 1 0 - 0 0 0 - -	Eastbound Left Thru Right U-Turn Peds App. Total 6 86 16 0 0 108 7 95 14 0 0 116 4 88 12 0 0 104 3 84 4 0 0 91 20 353 46 0 0 419 4.8 84.2 11.0 0.0 - - 1.2 21.3 2.8 0.0 - 25.3 0.714 0.929 0.719 0.000 - 0.903 0 0 0 0 - 0.903 0 0 0 - 0 0.903 0 0 0 - 0 0.903 0 0 0 - 0 0.903 19 341 42 0 - 402	Eastbound Left Thru Right U-Turn Peds App. Total App. Total Left 6 86 16 0 0 108 43 7 95 14 0 0 116 57 4 88 12 0 0 104 32 3 84 4 0 0 91 45 20 353 46 0 0 419 177 4.8 84.2 11.0 0.0 - - 30.3 1.2 21.3 2.8 0.0 - 25.3 10.7 0.714 0.929 0.719 0.000 - 0.903 0.776 0 0 0 0 - 0.903 0.776 0 0 0 - 0 0 0 0 0.0 0.0 0 - 0.903 0.776 0 0	Countryside Drive Eastbound Left Thru Right U-Turn Peds App. Total Total Total Left Thru 6 86 16 0 0 108 43 71 7 95 14 0 0 116 57 83 4 88 12 0 0 104 32 57 3 84 4 0 0 91 45 94 20 353 46 0 0 419 177 305 4.8 84.2 11.0 0.0 - - 30.3 52.1 1.2 21.3 2.8 0.0 - 25.3 10.7 18.4 0.714 0.929 0.719 0.000 - 0.903 0.776 0.811 0 0 0 0 - 0.903 0.776 0.811 0 0 0 0 -	Countryside Drive Eastbound Countryside Drive Eastbound Countryside Drive West Left Thru Right U-Turn Peds App. Total Total Total Total Left Thru Right 6 86 16 0 0 108 43 71 36 7 95 14 0 0 116 57 83 22 4 88 12 0 0 104 32 57 21 3 84 4 0 0 91 45 94 24 20 353 46 0 0 419 177 305 103 4.8 84.2 11.0 0.0 - - 30.3 52.1 17.6 1.2 21.3 2.8 0.0 - 25.3 10.7 18.4 6.2 0.714 0.929 0.719 0.000 - 0.903 0.776 0.811 0.715	Countryside Drive Eastbound Countryside Drive Westbound Left Thru Right U-Turn Peds App. Total App. Total Left Thru Right U-Turn 6 86 16 0 0 1108 43 71 36 0 7 95 14 0 0 116 57 83 22 0 4 88 12 0 0 104 32 57 21 0 3 84 4 0 0 91 45 94 24 0 20 353 46 0 0 419 177 305 103 0 4.8 84.2 11.0 0.0 - - 30.3 52.1 17.6 0.0 1.2 21.3 2.8 0.0 - 25.3 10.7 18.4 6.2 0.0 0.714 0.929 0.719 0.000	Left	Left Thru Right U-Turn Peds App. Total	Left Thru	Left Thru Right U-Turn Peds App. Left Thru Right U-Turn U-Turn	Countryside Drive Eastbound Country Co	Left Thru Right U-Tur Peds App. Total Thru Right U-Tur U-Tur	Left Thru Right U-Turn Peds App. Left Thru Right U-Turn Peds App. Total Left Thru Right U-Turn Peds App. Total Left Thru Right U-Turn Peds App. Total Right U-Turn Peds App. Total Right U-Turn Right U-Turn Peds App. Total Right U-Turn Right U-Turn Peds App. Total Right U-Turn U-Tur	Left Thru Right U-Turn Pads App Left Thru Right U-Turn Pads App Total Left Thru Right U-Turn Pads Total Tota	Left Thru Right U-Turn Peds App. Left Thru Right U-Turn U-Turn Right U-Turn U-Turn Right U-Turn U-Turn Right U-Turn U-Tu	Left Thru Right U-Turn Peds App. Left Thru Thru Right U-Turn Peds App. Left Thru Thru Right U-Turn Peds Thru T	Left Thru Right U-Tun Peds App. Left Thru Right U-Tun Right U-Tun Peds App. Left Thru Right U-Tun Right	Left The Park Francis Park Francis Park Francis Park Francis Park Par	Let 71	Let

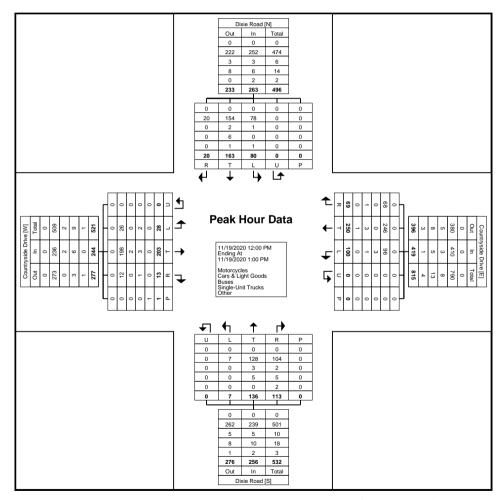
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 5

Turning Movement Peak Hour Data Plot (7:45 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 6


Turning Movement Peak Hour Data (12:00 PM)

	l		Country	side Drive				I UIII	_	ide Drive	CIICI	canı	ioui L	Jaia (Road			l		Divie	Road			I
			•	bound					•	bound						bound						bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
12:00 PM	7	39	4	0	0	50	26	67	15	0	0	108	4	35	33	0	0	72	22	30	7	0	0	59	289
12:15 PM	6	60	2	0	0	68	28	65	19		0	112	1	30	29	0	0	60	19	40		0	0	60	300
12:30 PM	6	60	4	0	0	70	23	60	20	0	0	103	2	31	28	0	0	61	18	47	5	0	0	70	304
12:45 PM	9	44	3	0	1	56	23	58	15	0	0	96	0	40	23	0	0	63	21	46	7	0	0	74	289
Total	28	203	13	0	1	244	100	250	69	0	0	419	7	136	113	0	0	256	80	163	20	0	0	263	1182
Approach %	11.5	83.2	5.3	0.0	-	-	23.9	59.7	16.5	0.0	-	-	2.7	53.1	44.1	0.0	-	-	30.4	62.0	7.6	0.0	-	-	-
Total %	2.4	17.2	1.1	0.0	-	20.6	8.5	21.2	5.8	0.0	-	35.4	0.6	11.5	9.6	0.0	-	21.7	6.8	13.8	1.7	0.0	-	22.3	-
PHF	0.778	0.846	0.813	0.000	-	0.871	0.893	0.933	0.863	0.000	-	0.935	0.438	0.850	0.856	0.000	-	0.889	0.909	0.867	0.714	0.000	-	0.889	0.972
Motorcycles	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Cars & Light Goods	26	198	12	0	-	236	96	246	68	0	-	410	7	128	104	0	-	239	78	154	20	0	-	252	1137
% Cars & Light Goods	92.9	97.5	92.3	-	-	96.7	96.0	98.4	98.6	-	-	97.9	100.0	94.1	92.0	-	-	93.4	97.5	94.5	100.0	-	-	95.8	96.2
Buses	0	2	0	0	-	2	3	0	0	0	-	3	0	3	2	0	-	5	1	2	0	0	-	3	13
% Buses	0.0	1.0	0.0	_	-	8.0	3.0	0.0	0.0	<u> </u>	-	0.7	0.0	2.2	1.8		-	2.0	1.3	1.2	0.0		-	1.1	1.1
Single-Unit Trucks	2	3	1	0	-	6	1	3	1	0	-	5	0	5	5	0	-	10	0	6	0	0	-	6	27
% Single-Unit Trucks	7.1	1.5	7.7	-	-	2.5	1.0	1.2	1.4	_	-	1.2	0.0	3.7	4.4	-	-	3.9	0.0	3.7	0.0	-	-	2.3	2.3
Articulated Trucks	0	0	0	0	-	0	0	1	0	0	-	1	0	0	2	0	-	2	1	1	0	0	-	2	5
% Articulated Trucks	0.0	0.0	0.0	-	-	0.0	0.0	0.4	0.0	-	-	0.2	0.0	0.0	1.8	-	-	0.8	1.3	0.6	0.0	-	-	0.8	0.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	0.0		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Pedestrians	-	_	_		1	_	-			-	0	-	-				0	-	-		-		0		-
% Pedestrians	-		-		100.0		-			-	-	-	-	-			-	-	-	_	_		-	-	-

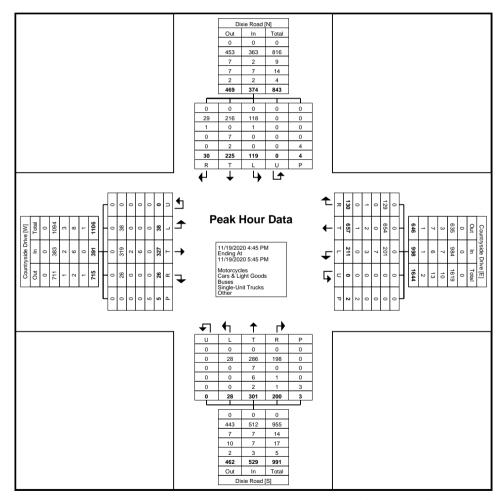
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 7

Turning Movement Peak Hour Data Plot (12:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 8


Turning Movement Peak Hour Data (4:45 PM)

	ı						1	I UII	_	/IOVCII	ICITE I	Car	ioui	Data	•	,			i						1
			Country	side Drive					Country	side Drive					Dixie	Road					Dixie	Road			
			East	bound					West	tbound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
4:45 PM	12	81	7	0	2	100	53	168	42	0	0	263	8	61	29	0	2	98	16	55	6	0	2	77	538
5:00 PM	13	71	5	0	3	89	53	164	34	0	1	251	6	85	55	0	0	146	41	50	5	0	2	96	582
5:15 PM	4	97	5	0	0	106	52	166	33	0	1	251	5	78	59	0	1	142	28	56	15	0	0	99	598
5:30 PM	9	78	9	0	0	96	53	159	21	0	0	233	9	. 77	57	0	0	143	34	64	4	0	0	102	574
Total	38	327	26	0	5	391	211	657	130	0	2	998	28	301	200	0	3	529	119	225	30	0	4	374	2292
Approach %	9.7	83.6	6.6	0.0	-	-	21.1	65.8	13.0	0.0	-	-	5.3	56.9	37.8	0.0	-	-	31.8	60.2	8.0	0.0	-	-	-
Total %	1.7	14.3	1.1	0.0	-	17.1	9.2	28.7	5.7	0.0	-	43.5	1.2	13.1	8.7	0.0	-	23.1	5.2	9.8	1.3	0.0	-	16.3	-
PHF	0.731	0.843	0.722	0.000	-	0.922	0.995	0.978	0.774	0.000	-	0.949	0.778	0.885	0.847	0.000	-	0.906	0.726	0.879	0.500	0.000	-	0.917	0.958
Motorcycles	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0		-	0.0	0.0
Cars & Light Goods	38	319	26	0	-	383	201	654	129	0	-	984	28	286	198	0	-	512	118	216	29	0	-	363	2242
% Cars & Light Goods	100.0	97.6	100.0	-	-	98.0	95.3	99.5	99.2	-	-	98.6	100.0	95.0	99.0	-	-	96.8	99.2	96.0	96.7	-	-	97.1	97.8
Buses	0	2	0	0	_	2	7	0	0	0	-	7	0	. 7	0	0	-	. 7	1	0	1	0	-	2	18
% Buses	0.0	0.6	0.0	-	-	0.5	3.3	0.0	0.0	-	-	0.7	0.0	2.3	0.0	-	-	1.3	0.8	0.0	3.3	-	-	0.5	0.8
Single-Unit Trucks	0	6	0	0	-	6	3	2	1	0	-	6	0	6	1	0	-	7	0	7	0	0	-	7	26
% Single-Unit Trucks	0.0	1.8	0.0	-	-	1.5	1.4	0.3	0.8	-	-	0.6	0.0	2.0	0.5	-	-	1.3	0.0	3.1	0.0	_	-	1.9	1.1
Articulated Trucks	0	0	0	0	-	0	0	1	0	0	-	1	0	2	1	0	-	3	0	2	0	0	-	2	6
% Articulated Trucks	0.0	0.0	0.0	-	-	0.0	0.0	0.2	0.0	-	-	0.1	0.0	0.7	0.5	-	-	0.6	0.0	0.9	0.0	-	-	0.5	0.3
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	ı	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	-	5	-	-	-	-	-	2	-	-	-	-	-	3	-	-	-	-	-	4	-	-
% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-
	-			•				•										•	•	•	-			-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 9

Turning Movement Peak Hour Data Plot (4:45 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Dixie Road Site Code: 200333 Start Date: 11/19/2020 Page No: 10

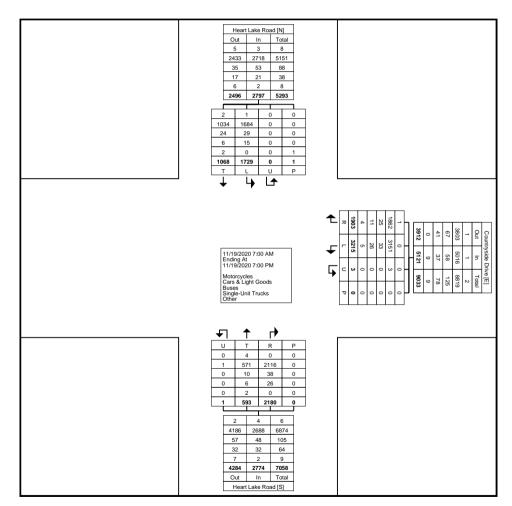
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020

Page No: 1

Turning Movement Data

		(Countryside Drive	e				Heart Lake Road		ĺ			Heart Lake Road	I		
			Westbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Int. Total
7:00 AM	44	13	0	0	57	3	38	0	0	41	55	24	0	0	79	177
7:15 AM	51	20	0	0	71	3	41	1	0	45	52	19	0	0	71	187
7:30 AM	62	27	0	0	89	8	39	0	0	47	76	34	0	0	110	246
7:45 AM	63	34	0	0	97	13	36	0	0	49	79	43	0	0	122	268
Hourly Total	220	94	0	0	314	27	154	1	0	182	262	120	0	0	382	878
8:00 AM	60	30	0	0	90	5	45	0	0	50	70	37	0	0	107	247
8:15 AM	51	31	0	0	82	8	41	0	0	49	71	30	0	0	101	232
8:30 AM	71	28	0	0	99	12	33	0	0	45	63	34	0	0	97	241
8:45 AM	76	22	0	0	98	7	33	0	0	40	55	23	0	0	78	216
Hourly Total	258	111	0	0	369	32	152	0	0	184	259	124	0	0	383	936
9:00 AM	66	20	0	0	86	4	34	0	0	38	24	24	0	0	48	172
9:15 AM	59	11	0	0	70	5	24	0	0	29	25	18	0	0	43	142
9:30 AM	59	21	0	0	80	10	39	0	0	49	16	18	0	0	34	163
9:45 AM	49	22	0	0	71	8	31	0	0	39	21	19	0	0	40	150
Hourly Total	233	74	0	0	307	27	128	0	0	155	86	79	0	0	165	627
10:00 AM	49	15	0	0	64	9	22	0	0	31	26	16	0	0	42	137
10:15 AM	46	24	0	0	70	8	25	0	0	33	25	18	0	0	43	146
10:30 AM	63	11	0	0	74	8	29	0	0	37	31	22	0	0	53	164
10:45 AM	37	29	0	0	66	9	24	0	0	33	16	25	0	0	41	140
Hourly Total	195	79	0	0	274	34	100	0	0	134	98	81	0	0	179	587
11:00 AM	53	13	0	0	66	10	45	0	0	55	22	22	0	0	44	165
11:15 AM	61	26	0	0	87	7	36	0	0	43	22	17	0	0	39	169
11:30 AM	52	17	0	0	69	16	12	0	0	28	14	14	0	0	28	125
11:45 AM	56	13	0	0	69	9	25	0	0	34	14	18	0	0	32	135
Hourly Total	222	69	0	0	291	42	118	0	0	160	72	71	0	0	143	594
12:00 PM	50	18	0	0	68	12	29	0	0	41	15	27	0	0	42	151
12:15 PM	51	25	0	0	76	10	28	0	0	38	34	10	0	0	44	158
12:30 PM	37	23	0	0	60	7	45	0	0	52	24	11	0	0	35	147
12:45 PM	51	19	1	0	71	13	30	0	0	43	24	15	0	1	39	153
Hourly Total	189	85	1	0	275	42	132	0	0	174	97	63	0	1	160	609
1:00 PM	66	18	0	0	84	16	32	0	0	48	24	24	0	0	48	180
1:15 PM	44	25	0	0	69	12	30	0	0	42	10	28	0	0	38	149
1:30 PM	56	19	1	0	76	11	37	0	0	48	20	21	0	0	41	165
1:45 PM	65	38	0	0	103	18	35	0	0	53	35	18	0	0	53	209
Hourly Total	231	100	1	0	332	57	134	0	0	191	89	91	0	0	180	703
2:00 PM	50	28	. 0	0	78	18	37	0	0	55	28	16	0	0	44	177


2:15 PM	75	34	0	0	109	12	58	0	0	70	43	16	0	0	59	238
2:30 PM	71	38	0	0	109	18	68	0	0	86	34	18	0	0	52	247
2:45 PM	74	48	0	0	122	16	47	0	0	63	41	18	0	0	59	244
	270	148	0	0	418	64	210	0	0	274	146	68	0	0		906
Hourly Total				-			-								214	
3:00 PM	83	52	0	0	135	11	66	0	0	77	31	26	0	0	57	269
3:15 PM	99	76	0	0	175	17	56	0	0	73	41	12	0	0	53	301
3:30 PM	86	60	0	0	146	23	72	0	0	95	55	23	0	0	78	319
3:45 PM	83	71	0	. 0	154	21	57	0	0	78	38	36	0	. 0	74	306
Hourly Total	351	259	0	0	610	72	251	0	0	323	165	97	0	0	262	1195
4:00 PM	101	66	0	0	167	18	77	0	0	95	34	28	0	0	62	324
4:15 PM	97	88	0	0	185	14	79	0	0	93	39	23	0	0	62	340
4:30 PM	88	78	0	0	166	21	61	0	0	82	44	35	0	0	79	327
4:45 PM	92	83	0	0	175	17	72	0	0	89	50	26	0	0	76	340
Hourly Total	378	315	0	0	693	70	289	0	0	359	167	112	0	0	279	1331
5:00 PM	82	88	0	0	170	19	65	0	0	84	37	18	0	0	55	309
5:15 PM	97	91	0	0	188	14	76	0	0	90	38	27	0	0	65	343
5:30 PM	90	89	0	0	179	16	64	0	0	80	42	21	0	0	63	322
5:45 PM	88	68	0	0	156	16	75	0	0	91	36	24	0	0	60	307
Hourly Total	357	336	0	0	693	65	280	0	0	345	153	90	0	0	243	1281
6:00 PM	96	80	0	0	176	22	66	0	0	88	30	21	0	0	51	315
6:15 PM	77	53	0	0	130	16	58	0	0	74	35	18	0	0	53	257
6:30 PM	71	52	0	0	123	12	49	0	0	61	33	15	0	0	48	232
6:45 PM	67	48	1	0	116	11	59	0	0	70	37	18	0	0	55	241
Hourly Total	311	233	1	0	545	61	232	0	0	293	135	72	0	0	207	1045
Grand Total	3215	1903	3	0	5121	593	2180	1	0	2774	1729	1068	0	1	2797	10692
Approach %	62.8	37.2	0.1	-	-	21.4	78.6	0.0	-	-	61.8	38.2	0.0	-	-	-
Total %	30.1	17.8	0.0	-	47.9	5.5	20.4	0.0	-	25.9	16.2	10.0	0.0	-	26.2	-
Motorcycles	0	1	0	-	1	4	0	0	-	4	1	2	0	-	3	8
% Motorcycles	0.0	0.1	0.0	-	0.0	0.7	0.0	0.0	-	0.1	0.1	0.2	-	-	0.1	0.1
Cars & Light Goods	3151	1862	3	-	5016	571	2116	1	-	2688	1684	1034	0	-	2718	10422
% Cars & Light Goods	98.0	97.8	100.0	-	97.9	96.3	97.1	100.0		96.9	97.4	96.8	_	_	97.2	97.5
Buses	33	25	0	-	58	10	38	0		48	29	24	0	_	53	159
% Buses	1.0	1.3	0.0	_	1.1	1.7	1.7	0.0	_	1.7	1.7	2.2	-	_	1.9	1.5
Single-Unit Trucks	26	11	0	_	37	6	26	0	_	32	15	6	0		21	90
% Single-Unit Trucks	0.8	0.6	0.0	-	0.7	1.0	1.2	0.0	-	1.2	0.9	0.6	-		0.8	0.8
Articulated Trucks	5	4	0	-	9	0	0	0		0	0	1	0	-	1	10
% Articulated Trucks	0.2	0.2	0.0	_	0.2	0.0	0.0	0.0		0.0	0.0	0.1			0.0	0.1
Bicycles on Road	0.2	0.2	0.0		0.2	2	0.0	0.0		2	0.0	1	0		1	3
% Bicycles on Road	0.0	0.0	0.0		0.0	0.3	0.0	0.0		0.1	0.0	0.1			0.0	0.0
	- 0.0	- 0.0	- 0.0	0	- 0.0	- 0.3	- 0.0	- 0.0	0	- 0.1	0.0	- 0.1		0	- 0.0	0.0
Bicycles on Crosswalk									U					0.0		-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Pedestrians	-	-		0		-	-	<u> </u>	0		-	-	-	1	-	-
% Pedestrians	-	-	-	-	-	-	-	<u>-</u>	-	-	-	-	-	100.0	-	

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake

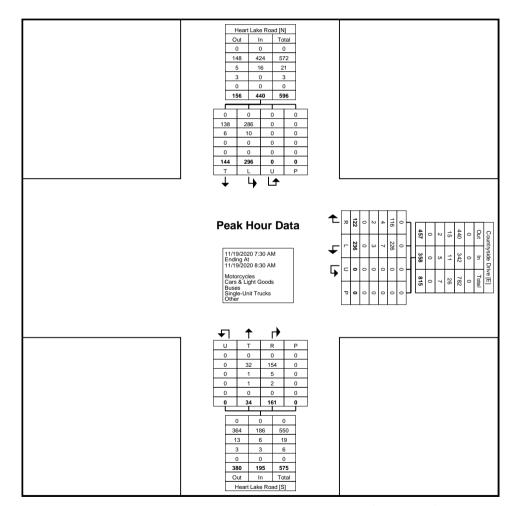
Road Site Code: 200333 Start Date: 11/19/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 4

Turning Movement Peak Hour Data (7:30 AM)


Start Time 7:30 AM 7:45 AM 8:00 AM 8:15 AM	Left 62 63 60	Right 27 34	Countryside Drive Westbound U-Turn 0	Peds				Heart Lake Road					Heart Lake Road			·
7:30 AM 7:45 AM 8:00 AM 8:15 AM	62 63 60	27	U-Turn	Peds												
7:30 AM 7:45 AM 8:00 AM 8:15 AM	62 63 60	27		Peds				Northbound					Southbound			ı
7:45 AM 8:00 AM 8:15 AM	63 60		0		App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Int. Total
8:00 AM 8:15 AM	60	34		0	89	8	39	. 0	0	47	76	34	. 0	0	110	246
8:15 AM		U-T	0	0	97	13	36	0	0	49	79	43	0	0	122	268
		30	0	0	90	5	45	0	0	50	70	37	0	0	107	247
	51	31	. 0	0	82	8	41	. 0	0	49	71	30	. 0	0	101	232
Total	236	122	0	0	358	34	161	0	0	195	296	144	0	0	440	993
Approach %	65.9	34.1	0.0	-	-	17.4	82.6	0.0	-	-	67.3	32.7	0.0	-	-	-
Total %	23.8	12.3	0.0	-	36.1	3.4	16.2	0.0	-	19.6	29.8	14.5	0.0	-	44.3	-
PHF	0.937	0.897	0.000	-	0.923	0.654	0.894	0.000	-	0.975	0.937	0.837	0.000	-	0.902	0.926
Motorcycles	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Motorcycles	0.0	0.0	<u>-</u>	-	0.0	0.0	0.0	<u>-</u>	-	0.0	0.0	0.0	-	-	0.0	0.0
Cars & Light Goods	226	116	0	-	342	32	154	0	-	186	286	138	0	-	424	952
% Cars & Light Goods	95.8	95.1		-	95.5	94.1	95.7		-	95.4	96.6	95.8	-	-	96.4	95.9
Buses	7	4	0	-	11	1	5	0	-	6	10	6	0	-	16	33
% Buses	3.0	3.3	<u> </u>	-	3.1	2.9	3.1		-	3.1	3.4	4.2	<u>-</u>	-	3.6	3.3
Single-Unit Trucks	3	2	0	-	5	1	2	0	-	3	0	0	0	-	0	8
% Single-Unit Trucks	1.3	1.6	<u>-</u>	-	1.4	2.9	1.2	<u>-</u>	-	1.5	0.0	0.0		-	0.0	0.8
Articulated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0		-	0.0	0.0	0.0		-	0.0	0.0	0.0		-	0.0	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0		-	0.0	0.0	0.0	<u>-</u>	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	<u>-</u>	-	-	i	_	<u>-</u>	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	<u>-</u>	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	i	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake

Road Site Code: 200333 Start Date: 11/19/2020 Page No: 5

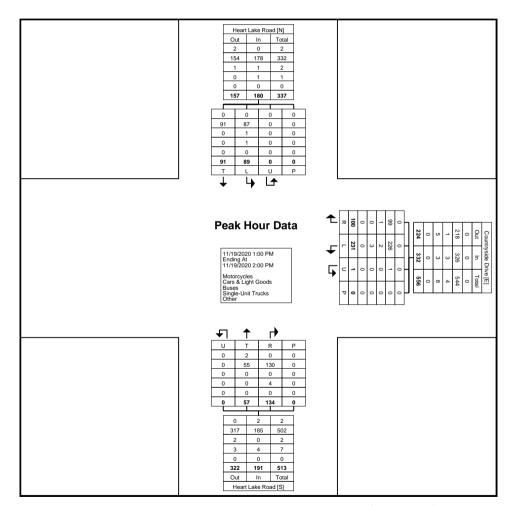
Turning Movement Peak Hour Data Plot (7:30 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 6

Turning Movement Peak Hour Data (1:00 PM)

	1					9 1110 101		ait i 10 ai 1	Data (.	.00 :,						1
			Countryside Drive	е				Heart Lake Road	t				Heart Lake Road	i		
Start Time			Westbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Int. Total
1:00 PM	66	18	0	0	84	16	32	0	0	48	24	24	0	0	48	180
1:15 PM	44	25	0	0	69	12	30	0	0	42	10	28	0	0	38	149
1:30 PM	56	19	1	0	76	11	37	0	0	48	20	21	0	0	41	165
1:45 PM	65	38	0	0	103	18	35	0	0	53	35	18	0	0	53	209
Total	231	100	1	0	332	57	134	0	0	191	89	91	0	0	180	703
Approach %	69.6	30.1	0.3	-	-	29.8	70.2	0.0	-	-	49.4	50.6	0.0	-	-	
Total %	32.9	14.2	0.1	-	47.2	8.1	19.1	0.0	-	27.2	12.7	12.9	0.0	-	25.6	-
PHF	0.875	0.658	0.250	-	0.806	0.792	0.905	0.000	-	0.901	0.636	0.813	0.000	-	0.849	0.841
Motorcycles	0	0	0	-	0	2	0	0	-	2	0	0	0	-	0	2
% Motorcycles	0.0	0.0	0.0	-	0.0	3.5	0.0	-	-	1.0	0.0	0.0	-	-	0.0	0.3
Cars & Light Goods	226	99	1	-	326	55	130	0	-	185	87	91	0	-	178	689
% Cars & Light Goods	97.8	99.0	100.0	-	98.2	96.5	97.0	-	-	96.9	97.8	100.0	-	-	98.9	98.0
Buses	2	1	0	-	3	0	0	0	-	0	1	0	0	-	1	4
% Buses	0.9	1.0	0.0	-	0.9	0.0	0.0	-	-	0.0	1.1	0.0	-	-	0.6	0.6
Single-Unit Trucks	3	0	0	-	3	0	4	0	-	4	1	0	0	-	1	8
% Single-Unit Trucks	1.3	0.0	0.0	-	0.9	0.0	3.0	-	-	2.1	1.1	0.0	-	-	0.6	1.1
Articulated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-		0	-	-	-		0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-



Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake

Road Site Code: 200333 Start Date: 11/19/2020

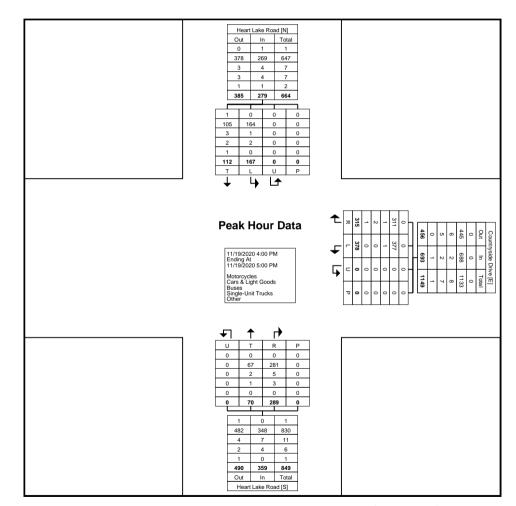
Page No: 7

Turning Movement Peak Hour Data Plot (1:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 8

Turning Movement Peak Hour Data (4:00 PM)


					,			- a.a. (
		Countryside Drive	•	I			Heart Lake Road		_			Heart Lake Road	I		
		Westbound					Northbound					Southbound			
Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Int. Total
101	66	0	0	167	18	77	0	0	95	34	28	0	0	62	324
97	88	0	0	185	14	79	0	0	93	39	23	0	0	62	340
88	78	0	0	166	21	61	0	0	82	44	35	0	0	79	327
92	83	0	0	175	17	72	0	0	89	50	26	0	0	76	340
378	315	0	0	693	70	289	0	0	359	167	112	0	0	279	1331
54.5	45.5	0.0	-	-	19.5	80.5	0.0	-	-	59.9	40.1	0.0	-	-	-
28.4	23.7	0.0	-	52.1	5.3	21.7	0.0	-	27.0	12.5	8.4	0.0	-	21.0	-
0.936	0.895	0.000	-	0.936	0.833	0.915	0.000	-	0.945	0.835	0.800	0.000	-	0.883	0.979
0	0	0	-	0	0	0	0	-	0	0	1	0	-	1	1
0.0	0.0	-	-	0.0	0.0	0.0	<u>-</u>	-	0.0	0.0	0.9	-	-	0.4	0.1
377	311	0	-	688	67	281	0	-	348	164	105	0	-	269	1305
99.7	98.7	-	-	99.3	95.7	97.2		-	96.9	98.2	93.8	-	-	96.4	98.0
1	1	0	-	2	2	5	0	-	7	1	3	0	-	4	13
0.3	0.3	-	-	0.3	2.9	1.7	-	-	1.9	0.6	2.7	-	-	1.4	1.0
0	2	0	-	2	1	3	0	-	4	2	2	0	-	4	10
0.0	0.6	-	-	0.3	1.4	1.0	<u>-</u>	-	1.1	1.2	1.8	-	-	1.4	0.8
0	1	0	-	1	0	0	0	-	0	0	0	0	-	0	1
0.0	0.3	-	-	0.1	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.1
0	0	0	-	0	0	0	0	-	0	0	1	0	-	1	1
0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.9	-	-	0.4	0.1
-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
-	<u>-</u>	-	-	-	-	-	<u>-</u>	-	<u>-</u>	-	_	-	-	-	-
-	-	-	0	-	-	-	-	0	-	-	_	-	0	-	-
-	-	-	-	-	-	-	_	-	-	-		-	-	-	-
	101 97 88 92 378 54.5 28.4 0.936 0 0.0 377 99.7 1 0.3 0 0.0 0 0 0 0	Left Right 101 66 97 88 88 78 92 83 378 315 54.5 45.5 28.4 23.7 0.936 0.895 0 0 0.0 0.0 377 311 99.7 98.7 1 1 0.3 0.3 0 2 0.0 0.6 0 1 0.0 0.3 0 0 0.0 0.0 - - - - - - - - - - - -	Left Right U-Turn 101 66 0 97 88 0 88 78 0 92 83 0 378 315 0 54.5 45.5 0.0 28.4 23.7 0.0 0.936 0.895 0.000 0 0 0 0.00 0.0 - 377 311 0 99.7 98.7 - 1 1 0 0.3 0.3 - 0 2 0 0.0 0.6 - 0 1 0 0.0 0.3 - 0 0 0 0 0.0 0.3 - 0 0 0 0 0.0 0.0 - - 0 0 0 - 0 0 <	Left Right U-Turn Peds 101 66 0 0 97 88 0 0 88 78 0 0 92 83 0 0 378 315 0 0 54.5 45.5 0.0 - 28.4 23.7 0.0 - 0.936 0.895 0.000 - 0 0 0 - 0.0 0.0 - - 377 311 0 - 99.7 98.7 - - 1 1 0 - 99.7 98.7 - - 1 1 0 - 0.3 0.3 - - 0 2 0 - 0.0 0.6 - - 0 0 - - 0.0 0.3 <	Countryside Drive Westbound Left Right U-Turn Peds App. Total 101 66 0 0 167 97 88 0 0 185 88 78 0 0 166 92 83 0 0 175 378 315 0 0 693 54.5 45.5 0.0 - - 28.4 23.7 0.0 - 52.1 0.936 0.895 0.000 - 0.936 0 0 0 - 0.936 0 0 0 - 0.936 0 0 0 - 0.936 0 0 0 - 0.936 0 0 0 - 0.036 377 311 0 - 688 99.7 98.7 - - 99.3 1	Countryside Drive Westbound Left Right U-Turn Peds App. Total Thru 101 66 0 0 167 18 97 88 0 0 185 14 88 78 0 0 166 21 92 83 0 0 175 17 378 315 0 0 693 70 54.5 45.5 0.0 - - 19.5 28.4 23.7 0.0 - 52.1 5.3 0.936 0.895 0.000 - 0.936 0.833 0 0 0 - 0.0 0 0.0 0 - 0 0 0.0 0.0 - 0.0 0.0 377 311 0 - 688 67 99.7 98.7 - - 99.3 95.7	Countryside Drive Westbound Left Right U-Turn Peds App. Total Thru Right 101 66 0 0 167 18 77 97 88 0 0 185 14 79 88 78 0 0 166 21 61 92 83 0 0 175 17 72 378 315 0 0 693 70 289 54.5 45.5 0.0 - - 19.5 80.5 28.4 23.7 0.0 - 52.1 5.3 21.7 0.936 0.895 0.000 - 0.936 0.833 0.915 0 0 0 - 0.0 0 0 0.0 0.0 - 0.0 0 0 0.0 0 - 688 67 281 99.7 98.7<	Countryside Drive Westbound Heart Lake Road Northbound Left Right U-Turn Peds App. Total Thru Right U-Turn 101 66 0 0 167 18 77 0 97 88 0 0 185 14 79 0 88 78 0 0 166 21 61 0 92 83 0 0 175 17 72 0 378 315 0 0 693 70 289 0 54.5 45.5 0.0 - - 19.5 80.5 0.0 28.4 23.7 0.0 - 52.1 5.3 21.7 0.0 0.936 0.895 0.000 - 0.936 0.833 0.915 0.000 0 0 0 - 0 0 0 0 0 0.90 0	Left Right U-Turn Peds App. Total Thru Right U-Turn Peds 101 66 0 0 167 18 77 0 0 97 88 0 0 185 14 79 0 0 88 78 0 0 166 21 61 0 0 92 83 0 0 175 17 72 0 0 378 315 0 0 693 70 289 0 0 54.5 45.5 0.0 - - 19.5 80.5 0.0 - 28.4 23.7 0.00 - 52.1 5.3 21.7 0.0 - 0.936 0.895 0.000 - 0.936 0.833 0.915 0.000 - 0.0 0 0 0 0 0 0 - 377<	Left Right U-Turn Peds App. Total Thru Right U-Turn Peds App. Total 101 66 0 0 167 18 77 0 0 95 97 88 0 0 185 14 79 0 0 93 88 78 0 0 166 21 61 0 0 82 92 83 0 0 175 17 72 0 0 89 378 315 0 0 693 70 289 0 0 359 54.5 45.5 0.0 - - 19.5 80.5 0.0 - 27.0 0.936 0.895 0.000 - 0.936 0.833 0.915 0.000 - 0.945 0 0 0 0 0 0 0 - 0.945 0 <td< td=""><td> Countryside Drive Westbound Westbound Worthbound Country Westbound Westbound Country Westbound Wes</td><td> Countryside Drive Westbound Northbound Northbound</td><td> Countryside Drive Westbound Curry Peds App. Total Thru Peds App. Total Thru Curry Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds Thru Thru U-Turn Thru U-Turn Thru U-Turn Peds Thru Thru U-Turn Thru Thru Thru Thru Thru Thru Thru Thru Thru</td><td> Countryside Drive Westbound Peds App. Total Thru Peds Right U-Turn Peds App. Total U-Turn U-Turn D-Turn U-Turn U-</td><td> Countryside Drive</td></td<>	Countryside Drive Westbound Westbound Worthbound Country Westbound Westbound Country Westbound Wes	Countryside Drive Westbound Northbound Northbound	Countryside Drive Westbound Curry Peds App. Total Thru Peds App. Total Thru Curry Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Thru U-Turn Peds Thru Thru U-Turn Thru U-Turn Thru U-Turn Peds Thru Thru U-Turn Thru Thru Thru Thru Thru Thru Thru Thru Thru	Countryside Drive Westbound Peds App. Total Thru Peds Right U-Turn Peds App. Total U-Turn U-Turn D-Turn U-Turn U-	Countryside Drive

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake

Road Site Code: 200333 Start Date: 11/19/2020 Page No: 9

Turning Movement Peak Hour Data Plot (4:00 PM)

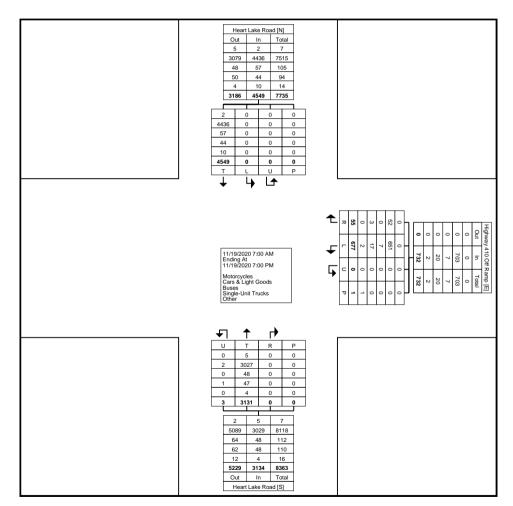
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Countryside Drive & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 10

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 1

Turning Movement Data


		Hiç	ghway 410 Off Ra	amp				Heart Lake Road					Heart Lake Road	i		
Start Time	Left	Right	Westbound U-Turn	Peds	App. Total	Thru	Right	Northbound U-Turn	Peds	App. Total	Left	Thru	Southbound U-Turn	Peds	App. Total	Int. Total
7:00 AM	12	0	0	0	12	44	0	0	0	Арр. Total 44	0	72	0	0	72	128
7:15 AM	18	2	0	0	20	45	0	0	0	45	0	69	0	0	69	134
7:30 AM	20	0	0	0	20	51	0	0	0	51	0	98	0	0	98	169
7:45 AM	20	1	0	0	21	57	0	0	0	57	0	107	0	0	107	185
Hourly Total	70	3	0	0	73	197	0	0	0	197	0	346	0	0	346	616
8:00 AM	10	1	0	0	11	53	0	0	0	53	0	95	0	0	95	159
8:15 AM	12	1	0	0	13	50	0	0	0	50	0	82	0	0	82	145
8:30 AM	11	0	0	0	11	52	0	0	0	52	0	105	0	0	105	168
8:45 AM	9	1	0	0	10	50	0	0	0	50	0	107	0	0	107	167
Hourly Total	42	3	0	0	45	205	0	0	0	205	0	389	0	0	389	639
9:00 AM	7	0	0	0	7	43	0	0	0	43	0	89	0	0	89	139
9:15 AM	8	0	0	1	8	37	0	0	0	37	0	83	0	0	83	128
9:30 AM	12	2	0	0	14	49	0	0	0	49	0	72	0	0	72	135
9:45 AM	15	1	0	0	16	46	0	0	0	46	0	73	0	0	73	135
Hourly Total	42	3	0	1	45	175	0	0	0	175	0	317	0	0	317	537
10:00 AM	10	1	0	0	11	35	0	0	0	35	0	77	0	0	77	123
10:15 AM	13	0	0	0	13	47	0	0	0	47	0	72	0	0	72	132
10:30 AM	12	2	0	0	14	45	0	0	0	45	0	90	0	0	90	149
10:45 AM	13	1	0	0	14	32	0	0	0	32	0	65	0	0	65	111
Hourly Total	48	4	0	0	52	159	0	0	0	159	0	304	0	0	304	515
11:00 AM	12	2	0	0	14	61	0	0	0	61	0	83	0	0	83	158
11:15 AM	16	1	0	0	17	51	0	0	0	51	0	77	0	0	77	145
11:30 AM	12	0	0	0	12	39	0	0	0	39	0	79	0	0	79	130
11:45 AM	15	2	0	0	17	36	0	0	0	36	0	74	0	0	74	127
Hourly Total	55	5	0	0	60	187	0	0	0	187	0	313	0	0	313	560
12:00 PM	20	0	0	0	20	49	0	0	0	49	0	80	0	0	80	149
12:15 PM	10	2	0	0	12	50	0	0	0	50	0	74	0	0	74	136
12:30 PM	17	1	0	0	18	60	0	0	0	60	0	61	0	0	61	139
12:45 PM	20	3	0	0	23	57	0	0	0	57	0	67	0	0	67	147
Hourly Total	67	6	0	0	73	216	0	0	0	216	0	282	0	0	282	571
1:00 PM	7	1	0	0	8	54	0	0	0	54	0	101	0	0	101	163
1:15 PM	22	2	0	0	24	56	0	0	0	56	0	77	0	0	77	157
1:30 PM	12	0	0	0	12	61	0	0	0	61	0	87	0	0	87	160
1:45 PM	16	3	0	0	19	76	0	0	0	76	0	95	0	0	95	190
Hourly Total	57	6	0	0	63	247	0	0	0	247	0	360	0	0	360	670
2:00 PM	10	1	. 0	0	11	74	0	0	0	74	0	85	. 0	0	85	170

2:15 PM	12	0	0	0	12	92	0	0	0	92	0	94	0	0	94	198
2:30 PM	17	1	0	0	18	107	0	0	0	107	0	102	0	0	102	227
2:45 PM	11	3	0	0	14	82	0	0	0	82	0	95	0	0	95	191
Hourly Total	50	<u>5</u>	0	0	55	355	0	0	0	355	0	376	0	0	376	786
3:00 PM	12	0	0	0	12	85	0	0	0	85	0	118	0	0	118	215
	7	0	0		7		0			•		112	0			212
3:15 PM 3:30 PM	11	1	0	0	12	93 95	0	0 0	0	93 95	0	112	0	0	112 121	212
		·													-	
3:45 PM	12	2	0	0	14	100	0	0	0	100	0	115	0	0	115	229
Hourly Total	42	3	0	0	45	373	0	0	0	373	0	466	0	0	466	884
4:00 PM	19	0	0	0	19	94	0	0	0	94	0	141	0	0	141	254
4:15 PM	11	2	0	0	13	96	0	0	0	96	0	125	0	0	125	234
4:30 PM	19	0	0	0	19	90	0	1	0	91	0	130	0	0	130	240
4:45 PM	17	1	0	0	18	97	0	0	0	97	0	137	0	0	137	252
Hourly Total	66	3	0	0	69	377	0	. 1 .	0	378	0	533	0	0	533	980
5:00 PM	20	5	0	0	25	87	0	0	0	87	0	100	0	0	100	212
5:15 PM	19	0	0	0	19	85	0	2	0	87	0	128	0	0	128	234
5:30 PM	19	2	0	. 0	21	85	0	0	0	85	0	124	0	0	124	230
5:45 PM	15	2	0	0	17	89	0	0	0	89	0	111	0	0	111	217
Hourly Total	73	9	0	0	82	346	0	2	0	348	0	463	0	0	463	893
6:00 PM	20	. 0	0	. 0	20	88	0	. 0	0	. 88	0	122	0	0	122	230
6:15 PM	17	2	0	0	19	76	0	0	0	76	0	104	0	0	104	199
6:30 PM	18	2	0	0	20	64	0	0	0	64	0	87	0	0	87	171
6:45 PM	10	. 1	0	0	11	66	0	. 0	0	66	0	87	0	0	87	164
Hourly Total	65	5	0	0	70	294	0	0	0	294	0	400	0	0	400	764
Grand Total	677	55	0	1	732	3131	0	3	0	3134	0	4549	0	0	4549	8415
Approach %	92.5	7.5	0.0	-		99.9	0.0	0.1	-	-	0.0	100.0	0.0	-	-	-
Total %	8.0	0.7	0.0	_	8.7	37.2	0.0	0.0	-	37.2	0.0	54.1	0.0	-	54.1	-
Motorcycles	0	0	0	-	0	5	0	0	-	5	0	2	0	-	2	7
% Motorcycles	0.0	0.0		-	0.0	0.2	-	0.0	-	0.2	-	0.0	-	-	0.0	0.1
Cars & Light Goods	651	52	0	-	703	3027	0	2	-	3029	0	4436	0	-	4436	8168
% Cars & Light Goods	96.2	94.5	-	-	96.0	96.7	-	66.7	-	96.6	-	97.5	-	-	97.5	97.1
Buses	7	0	0	-	7	48	0	0	-	48	0	57	0	-	57	112
% Buses	1.0	0.0	-	-	1.0	1.5	-	0.0	-	1.5	-	1.3	-	-	1.3	1.3
Single-Unit Trucks	17	3	0	-	20	47	0	1	-	48	0	44	0	-	44	112
% Single-Unit Trucks	2.5	5.5	-	-	2.7	1.5	-	33.3	-	1.5	-	1.0	-	-	1.0	1.3
Articulated Trucks	2	0	0	-	2	4	0	0	-	4	0	9	0	-	9	15
% Articulated Trucks	0.3	0.0	-	-	0.3	0.1	-	0.0	-	0.1	-	0.2	-	-	0.2	0.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	1	0	-	1	1
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	-	0.0	-	0.0	-	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	_	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	0.0	_	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	1	-	-		-	0	-	_	-	-	0	-	_
% Pedestrians	_	<u>-</u>	_	100.0	_	-		<u>-</u>	-	_	-			-	-	_

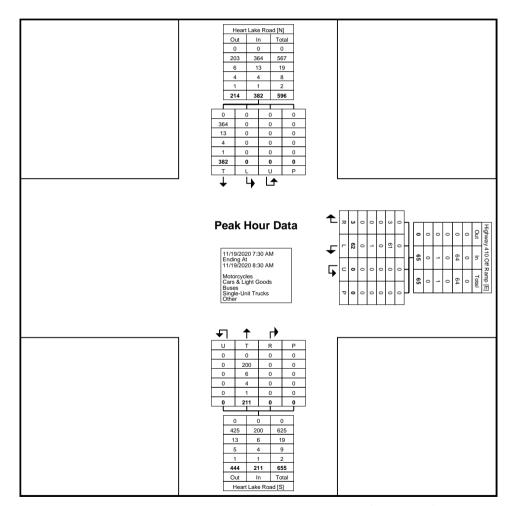
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 4


Turning Movement Peak Hour Data (7:30 AM)

Start Time
Start Time Left Right U-Turn Peds App. Total Thru Right U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Int. To 7:30 AM 20 0 0 0 51 0 0 98 0 0 98 169 7:45 AM 20 1 0 0 21 57 0 0 57 0 107 0 0 107 185 8:00 AM 10 1 0 0 11 53 0 0 53 0 95 0 0 95 159 8:15 AM 12 1 0 0 13 50 0 0 50 0 82 0 0 82 145 Total 62 3 0 0 65 211 0 0 211 0 382 0 0 382 0
Left Right U-Turn Peds App. Total Thru Right U-Turn Peds App. Total Left Thru U-Turn Peds App. Total Int. To 7:30 AM 20 0 0 0 20 51 0 0 51 0 98 0 0 98 169 7:45 AM 20 1 0 0 21 57 0 0 57 0 107 0 0 107 185 8:00 AM 10 1 0 0 11 53 0 0 53 0 95 0 0 95 159 8:15 AM 12 1 0 0 13 50 0 0 50 0 82 0 0 82 145 Total 62 3 0 0 65 211 0 0 211 0 382 0 0
7:45 AM 20 1 0 0 21 57 0 0 0 57 0 107 0 0 107 185 8:00 AM 10 1 0 0 11 53 0 0 53 0 95 0 0 95 159 8:15 AM 12 1 0 0 13 50 0 0 50 0 82 0 0 82 145 Total 62 3 0 0 65 211 0 0 211 0 382 0 0 382 658 Approach% 95.4 4.6 0.0 - - 100.0 0.0 0 - - 0.0 100.0 0.0 0 0 0 100.0 0.0 0 - - - - - 0.0 0 0 0 0 0 0 0
8:00 AM 10 1 0 0 11 53 0 0 53 0 95 0 0 95 159 8:15 AM 12 1 0 0 13 50 0 0 50 0 82 0 0 82 145 Total 62 3 0 0 65 211 0 0 0 211 0 382 0 0 382 658 Approach% 95.4 4.6 0.0 - - 100.0 0.0 0.0 - - 0.0 100.0 0
8:15 AM 12 1 0 0 13 50 0 0 50 0 82 0 0 82 145 Total 62 3 0 0 65 211 0 0 211 0 382 0 0 382 658 Approach% 95.4 4.6 0.0 - - 100.0 0.0 0.0 - - 0.0 100.0 0.0 0.0 - </td
Total 62 3 0 0 65 211 0 0 0 211 0 382 0 0 382 658 Approach% 95.4 4.6 0.0 - - 100.0 0.0 - - 0.0 100.0 0.0 -<
Approach % 95.4 4.6 0.0 - - 100.0 0.0 0.0 - - 0.0 100.0 0.0 -
Total % 9.4 0.5 0.0 - 9.9 32.1 0.0 0.0 - 32.1 0.0 58.1 0.0 - 58.1 - PHF 0.775 0.750 0.000 - 0.774 0.925 0.000 0.000 - 0.925 0.000 0.893 0.000 - 0.893 0.889 Motorcycles 0
PHF 0.775 0.750 0.000 - 0.774 0.925 0.000 0.000 - 0.925 0.000 0.925 0.000 0.893 0.000 - 0.893 0.883 Motorcycles 0 0 0 - 0
Motorcycles 0 0 0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0
% Motorcycles 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 - 0.0 - 0.0 0.0
Cars & Light Goods 61 3 0 - 64 200 0 0 - 200 0 364 0 - 364 628
% Cars & Light Goods 98.4 100.0 98.5 94.8 94.8 - 95.3 95.3 95.4
Buses 0 0 0 - 0 6 0 0 - 6 0 13 0 - 13 19
% Buses 0.0 0.0 0.0 2.8 2.8 - 3.4 3.4 2.9
Single-Unit Trucks 1 0 0 - 1 4 0 0 - 4 0 - 4 9
% Single-Unit Trucks 1.6 0.0 1.5 1.9 1.9 - 1.0 1.0 1.4
Articulated Trucks 0 0 0 - 0 1 0 0 - 1 0 1 0 - 1 2
% Articulated Trucks 0.0 0.0 0.0 0.5 0.5 - 0.3 0.3 0.3
Bicycles on Road 0 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 0 0
% Bicycles on Road 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 - 0.0 - 0.0 0.0
Bicycles on Crosswalk 0 0 0 0 0 1
% Bicycles on Crosswalk
Pedestrians 0 0 0 0 0 0 0
% Pedestrians

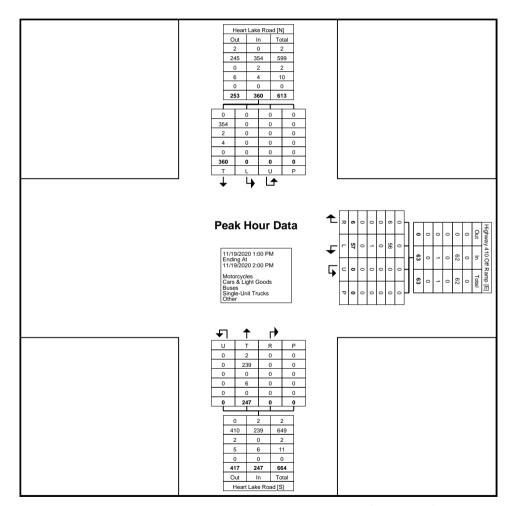
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 5

Turning Movement Peak Hour Data Plot (7:30 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 6


Turning Movement Peak Hour Data (1:00 PM)

						,			- a.a. (.00 1 101)						
		Hig	hway 410 Off Ra	mp				Heart Lake Road					Heart Lake Road			
Start Time			Westbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Int. Total
1:00 PM	7	1	0	0	8	54	0	0	0	54	0	101	0	0	101	163
1:15 PM	22	2	0	0	24	56	0	0	0	56	0	77	0	0	77	157
1:30 PM	12	0	0	0	12	61	0	0	0	61	0	87	0	0	87	160
1:45 PM	16	3	0	0	19	76	0	0	0	76	0	95	0	0	95	190
Total	57	6	0	0	63	247	0	0	0	247	0	360	0	0	360	670
Approach %	90.5	9.5	0.0	-	-	100.0	0.0	0.0	-	-	0.0	100.0	0.0	-	-	-
Total %	8.5	0.9	0.0	-	9.4	36.9	0.0	0.0	-	36.9	0.0	53.7	0.0	-	53.7	-
PHF	0.648	0.500	0.000	-	0.656	0.813	0.000	0.000	-	0.813	0.000	0.891	0.000	-	0.891	0.882
Motorcycles	0	0	0	-	0	2	0	0	-	2	0	0	0	-	0	2
% Motorcycles	0.0	0.0		-	0.0	0.8			-	0.8	-	0.0		-	0.0	0.3
Cars & Light Goods	56	6	0	-	62	239	0	0	-	239	0	354	0	-	354	655
% Cars & Light Goods	98.2	100.0	-	-	98.4	96.8	-		-	96.8	-	98.3	-	-	98.3	97.8
Buses	0	0	0	-	0	0	0	0	-	0	0	2	0	-	2	2
% Buses	0.0	0.0	-	-	0.0	0.0	_	<u>-</u>	-	0.0	-	0.6	-	-	0.6	0.3
Single-Unit Trucks	1	0	0	-	1	6	0	0	-	6	0	4	0	-	4	11
% Single-Unit Trucks	1.8	0.0		-	1.6	2.4			-	2.4	-	1.1	<u> </u>	-	1.1	1.6
Articulated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	-	-	0.0	0.0	-		-	0.0	-	0.0	-	-	0.0	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0		<u>-</u>	-	0.0	-	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-		0	-	-	-		0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	<u>-</u>	-	-	-	_	<u>-</u>	-	-	-	-	-	-	_	
Pedestrians	-	-		0	-	-	-	<u>-</u>	0	-	-	-	<u>-</u>	0	-	-
% Pedestrians	-	-		-	-	-	-		-	-	-	-		-	_	-

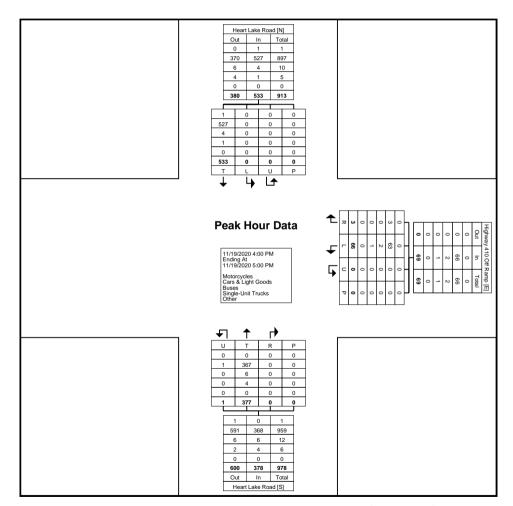
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 7

Turning Movement Peak Hour Data Plot (1:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 8


Turning Movement Peak Hour Data (4:00 PM)

					i urninç	g ivioven	nent Pea	ak Hour I	Data (4)	:00 PM)						1
		Hiç	ghway 410 Off Ra	amp				Heart Lake Road	d				Heart Lake Road	l		
Start Time			Westbound					Northbound					Southbound			1
	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Int. Total
4:00 PM	19	. 0	0	0	19	94	. 0	. 0	0	94	0	141	. 0	0	141	254
4:15 PM	11	2	0	0	13	96	0	0	0	96	0	125	0	0	125	234
4:30 PM	19	0	0	0	19	90	0	1	0	91	0	130	0	0	130	240
4:45 PM	17	1	0	0	18	97	0	0	0	97	0	137	0	0	137	252
Total	66	3	0	0	69	377	0	1	0	378	0	533	0	0	533	980
Approach %	95.7	4.3	0.0	-	-	99.7	0.0	0.3	-	-	0.0	100.0	0.0	-	-	-
Total %	6.7	0.3	0.0	-	7.0	38.5	0.0	0.1	-	38.6	0.0	54.4	0.0	-	54.4	-
PHF	0.868	0.375	0.000	-	0.908	0.972	0.000	0.250	-	0.974	0.000	0.945	0.000	-	0.945	0.965
Motorcycles	0	0	0	-	0	0	0	0	-	0	0	1	0	-	1	1
% Motorcycles	0.0	0.0	_	-	0.0	0.0	_	0.0	-	0.0	-	0.2	_	-	0.2	0.1
Cars & Light Goods	63	3	0	-	66	367	0	1	-	368	0	527	0	-	527	961
% Cars & Light Goods	95.5	100.0	-	-	95.7	97.3		100.0	-	97.4	-	98.9	-	-	98.9	98.1
Buses	2	0	0	-	2	6	0	0	-	6	0	4	0	-	4	12
% Buses	3.0	0.0	-	-	2.9	1.6	_	0.0	-	1.6	-	0.8	_	-	0.8	1.2
Single-Unit Trucks	1	0	0	-	1	4	0	0	-	4	0	1	0	-	1	6
% Single-Unit Trucks	1.5	0.0		-	1.4	1.1		0.0	-	1.1	-	0.2	_	-	0.2	0.6
Articulated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Articulated Trucks	0.0	0.0	-	-	0.0	0.0	_	0.0	-	0.0	-	0.0	_	-	0.0	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	-	0.0	-	0.0	-	0.0	<u>-</u>	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	_	-	-	_	-	-	-	-	-	-	-	_	-	_	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	·	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 9

Turning Movement Peak Hour Data Plot (4:00 PM)

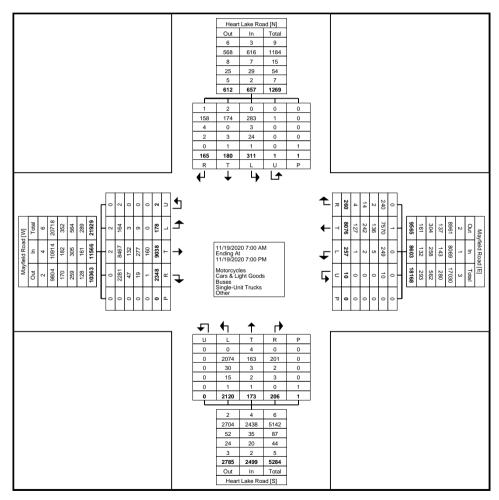
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Heart Lake Road & Highway 410 Off Ramp Site Code: 200333 Start Date: 11/19/2020 Page No: 10

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 1

Turning Movement Data


			,	ld Road					,	eld Road	Ü					ake Road						ake Road			
Start Time			East	bound					West	tbound					North	nbound					South	nbound			
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	1	226	67	0	0	294	4	107	0	0	0	111	13	0	. 1	0	0	14	5	1	0	0	0	6	425
7:15 AM	2	194	63	0	0	259	2	134	5	0	0	141	23	2	2	0	0	27	5	4	3	0	0	12	439
7:30 AM	4	233	94	0	0	331	12	116	2	0	0	130	29	5	2	0	0	36	7	5	0	0	0	12	509
7:45 AM	6	275	101	0	0	382	13	136	4	0	0	153	33	1	6	0	0	40	7	10	2	0	0	19	594
Hourly Total	13	928	325	0	0	1266	31	493	11	0	0	535	98	8	11	0	0	117	24	20	5	0	0	49	1967
8:00 AM	5	208	88	0	0	301	9	153	3	4	0	169	33	5	1	0	1	39	3	4	6	0	0	13	522
8:15 AM	1	240	89	0	0	330	8	116	. 7	. 0	0	131	32	. 3	5	0	0	40	8	6	4	0	0	18	519
8:30 AM	3	233	85	0	0	321	7	141	5	0	0	153	31	2	6	0	0	39	7	4	1	0	0	12	525
8:45 AM	5	211	61	0	0	277	6	104	3	0	0	113	31	2	4	0	0	37	7	3	2	0	0	12	439
Hourly Total	14	892	323	0	0	1229	30	514	18	4	0	566	127	12	16	0	1	155	25	17	13	0	0	55	2005
9:00 AM	4	205	42	0	0	251	5	108	6	0	0	119	15	0	5	0	0	20	11	3	4	0	0	18	408
9:15 AM	2	189	37	0	0	228	5	125	7	0	0	137	16	2	4	0	0	22	9	5	4	0	0	18	405
9:30 AM	2	181	20	0	0	203	6	95	. 5	. 0	0	106	17	. 3	4	0	0	24	9	2	2	0	0	13	346
9:45 AM	1	185	38	0	0	224	3	110	2	0	0	115	28	4	3	0	0	35	6	4	1	0	0	11	385
Hourly Total	9	760	137	0	0	906	19	438	20	0	0	477	76	9	16	0	0	101	35	14	11	0	0	60	1544
10:00 AM	4	162	32	0	0	198	5	94	3	. 0	0	102	20	. 1	3	0	0	24	4	2	3	0	0	9	333
10:15 AM	1	178	36	0	0	215	4	101	2	0	0	107	28	4	5	0	0	37	10	5	3	0	0	18	377
10:30 AM	4	202	41	0	0	247	3	114	4	0	0	121	15	2	3	0	0	20	1	4	2	0	0	7	395
10:45 AM	3	180	34	0	0	217	3	140	. 5	. 0	0	148	30	. 3	. 7	0	0	40	8	. 7	. 5	0	0	20	425
Hourly Total	12	722	143	0	0	877	15	449	14	0	0	478	93	10	18	0	0	121	23	18	13	0	0	54	1530
11:00 AM	0	164	38	0	0	202	5	111	8	0	0	124	19	0	3	0	0	22	4	2	1	0	0	7	355
11:15 AM	7	154	35	0	0	196	1	124	2	. 0	0	127	36	. 0	5	0	0	41	8	2	. 1	0	0	11	375
11:30 AM	1	170	31	0	0	202	1	115	6	0	0	122	22	2	7	0	0	31	1	2	3	0	0	6	361
11:45 AM	4	154	30	0	0	188	3	136	4	1	0	144	16	1	. 8	0	0	25	4	3	2	0	0	9	366
Hourly Total	12	642	134	0	0	788	10	486	20	. 1	0	517	93	3	23	0	0	119	17	9	7	0	0	33	1457
12:00 PM	2	153	33	0	0	188	7	136	0	0	0	143	24	2	3	0	0	29	5	2	4	0	0	11	371
12:15 PM	2	135	37	0	0	174	4	134	4	0	0	142	25	3	3	0	0	31	6	1	1	0	0	8	355
12:30 PM	2	169	25	0	0	196	5	129	7	0	0	141	27	1	4	0	0	32	7	5	0	0	0	12	381
12:45 PM	2	159	35	0	0	196	2	115	3	1	0	121	23	5	3	0	0	31	12	2	3	0	0	17	365
Hourly Total	8	616	130	0	0	754	18	514	14	1	0	547	99	11	13	0	0	123	30	10	8	0	0	48	1472
1:00 PM	3	176	36	0	0	215	6	135	3	0	0	144	22	4	6	0	0	32	2	4	0	0	0	6	397
1:15 PM	1	170	29	0	0	200	4	150	6	0	0	160	33	5	3	0	0	41	8	8	1	0	0	17	418
1:30 PM	9	172	31	1	0	213	8	121	5	0	0	134	27	3	4	0	0	34	11	2	3	0	0	16	397
1:45 PM	5	153	46	0	0	204	4	156	7	0	0	167	39	4	7	0	0	50	7	4	3	0	1	14	435
Hourly Total	18	671	142	1	0	832	22	562	21	0	0	605	121	16	20	0	0	157	28	18	. 7	0	1	53	1647

2:00 PM	1	185	37	0	0	223	3	124	8	0	0	135	27	5	5	0	0	37	6	2	2	0	0	10	405
2:15 PM	4	197	53	0	0	254	4	156	8	0	0	168	48	4	3	0	0	55	6	3	1	0	0	10	487
2:30 PM	4	175	44	0	0	223	5	187	2	0	0	194	37	7	8	0	0	52	4	4	1	1	0	10	479
2:45 PM	3	179	51	0	0	233	4	193	7	0	0	204	59	5	5	0	0	69	7	4	1	0	0	12	518
Hourly Total	12	736	185	0	0	933	16	660	25	0	0	701	171	21	21	0	0	213	23	13	5	1	0	42	1889
3:00 PM	8	173	47	0	0	228	4	188	2	1	0	195	55	4	3	0	0	62	3	3	5	0	0	11	496
3:15 PM	6	216	47	0	0	269	5	242	6	0	0	253	71	9	3	0	0	83	1	4	7	0	0	12	617
3:30 PM	6	210	64	0	0	280	9	218	4	0	0	231	73	10	3	0	0	86	9	2	4	0	0	15	612
3:45 PM	3	204	71	<u>0</u>	0	279	8	232	13	2	0	255	71	4	12	0	0	87	9	4	9	0	0	22	643
	23	803	229	1	0	1056	26	880	25	3	0	934	270	27	21	0	0	318	22	13	25	0	0	60	2368
Hourly Total	5					-																			
4:00 PM	7	195	46	0	0	246	6	233	9 -	0	0	248	82	8	. 5	0	. 0	95	12	6	6	. 0	. 0	24	613
4:15 PM	-	195	58	0	0	260	4	235	5	0	0	244	93	8	5	0	0	106	14	2	6	0	0	22	632
4:30 PM	6	208	57	0	0	271	8	241	7	0	0	256	70	6	4	0	0	80	9	6	9	0	0	24	631
4:45 PM	10	219	69	0	0	298	7	262	8	0	0	277	98	5	2	0	0	105	16	7		0	. 0	30	710
Hourly Total	28	817	230	0	0	1075	25	971	29	0	0	1025	343	27	16	0	0	386	51	21	28	0	0	100	2586
5:00 PM	3	210	44	0	0	257	7	275	8	1	0	291	95	7	5	0	0	107	7	1	5	0	0	13	668
5:15 PM	6	220	49	0	0	275	5	276	7	. 0	0	288	83	3	6	0	. 0	92	8	5	4	0	0	17	672
5:30 PM	4	177	54	0	0	235	3	258	8	0	0	269	98	3	6	0	0	107	4	3	7	0	0	14	625
5:45 PM	5	190	50	0	0	245	6	268	12	0	0	286	80	4	1	0	0	85	5	4	9	0	0	18	634
Hourly Total	18	797	197	0	0	1012	21	1077	35	1	0	1134	356	17	18	0	0	391	24	13	25	0	0	62	2599
6:00 PM	4	186	38	0	0	228	8	263	6	0	0	277	86	7	6	0	0	99	2	6	6	0	0	14	618
6:15 PM	2	168	44	0	0	214	5	260	8	0	0	273	73	3	1	0	0	77	4	3	5	0	0	12	576
6:30 PM	2	147	43	0	0	192	8	255	5	0	0	268	59	2	4	0	0	65	3	3	3	0	0	9	534
6:45 PM	3	153	48	0	0	204	3	254	9	0	0	266	55	0	2	0	0	57	0	2	4	0	0	6	533
Hourly Total	11	654	173	0	0	838	24	1032	28	0	0	1084	273	12	13	0	0	298	9	14	18	0	0	41	2261
Grand Total	178	9038	2348	2	0	11566	257	8076	260	10	0	8603	2120	173	206	0	1	2499	311	180	165	1	1	657	23325
Approach %	1.5	78.1	20.3	0.0	-	-	3.0	93.9	3.0	0.1	-	-	84.8	6.9	8.2	0.0	-	-	47.3	27.4	25.1	0.2	-	-	-
Total %	0.8	38.7	10.1	0.0	-	49.6	1.1	34.6	1.1	0.0	-	36.9	9.1	0.7	0.9	0.0	-	10.7	1.3	0.8	0.7	0.0	-	2.8	-
Motorcycles	2	2	0	0	-	4	0	1	0	0	-	1	0	4	0	0	-	4	0	2	1	0	-	3	12
% Motorcycles	1.1	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	2.3	0.0	_		0.2	0.0	1.1	0.6	0.0		0.5	0.1
Cars & Light Goods	164	8467	2281	2	_	10914	249	7570	240	10	_	8069	2074	163	201	0		2438	283	174	158	1	_	616	22037
% Cars & Light																									
Goods	92.1	93.7	97.1	100.0	-	94.4	96.9	93.7	92.3	100.0	-	93.8	97.8	94.2	97.6	_	_	97.6	91.0	96.7	95.8	100.0		93.8	94.5
Buses	3	132	47	0	-	182	5	136	2	0	-	143	30	3	2	0	-	35	3	0	4	0	-	7	367
% Buses	1.7	1.5	2.0	0.0	-	1.6	1.9	1.7	0.8	0.0	-	1.7	1.4	1.7	1.0	-	-	1.4	1.0	0.0	2.4	0.0	-	1.1	1.6
Single-Unit Trucks	9	277	19	0	-	305	2	242	14	0	-	258	15	2	3	0	-	20	24	3	2	0	-	29	612
% Single-Unit Trucks	5.1	3.1	0.8	0.0	-	2.6	0.8	3.0	5.4	0.0	-	3.0	0.7	1.2	1.5	-	-	0.8	7.7	1.7	1.2	0.0	-	4.4	2.6
Articulated Trucks	0	160	0	0	-	160	1	127	4	0	-	132	1	0	0	0	-	1	1	0	0	0	-	1	294
% Articulated Trucks	0.0	1.8	0.0	0.0	-	1.4	0.4	1.6	1.5	0.0	-	1.5	0.0	0.0	0.0	-	-	0.0	0.3	0.0	0.0	0.0	-	0.2	1.3
Bicycles on Road	0	0	1	0	-	1	0	0	0	0	-	0	0	1	0	0	-	1	0	1	0	0	-	1	3
% Bicycles on Road	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.6	0.0	-	-	0.0	0.0	0.6	0.0	0.0	-	0.2	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-	0.0	-	-
Pedestrians	-				0	_	_	_			0		_				1	_	-				1		
% Pedestrians	_				-	_	-				-		_				100.0		_		_		100.0	-	—
,0 0000010110													L												

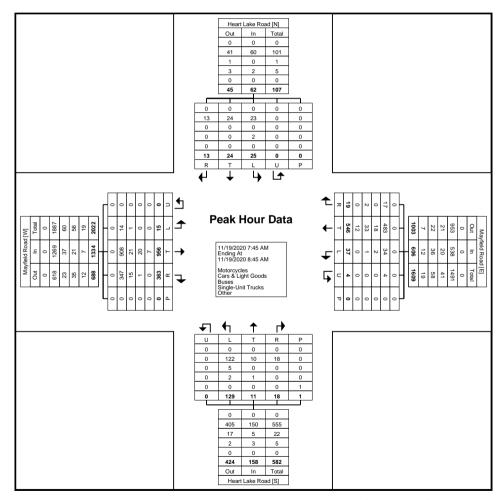
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 4


Turning Movement Peak Hour Data (7:45 AM)

	1						ı	run	•	loveli	ICHT I	can	loui	Dala	•	,			ı						ı
			Mayfie	ld Road					Mayfie	ld Road						ake Road						ke Road			
			East	bound					West	bound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:45 AM	6	275	101	0	0	382	13	136	4	0	0	153	33	1	6	0	0	40	7	10	2	0	0	19	594
8:00 AM	5	208	88	0	0	301	9	153	3	4	0	169	33	5	1	0	1	39	3	4	6	0	0	13	522
8:15 AM	1	240	89	0	0	330	8	116	7	0	0	131	32	3	5	0	0	40	8	6	4	0	0	18	519
8:30 AM	3	233	85	0	0	321	7	141	5	0	0	153	31	2	6	0	0	39	7	4	1	0	0	12	525
Total	15	956	363	0	0	1334	37	546	19	4	0	606	129	11	18	0	1	158	25	24	13	0	0	62	2160
Approach %	1.1	71.7	27.2	0.0	-	-	6.1	90.1	3.1	0.7	-	-	81.6	7.0	11.4	0.0	-	-	40.3	38.7	21.0	0.0	-	-	-
Total %	0.7	44.3	16.8	0.0	-	61.8	1.7	25.3	0.9	0.2	-	28.1	6.0	0.5	0.8	0.0	-	7.3	1.2	1.1	0.6	0.0	-	2.9	-
PHF	0.625	0.869	0.899	0.000	-	0.873	0.712	0.892	0.679	0.250	-	0.896	0.977	0.550	0.750	0.000	-	0.988	0.781	0.600	0.542	0.000	-	0.816	0.909
Motorcycles	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	<u>-</u>	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Cars & Light Goods	14	908	347	0	-	1269	34	483	17	4	-	538	122	10	18	0	-	150	23	24	13	0	-	60	2017
% Cars & Light Goods	93.3	95.0	95.6	-	-	95.1	91.9	88.5	89.5	100.0	-	88.8	94.6	90.9	100.0	-	-	94.9	92.0	100.0	100.0	-	-	96.8	93.4
Buses	1	21	15	0	-	37	2	18	0	0	-	20	5	0	0	0	-	5	0	0	0	0	-	0	62
% Buses	6.7	2.2	4.1	-	-	2.8	5.4	3.3	0.0	0.0	-	3.3	3.9	0.0	0.0	-	-	3.2	0.0	0.0	0.0	-	-	0.0	2.9
Single-Unit Trucks	0	20	1	0	-	21	1	33	2	0	-	36	2	1	0	0	-	3	2	0	0	0	-	2	62
% Single-Unit Trucks	0.0	2.1	0.3	-	-	1.6	2.7	6.0	10.5	0.0	-	5.9	1.6	9.1	0.0	-	-	1.9	8.0	0.0	0.0	-	-	3.2	2.9
Articulated Trucks	0	7	0	0	-	7	0	12	0	0	-	12	0	0	0	0	-	0	0	0	0	0	-	0	19
% Articulated Trucks	0.0	0.7	0.0	-	-	0.5	0.0	2.2	0.0	0.0	-	2.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.9
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	_	-	-	-	-	0	-	-	-	-		1	-	-	-	-		0	_	-
% Pedestrians	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-	-

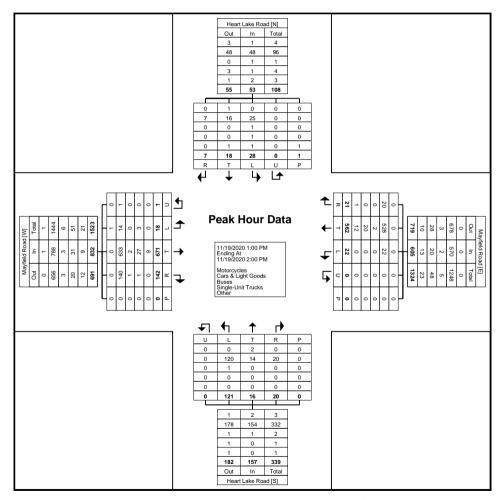
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 5

Turning Movement Peak Hour Data Plot (7:45 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 6


Turning Movement Peak Hour Data (1:00 PM)

	i					1		ı un	_	/IOVCII	ICITE I	can	loui	Data	(1.00	1 1V1 <i>)</i>			ı						1
			Mayfie	ld Road					Mayfie	ld Road					Heart La	ake Road					Heart La	ake Road			
			East	bound					West	bound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
1:00 PM	3	176	36	0	0	215	6	135	3	0	0	144	22	4	6	0	0	32	2	4	0	0	0	6	397
1:15 PM	1	170	29	0	0	200	4	150	6	0	0	160	33	5	3	0	0	41	8	8	1	0	0	17	418
1:30 PM	9	172	31	1	0	213	8	121	5	0	0	134	27	3	4	0	0	34	11	2	3	0	0	16	397
1:45 PM	5	153	46	0	0	204	4	156	7	0	0	167	39	4	7	0	0	50	7	4	3	0	1	14	435
Total	18	671	142	1	0	832	22	562	21	0	0	605	121	16	20	0	0	157	28	18	7	0	1	53	1647
Approach %	2.2	80.6	17.1	0.1	-	-	3.6	92.9	3.5	0.0	-	-	77.1	10.2	12.7	0.0	-	-	52.8	34.0	13.2	0.0	-	-	-
Total %	1.1	40.7	8.6	0.1	-	50.5	1.3	34.1	1.3	0.0	-	36.7	7.3	1.0	1.2	0.0	-	9.5	1.7	1.1	0.4	0.0	-	3.2	-
PHF	0.500	0.953	0.772	0.250	-	0.967	0.688	0.901	0.750	0.000	-	0.906	0.776	0.800	0.714	0.000	-	0.785	0.636	0.563	0.583	0.000	-	0.779	0.947
Motorcycles	1	0	0	0	-	1	0	0	0	0	-	0	0	2	0	0	-	2	0	1	0	0	-	1	4
% Motorcycles	5.6	0.0	0.0	0.0	-	0.1	0.0	0.0	0.0	_	-	0.0	0.0	12.5	0.0	_	-	1.3	0.0	5.6	0.0	-	-	1.9	0.2
Cars & Light Goods	14	633	140	1	-	788	22	528	20	0	-	570	120	14	20	0	-	154	25	16	7	0	-	48	1560
% Cars & Light Goods	77.8	94.3	98.6	100.0	-	94.7	100.0	94.0	95.2	-	-	94.2	99.2	87.5	100.0	-	-	98.1	89.3	88.9	100.0	-	-	90.6	94.7
Buses	0	2	1	0	-	3	0	2	0	0	-	2	1	0	0	0	-	1	1	0	0	0	-	1	7
% Buses	0.0	0.3	0.7	0.0	-	0.4	0.0	0.4	0.0	_	-	0.3	0.8	0.0	0.0	_	-	0.6	3.6	0.0	0.0	-	-	1.9	0.4
Single-Unit Trucks	3	27	1	0	-	31	0	20	0	0	-	20	0	0	0	0	-	0	1	0	0	0	-	1	52
% Single-Unit Trucks	16.7	4.0	0.7	0.0	-	3.7	0.0	3.6	0.0	-	-	3.3	0.0	0.0	0.0	-	-	0.0	3.6	0.0	0.0	-	-	1.9	3.2
Articulated Trucks	0	9	0	0	-	9	0	12	1	0	-	13	0	0	0	0	-	0	1	0	0	0	-	1	23
% Articulated Trucks	0.0	1.3	0.0	0.0	-	1.1	0.0	2.1	4.8	-	-	2.1	0.0	0.0	0.0	-	-	0.0	3.6	0.0	0.0	-	-	1.9	1.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	1	0	0	-	1	1
% Bicycles on Road	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	5.6	0.0	-	-	1.9	0.1
Bicycles on Crosswalk	-	-	-	-	0	-	1	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-		1	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-
		•								-					-			•		•	•				

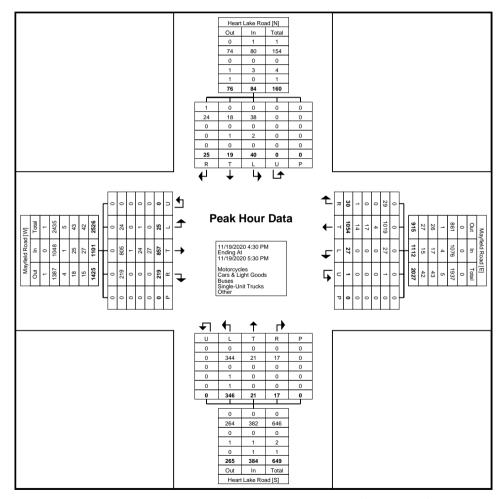
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 7

Turning Movement Peak Hour Data Plot (1:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 8


Turning Movement Peak Hour Data (4:30 PM)

	ı						i	ı anı	_	VIO V OI I	10111	oun	ioai	Data	(1.00	,			1						1
			Mayfie	ld Road					Mayfie	ld Road					Heart La	ake Road					Heart La	ake Road			
			East	bound					West	tbound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
4:30 PM	6	208	57	0	0	271	8	241	7	0	0	256	70	6	4	0	0	80	9	6	9	0	0	24	631
4:45 PM	10	219	69	0	0	298	7	262	8	0	0	277	98	5	2	0	0	105	16	7	7	0	0	30	710
5:00 PM	3	210	44	0	0	257	7	275	8	1	0	291	95	7	5	0	0	107	7	1	5	0	0	13	668
5:15 PM	6	220	49	0	0	275	5	276	7	0	0	288	83	3	6	0	0	92	8	5	4	0	0	17	672
Total	25	857	219	0	0	1101	27	1054	30	1	0	1112	346	21	17	0	0	384	40	19	25	0	0	84	2681
Approach %	2.3	77.8	19.9	0.0	-	-	2.4	94.8	2.7	0.1	-	-	90.1	5.5	4.4	0.0	-	-	47.6	22.6	29.8	0.0	-	-	-
Total %	0.9	32.0	8.2	0.0	-	41.1	1.0	39.3	1.1	0.0	-	41.5	12.9	0.8	0.6	0.0	-	14.3	1.5	0.7	0.9	0.0	-	3.1	-
PHF	0.625	0.974	0.793	0.000	-	0.924	0.844	0.955	0.938	0.250	-	0.955	0.883	0.750	0.708	0.000	-	0.897	0.625	0.679	0.694	0.000	-	0.700	0.944
Motorcycles	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	1	0	-	1	1
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	4.0	-	-	1.2	0.0
Cars & Light Goods	24	805	219	0	-	1048	27	1019	29	1	-	1076	344	21	17	0	-	382	38	18	24	0	-	80	2586
% Cars & Light Goods	96.0	93.9	100.0	-	-	95.2	100.0	96.7	96.7	100.0	-	96.8	99.4	100.0	100.0	-	-	99.5	95.0	94.7	96.0	-	-	95.2	96.5
Buses	0	1	0	0	-	1	0	4	0	0	-	4	0	0	0	0	-	0	0	0	0	0	-	0	5
% Buses	0.0	0.1	0.0	-	-	0.1	0.0	0.4	0.0	0.0	-	0.4	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.2
Single-Unit Trucks	1	24	0	0	-	25	0	17	0	0	-	17	1	0	0	0	-	1	2	1	0	0	-	3	46
% Single-Unit Trucks	4.0	2.8	0.0	-	-	2.3	0.0	1.6	0.0	0.0	-	1.5	0.3	0.0	0.0	-	-	0.3	5.0	5.3	0.0	-	-	3.6	1.7
Articulated Trucks	0	27	0	0	-	27	0	14	1	0	-	15	1	0	0	0	-	1	0	0	0	0	-	0	43
% Articulated Trucks	0.0	3.2	0.0	-	-	2.5	0.0	1.3	3.3	0.0	-	1.3	0.3	0.0	0.0	-	-	0.3	0.0	0.0	0.0	-	-	0.0	1.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 9

Turning Movement Peak Hour Data Plot (4:30 PM)

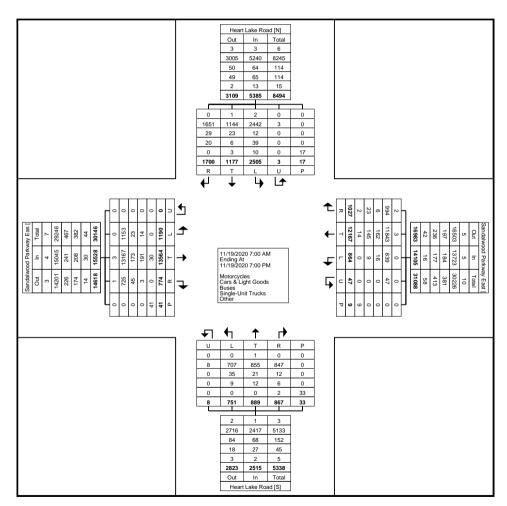
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Mayfield Road & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 10

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 1

Turning Movement Data


		Sa	andalwood	Parkway E	as			Sa	ındalwood	Parkway E	ast				Heart L	ake Road					Heart La	ake Road			
			East	bound					West	tbound					North	nbound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	22	374	3	0	0	399	7	136	13	0	0	156	1	10	13	0	0	24	48	15	20	1	0	84	663
7:15 AM	26	381	6	0	0	413	5	183	7	0	0	195	5	13	10	0	1	28	59	22	21	0	0	102	738
7:30 AM	31	435	9	0	0	475	13	185	8	1	0	207	7	12	13	0	1	32	71	25	23	0	0	119	833
7:45 AM	24	397	10	0	2	431	18	230	16	0	0	264	11	18	22	0	0	51	66	32	28	0	0	126	872
Hourly Total	103	1587	28	0	2	1718	43	734	44	1	0	822	24	53	58	0	2	135	244	94	92	1	0	431	3106
8:00 AM	23	339	14	0	0	376	22	157	16	0	0	195	19	14	16	0	1	49	62	31	25	0	0	118	738
8:15 AM	20	402	19	0	0	441	11	219	15	1	0	246	20	13	21	0	1	54	53	26	23	0	0	102	843
8:30 AM	26	370	19	0	1	415	22	206	13	0	0	241	14	15	13	0	1	42	55	35	25	1	0	116	814
8:45 AM	22	311	9	0	0	342	15	158	11	0	0	184	16	14	14	0	2	44	77	21	29	0	1	127	697
Hourly Total	91	1422	61	0	1	1574	70	740	55	1	0	866	69	56	64	0	5	189	247	113	102	1	1	463	3092
9:00 AM	22	305	19	0	0	346	14	137	9	1	0	161	11	12	7	0	0	30	42	21	30	0	0	93	630
9:15 AM	16	297	19	0	2	332	12	124	11	1	0	148	8	13	20	0	0	41	51	19	28	0	0	98	619
9:30 AM	24	246	17	0	0	287	10	121	13	2	0	146	18	9	16	0	1	43	45	16	31	0	0	92	568
9:45 AM	27	251	13	0	0	291	17	169	8	0	0	194	10	11	15	0	0	36	53	11	29	0	0	93	614
Hourly Total	89	1099	68	0	2	1256	53	551	41	4	0	649	47	45	58	0	1	150	191	67	118	0	0	376	2431
10:00 AM	18	242	13	0	0	273	7	145	11	1	0	164	9	5	11	0	0	25	52	17	24	0	0	93	555
10:15 AM	24	249	11	0	1	284	9	137	16	1	0	163	10	8	11	0	1	29	49	14	22	0	0	85	561
10:30 AM	22	227	16	0	1	265	12	185	12	1	0	210	17	10	13	0	0	40	65	28	22	0	0	115	630
10:45 AM	12	264	15	0	0	291	20	182	11	2	0	215	16	12	15	0	0	43	40	18	22	0	0	80	629
Hourly Total	76	982	55	0	2	1113	48	649	50	5	0	752	52	35	50	0	1	137	206	77	90	0	0	373	2375
11:00 AM	19	232	10	0	3	261	7	186	23	2	0	218	13	18	13	0	3	44	61	14	23	0	0	98	621
11:15 AM	22	246	10	0	3	278	11	193	9	1	1	214	12	18	17	0	0	47	60	20	24	0	1	104	643
11:30 AM	9	204	22	0	1	235	20	206	13	3	0	242	10	14	18	1	0	43	54	17	22	0	1	93	613
11:45 AM	16	234	15	0	0	265	13	195	10	1	0	219	8	9	15	1	0	33	46	24	23	0	0	93	610
Hourly Total	66	916	57	0	7	1039	51	780	55	7	1	893	43	59	63	2	3	167	221	75	92	0	2	388	2487
12:00 PM	16	214	15	0	1	245	16	217	20	0	0	253	19	13	15	0	1	47	48	18	38	0	0	104	649
12:15 PM	22	231	21	0	2	274	14	211	12	5	1	242	14	16	14	0	0	44	57	16	22	0	1	95	655
12:30 PM	27	243	13	0	2	283	23	220	15	0	0	258	12	18	13	0	0	43	40	19	23	0	0	82	666
12:45 PM	23	258	16	0	1	297	16	212	15	1	0	244	24	19	14	0	0	57	42	25	29	0	0	96	694
Hourly Total	88	946	65	0	6	1099	69	860	62	6	1	997	69	66	56	0	1	191	187	78	112	0	1	377	2664
1:00 PM	13	232	10	0	1	255	14	227	23	0	0	264	16	18	12	0	1	46	55	16	32	0	0	103	668
1:15 PM	12	265	20	0	0	297	14	239	25	1	0	279	16	18	10	0	0	44	47	22	26	0	0	95	715
1:30 PM	22	253	13	0	1	288	18	233	20	1	0	272	17	22	23	0	1	62	59	16	32	0	0	107	729
1:45 PM	23	288	22	0	0	333	20	248	36	2	0	306	13	20	27	0	0	60	51	27	39	0	0	117	816
Hourly Total	70	1038	65	0	2	1173	66	947	104	4	0	1121	62	78	72	0	2	212	212	81	129	0	0	422	2928

2:00 PM	19	256	12	0	0	287	14	260	29	2	0	305	13	19	21	0	0	53	50	16	29	1	0	96	741
2:15 PM	29	299	20	0	0	348	17	287	39	0	0	343	18	22	15	0	2	55	44	35	36	0	0	115	861
2:30 PM	32	314	16	0	0	362	14	282	46	1	1	343	12	28	17	0	1	57	60	28	32	0	1	120	882
2:45 PM	22	289	18	0	0	329	33	334	40	0	1	407	21	23	31	1	1	76	53	28	31	0	1	112	924
Hourly Total	102	1158	66	0	0	1326	78	1163	154	3	2	1398	64	92	84	1	4	241	207	107	128	1	2	443	3408
3:00 PM	25	313	20	0	1	358	24	329	26	2	0	381	26	24	17	0	3	67	49	33	38	0	1	120	926
3:15 PM	38	268	11	0	3	317	20	345	24	1	0	390	23	33	22	0	2	78	48	35	51	0	1	134	919
3:30 PM	36	316	22	0	0	374	19	373	28	1	2	421	14	30	16	1	3	61	41	27	52	0	5	120	976
3:45 PM	29	265	18	0	0	312	25	377	41	0	0	443	15	29	25	0	0	69	50	35	41	0	0	126	950
Hourly Total	128	1162	71	0	4	1361	88	1424	119	4	2	1635	78	116	80	1	8	275	188	130	182	0	7	500	3771
4:00 PM	33	290	16	0	0	339	18	338	26	0	0	382	13	33	25	0	1	71	74	30	69	0	1	173	965
4:15 PM	40	330	26	0	3	396	20	361	35	1	0	417	21	19	21	0	0	61	52	20	54	0	0	126	1000
4:30 PM	35	282	16	0	3	333	31	363	21	2	1	417	11	36	25	2	3	74	60	30	67	0	1	157	981
4:45 PM	40	311	16	0	4	367	20	355	29	1	0	405	25	30	23	0	0	78	57	32	62	0	1	151	1001
Hourly Total	148	1213	74	0	10	1435	89	1417	111	4	1	1621	70	118	94	2	4	284	243	112	252	0	3	607	3947
5:00 PM	30	309	22	0	0	361	29	392	31	1	0	453	25	22	33	0	0	80	34	33	50	0	0	117	1011
5:15 PM	37	258	17	0	2	312	27	379	29	0	0	435	22	21	31	0	0	74	65	32	60	0	0	157	978
5:30 PM	38	271	22	0	0	331	27	405	25	1	1	458	25	23	17	1	0	66	42	36	59	0	1	137	992
5:45 PM	25	263	26	0	1	314	29	372	35	1	1	437	19	21	20	0	0	60	40	31	56	0	0	127	938
Hourly Total	130	1101	87	0	3	1318	112	1548	120	3	2	1783	91	87	101	1	0	280	181	132	225	0	1	538	3919
6:00 PM	24	215	22	0	0	261	21	360	36	0	0	417	18	30	21	0	0	69	48	37	61	0	0	146	893
6:15 PM	29	250	21	0	0	300	26	357	29	1	0	413	17	19	24	1	2	61	37	31	40	0	0	108	882
6:30 PM	21	234	17	0	1	272	21	298	22	2	0	343	31	19	23	0	0	73	46	24	39	0	0	109	797
6:45 PM	25	241	17	0	1	283	29	339	25	2	0	395	16	16	19	0	. 0	51	47	19	38	0	. 0	104	833
Hourly Total	99	940	77	0	2	1116	97	1354	112	5	0	1568	82	84	87	1	2	254	178	111	178	0	0	467	3405
Grand Total	1190	13564	774	0	41	15528	864	12167	1027	47	9	14105	751	889	867	8	33	2515	2505	1177	1700	3	17	5385	37533
Approach %	7.7	87.4	5.0	0.0		-	6.1	86.3	7.3	0.3		- 14100	29.9	35.3	34.5	0.3	-	-	46.5	21.9	31.6	0.1	·	-	-
Total %	3.2	36.1	2.1	0.0		41.4	2.3	32.4	2.7	0.1		37.6	2.0	2.4	2.3	0.0		6.7	6.7	3.1	4.5	0.0		14.3	_
Motorcycles	0	3	1	0.0		4	0	3	2	0.1		5	0	1	0	0.0		1	2	1	0	0.0		3	13
% Motorcycles	0.0	0.0	0.1			0.0	0.0	0.0	0.2	0.0		0.0	0.0	0.1	0.0	0.0		0.0	0.1	0.1	0.0	0.0		0.1	0.0
Cars & Light Goods	1153	13167	725	0		15045	839	11843	994	47		13723	707	855	847	8		2417	2442	1144	1651	3		5240	36425
% Cars & Light																									
Goods	96.9	97.1	93.7	-	-	96.9	97.1	97.3	96.8	100.0	-	97.3	94.1	96.2	97.7	100.0	-	96.1	97.5	97.2	97.1	100.0	-	97.3	97.0
Buses	23	173	45	0	-	241	16	162	6	0	-	184	35	21	12	. 0	-	68	12	23	29	0	-	64	557
% Buses	1.9	1.3	5.8	-	-	1.6	1.9	1.3	0.6	0.0	-	1.3	4.7	2.4	1.4	0.0	-	2.7	0.5	2.0	1.7	0.0	-	1.2	1.5
Single-Unit Trucks	14	191	3	0	-	208	9	145	23	. 0	-	177	9	12	. 6	. 0	-	27	39	6	20	0	-	65	477
% Single-Unit Trucks	1.2	1.4	0.4	-	-	1.3	1.0	1.2	2.2	0.0	-	1.3	1.2	1.3	0.7	0.0	-	1.1	1.6	0.5	1.2	0.0	-	1.2	1.3
Articulated Trucks	0	30	0	0	-	30	0	13	2	0	-	15	0	0	2	0	-	2	10	2	0	0	-	12	59
% Articulated Trucks	0.0	0.2	0.0	-	-	0.2	0.0	0.1	0.2	0.0	-	0.1	0.0	0.0	0.2	0.0	-	0.1	0.4	0.2	0.0	0.0	-	0.2	0.2
Bicycles on Road	0	0	0	0	_	0	0	1	0	0	_	1	0	0	0	0	-	0	0	1	0	0	_	1	2
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.1	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	4	-	-	-	-	-	0	-	-	-	-	-	8	-	-	-	-	-	3	-	-
% Bicycles on Crosswalk	-	-	-	-	9.8	-	-	-	-	-	0.0	-	-	-	-	-	24.2	-	-	-	-	-	17.6	-	-
Pedestrians	-	_	-		37	_	-	-		_	9		-		_		25		-		_	-	14		-
% Pedestrians	_	-	-	-	90.2	-	-	-	-	-	100.0	-	-	-	-	-	75.8	-	-	-	-	-	82.4		-

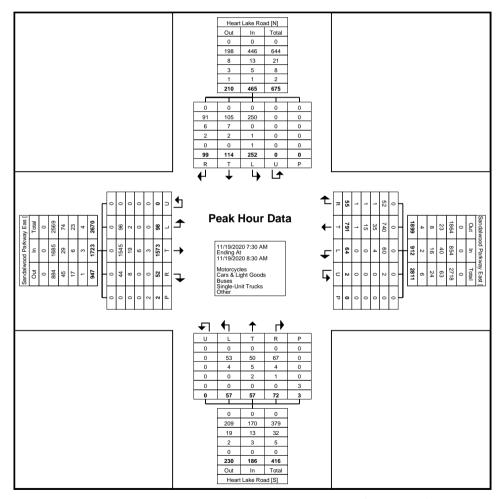
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 4


Turning Movement Peak Hour Data (7:30 AM)

% Motorcycles 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Start Time Left Thru Right U-Tum Peds App. Total Int. Total Right U-Tum Peds App. Total Int. Total Right U-Tum Peds App. Total Right U-Tum Right U-Tum Peds App. Total Right U-Tum Right U-Tum Peds App. Total Right U-Tum Right U	
Left Thru Right U-Turn Peds Total Int.	
7.45 AM	otal
8:00 AM	33
8:15 AM	′2
Total 98 1573 52 0 2 1723 64 791 55 2 0 912 57 57 72 0 3 186 252 114 99 0 0 465 32 Approach 5.7 91.3 3.0 0.0 7.0 86.7 6.0 0.2 30.6 30.6 38.7 0.0 54.2 24.5 21.3 0.0 7.0 14.2 - 10.4 3.0 47.9 1.6 0.0 - 52.4 1.9 24.1 1.7 0.1 - 27.8 1.7 1.7 2.2 0.0 - 5.7 7.7 3.5 3.0 0.0 - 14.2 - 14.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	J8
Approach % 5.7 91.3 3.0 0.0 7.0 86.7 6.0 0.2 30.6 30.6 38.7 0.0 54.2 24.5 21.3 0.0	13
Total % 3.0 47.9 1.6 0.0 - 52.4 1.9 24.1 1.7 0.1 - 27.8 1.7 1.7 2.2 0.0 - 5.7 7.7 3.5 3.0 0.0 - 14.2 - PHF 0.790 0.904 0.684 0.000 - 0.907 0.727 0.860 0.859 0.500 - 0.864 0.713 0.792 0.818 0.000 - 0.861 0.887 0.891 0.884 0.000 - 0.923 0.99 Motorcycles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86
PHF 0.790 0.904 0.684 0.000 - 0.860 0.859 0.500 - 0.864 0.713 0.792 0.818 0.000 - 0.884 0.000 - 0.861 0.887 0.891 0.884 0.000 - 0.923 0.984 Motorcycles 0	
Motorcycles 0 <th< td=""><td></td></th<>	
% Motorcycles 0.0	42
Cars & Light Goods 96 1545 44 0 - 1685 60 740 52 2 - 854 53 50 67 0 - 170 250 105 91 0 - 446 319 **Cars & Light Goods 98.0 98.2 84.6 - 97.8 93.8 93.6 94.5 100.0 - 93.6 93.0 87.7 93.1 - 91.4 99.2 92.1 91.9 - 95.9 96 **Buses 2 19 8 0 - 29 4 35 1 0 - 40 4 5 4 0 - 13 0 7 6 0 - 13 99.0 **Buses 2.0 1.2 15.4 1.7 6.3 4.4 1.8 0.0 - 4.4 7.0 8.8 5.6 - 7.0 0.0 6.1 6.1 - 2.8 2.0 **Single-Unit Trucks 0 6 0 0 0 - 6 0 15 1 0 - 16 0 2 1 0 - 3 1 2 2 0 - 5 3.0 **Single-Unit Trucks 0 6 0 0 0 - 6 0 15 1 0 - 16 0 2 1 0 - 3 1 2 2 0 - 5 3.0 **Single-Unit Trucks 0 0 6 0 0 0 - 6 0 15 1 0 0 - 16 0 2 1 0 0 - 3 1 2 2 0 0 - 5 3.0 **Single-Unit Trucks 0 0 6 0 0 0 - 6 0 0 15 1 0 0 - 16 0 2 1 0 0 - 3 1 2 2 0 0 - 5 3.0 **Single-Unit Trucks 0 0 6 0 0 0 - 6 0 0 15 1 0 0 - 16 0 2 1 0 0 - 3 1 2 2 0 0 - 5 3.0 **Single-Unit Trucks 0 0 6 0 0 0 - 6 0 0 15 1 0 0 - 16 0 2 1 0 0 - 3 1 0 0 - 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
% Cars & Light Goods 98.0 98.2 84.6 - - 97.8 93.8 93.6 94.5 100.0 - 93.0 87.7 93.1 - - 91.4 99.2 92.1 91.9 - - 95.9 96.0 Buses 2 19 8 0 - 29 4 35 1 0 - 40 4 5 4 0 - 13 0 7 6 0 - 13 98 % Buses 2.0 1.2 15.4 - - 1.7 6.3 4.4 1.8 0.0 - 4.4 7.0 8.8 5.6 - - 7.0 0.0 6.1 6.1 - - 2.8 2. Single-Unit Trucks 0 6 0 0 - 6 0 15 1 0 - 16 0 2 1 0 - 3 1 2 2 0 - 5 3 Single-Unit 0 0	.0
Goods 96.0 96.2 94.0 - 97.6 93.8 93.8 93.8 94.5 1000 - 93.8 93.0 97.7 93.1 - 91.4 93.2 92.1 91.9 95.9 90.9 90.9 90.9 90.9 90.9 90.9 90	55
% Buses 2.0 1.2 15.4 - - 1.7 6.3 4.4 1.8 0.0 - 4.4 7.0 8.8 5.6 - - 7.0 0.0 6.1 6.1 - - 2.8 2. Single-Unit Trucks 0 6 0 0 - 6 0 15 1 0 - 16 0 2 1 0 - 3 1 2 2 0 - 5 3 % Single-Unit 0.0 0.0 0.0 4.0 4.0 0.0 2.5 4.4 0.0 0.4 4.0 0.0 4.0 0.0	.0
Single-Unit Trucks 0 6 0 0 - 6 0 15 1 0 - 16 0 2 1 0 - 3 1 2 2 0 - 5 3 % Single-Unit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5
% Single-Unit 00 04 00 00 00 40 40 00 40 00 40 40 00 40 4	.9
% Single-Unit 00 04 00 03 00 19 18 00 - 18 00 35 14 16 04 18 20 11 0	0
Trucks 0.0 0.4 0.0 0.5 0.0 1.9 1.6 0.0 - 1.8 0.0 3.5 1.4 1.6 0.4 1.6 2.0 1.1 0.	.9
Articulated Trucks 0 3 0 0 - 3 0 1 1 0 - 2 0 0 0 - 0 1 0 0 - 1 6	3
% Articulated Trucks 0.0 0.2 0.0 0.2 0.0 0.1 1.8 0.0 - 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.	.2
Bicycles on Road 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0)
% Bicycles on Road 0.0	.0
Bicycles on Crosswalk 0 0 1 0	,
% Bicycles on Crosswalk	
Pedestrians 2 0 2 0 2 0	
% Pedestrians 100.0 66.7	

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 5

Turning Movement Peak Hour Data Plot (7:30 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 6

Turning Movement Peak Hour Data (1:00 PM)

	ı						1		_	VIOVEII		Carri	ioui	Data	•	•			ı						1
		S	andalwood	Parkway E	as			Sa	andalwood	Parkway E	ast				Heart La	ake Road					Heart La	ake Road			
			East	bound					West	tbound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
1:00 PM	13	232	10	0	1	255	14	227	23	0	0	264	16	18	12	0	1	46	55	16	32	0	0	103	668
1:15 PM	12	265	20	0	0	297	14	239	25	1	0	279	16	18	10	0	0	44	47	22	26	0	0	95	715
1:30 PM	22	253	13	0	1	288	18	233	20	1	0	272	17	22	23	0	1	62	59	16	32	0	0	107	729
1:45 PM	23	288	22	0	0	333	20	248	36	2	0	306	13	20	27	0	0	60	51	27	39	0	0	117	816
Total	70	1038	65	0	2	1173	66	947	104	4	0	1121	62	78	72	0	2	212	212	81	129	0	0	422	2928
Approach %	6.0	88.5	5.5	0.0	-	-	5.9	84.5	9.3	0.4	-	-	29.2	36.8	34.0	0.0	-	-	50.2	19.2	30.6	0.0	-	-	-
Total %	2.4	35.5	2.2	0.0	-	40.1	2.3	32.3	3.6	0.1	-	38.3	2.1	2.7	2.5	0.0	-	7.2	7.2	2.8	4.4	0.0	-	14.4	-
PHF	0.761	0.901	0.739	0.000	-	0.881	0.825	0.955	0.722	0.500	-	0.916	0.912	0.886	0.667	0.000	-	0.855	0.898	0.750	0.827	0.000	-	0.902	0.897
Motorcycles	0	0	0	0	-	0	0	0	2	0	-	2	0	0	0	0	-	0	0	0	0	0	-	0	2
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.0	1.9	0.0	-	0.2	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.1
Cars & Light Goods	66	1002	63	0	-	1131	66	925	101	4	-	1096	57	77	70	0	-	204	207	81	124	0	-	412	2843
% Cars & Light Goods	94.3	96.5	96.9	-	-	96.4	100.0	97.7	97.1	100.0	-	97.8	91.9	98.7	97.2	-	-	96.2	97.6	100.0	96.1	-	-	97.6	97.1
Buses	0	7	2	0	-	9	0	6	0	0	-	6	2	0	0	0	-	2	0	0	2	0	-	2	19
% Buses	0.0	0.7	3.1	_	-	0.8	0.0	0.6	0.0	0.0	-	0.5	3.2	0.0	0.0	_	-	0.9	0.0	0.0	1.6	-	-	0.5	0.6
Single-Unit Trucks	4	23	0	0	-	27	0	14	1	0	-	15	3	1	2	0	-	6	5	0	3	0	-	8	56
% Single-Unit Trucks	5.7	2.2	0.0	-	-	2.3	0.0	1.5	1.0	0.0	-	1.3	4.8	1.3	2.8	-	-	2.8	2.4	0.0	2.3	-	-	1.9	1.9
Articulated Trucks	0	6	0	0	-	6	0	2	0	0	-	2	0	0	0	0	-	0	0	0	0	0	-	0	8
% Articulated Trucks	0.0	0.6	0.0	-	-	0.5	0.0	0.2	0.0	0.0	-	0.2	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.3
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	0.0	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	2	-	-			-	0	-	-	-	-	-	2	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-	-
	•	•	•		•			•	•	•		•		•	•			•	•	•	•				

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

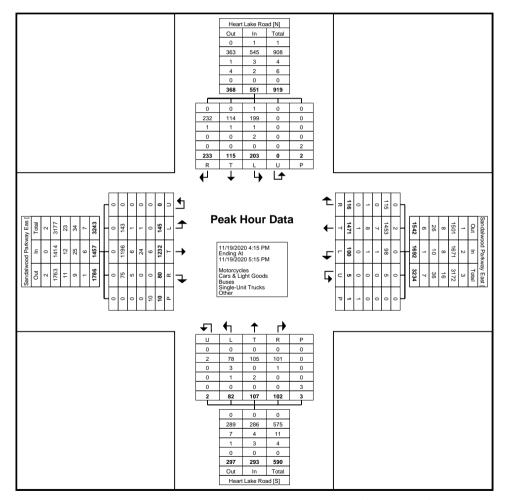
Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020

Page No: 7

Turning Movement Peak Hour Data Plot (1:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

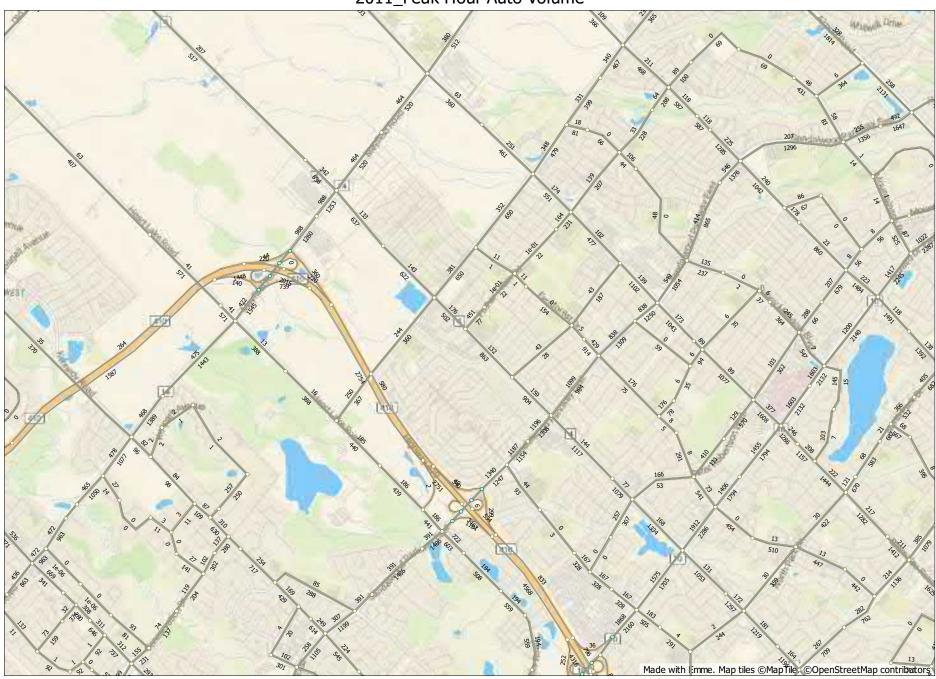
Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 8


Turning Movement Peak Hour Data (4:15 PM)

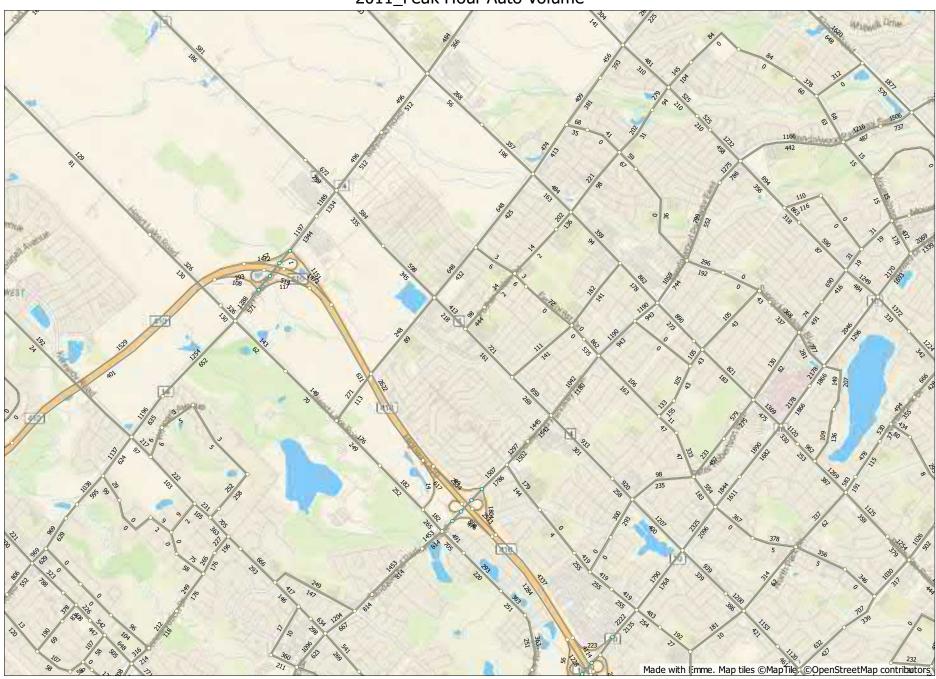
	1						ı		_	vioveii		can	loui	Dala	•	,			ı						1
		S		Parkway E	as			Sa		Parkway E	ast					ake Road						ake Road			
Ot and Time a			East	bound					West	tbound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
4:15 PM	40	330	26	0	3	396	20	361	35	. 1	0	417	21	19	21	0	0	61	52	20	54	0	0	126	1000
4:30 PM	35	282	16	0	3	333	31	363	21	2	1	417	11	36	25	2	3	74	60	30	67	0	1	157	981
4:45 PM	40	311	16	0	4	367	20	355	29	1	0	405	25	30	23	0	0	78	57	32	62	0	1	151	1001
5:00 PM	30	309	22	0	0	361	29	392	31	. 1	0	453	25	22	33	0	0	80	34	33	50	. 0	0	117	1011
Total	145	1232	80	0	10	1457	100	1471	116	5	1	1692	82	107	102	2	3	293	203	115	233	0	2	551	3993
Approach %	10.0	84.6	5.5	0.0	-	-	5.9	86.9	6.9	0.3	-	-	28.0	36.5	34.8	0.7	-	-	36.8	20.9	42.3	0.0	-	-	-
Total %	3.6	30.9	2.0	0.0	-	36.5	2.5	36.8	2.9	0.1	-	42.4	2.1	2.7	2.6	0.1	-	7.3	5.1	2.9	5.8	0.0	-	13.8	-
PHF	0.906	0.933	0.769	0.000	-	0.920	0.806	0.938	0.829	0.625	-	0.934	0.820	0.743	0.773	0.250	-	0.916	0.846	0.871	0.869	0.000	-	0.877	0.987
Motorcycles	0	0	0	0	-	0	0	2	0	0	-	2	0	0	0	0	-	0	1	0	0	0	-	1	3
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.1	0.0	0.0	-	0.1	0.0	0.0	0.0	0.0	-	0.0	0.5	0.0	0.0		-	0.2	0.1
Cars & Light Goods	143	1196	75	0	-	1414	98	1453	115	5	-	1671	78	105	101	2	-	286	199	114	232	0	-	545	3916
% Cars & Light Goods	98.6	97.1	93.8	-	-	97.0	98.0	98.8	99.1	100.0	-	98.8	95.1	98.1	99.0	100.0	-	97.6	98.0	99.1	99.6	-	-	98.9	98.1
Buses	1	6	5	0	-	12	1	7	0	0	-	8	3	0	1	0	-	4	1	1	1	0	-	3	27
% Buses	0.7	0.5	6.3	_	_	0.8	1.0	0.5	0.0	0.0	-	0.5	3.7	0.0	1.0	0.0	-	1.4	0.5	0.9	0.4	-	-	0.5	0.7
Single-Unit Trucks	1	24	0	0		25	1	8	1	0	-	10	1	2	0	0	-	3	2	0	0	0	-	2	40
% Single-Unit Trucks	0.7	1.9	0.0	-	-	1.7	1.0	0.5	0.9	0.0	-	0.6	1.2	1.9	0.0	0.0	-	1.0	1.0	0.0	0.0	-	-	0.4	1.0
Articulated Trucks	0	6	0	0	-	6	0	1	0	0	-	1	0	0	0	0	-	0	0	0	0	0	-	0	7
% Articulated Trucks	0.0	0.5	0.0	-	-	0.4	0.0	0.1	0.0	0.0	-	0.1	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.2
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	10.0	-	-	-	-	-	0.0	-	-	-	-	-	33.3	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	-	9	_	-	-	-	-	1	-	-	-	-	-	2	-	-	-	-		2	_	-
% Pedestrians	-	-	-	-	90.0	-	-	-	-	-	100.0	-	-	-	-	-	66.7	-	-	-	-	-	100.0	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

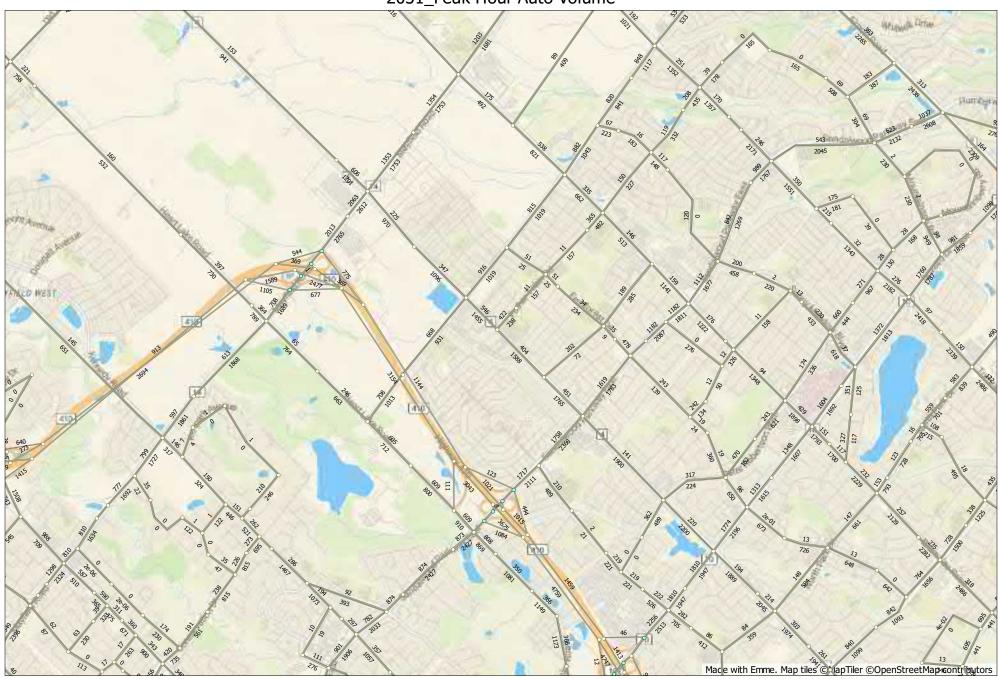
Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 9


Turning Movement Peak Hour Data Plot (4:15 PM)

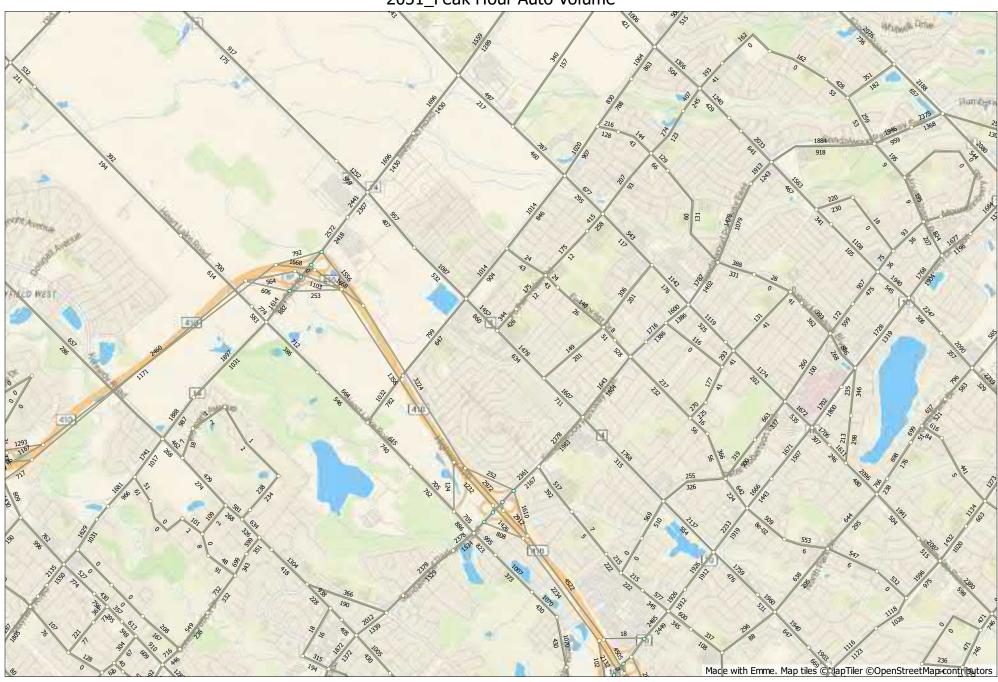
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com


Count Name: Sandalwood Parkway East & Heart Lake Road Site Code: 200333 Start Date: 11/19/2020 Page No: 10

2011_Peak Hour Auto Volume


2011 (G:/TranModel/2011_Base/Database/emmebank) Scenario 11: AM - Cleaned Network 2020-11-09 17:26 (Iwu@COB10W-MJ03YM3B)

2011_Peak Hour Auto Volume


2011 (G:/TranModel/2011_Base/Database/emmebank) Scenario 31: PM - Cleaned Network 2020-11-09 17:26 (Iwu@COB10W-MJ03YM3B)

2031_Peak Hour Auto Volume

2031 with campus (G:/TranModel/2031_with_campus Base/Database/emmebank) Scenario 11: AM - Cleaned Network 2020-11-09 18:01 (lwu@COB10W-MJ03YM3B)

2031_Peak Hour Auto Volume

2031 with campus (G:/TranModel/2031_with_campus Base/Database/emmebank) Scenario 31: PM - Cleaned Network 2020-11-09 18:01 (lwu@COB10W-MJ03YM3B)

2041_Peak Hour Auto Volume

2041_WITH CAMPUS (G:/TranModel/2041_with_campus Base with GTAW/Database/emmebank) Scenario 11: AM - Cleaned Network 2020-11-09 18:39 (lwu@COB10W-MJ03YM3B)

2041_Peak Hour Auto Volume

2041_WITH CAMPUS (G:/TranModel/2041_with_campus Base with GTAW/Database/emmebank) Scenario 31: PM - Cleaned Network 2020-11-09 18:40 (lwu@COB10W-M)03YM3B)

Collision Details Report

From: January 1, 2015 To: December 31, 2019

COUNTRYSIDE DR @ HEART LAKE RD

Municipality...... Brampton **Traffic Control....**

Total Collisions.... 26

Collision ID	Date/Day/Time	Environment	Impact Type	Classification	Direction	Surface Cond'n	Vehicle Manoeuver	Vehicle type	First Event	Driver Action	No. Ped
150055211	2015-Feb-08, Sun,11:55	Snow	Turning movement	P.D. only	South	Packed snow	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way	
Comments:	Road #1: Heart lake Ro Statement #3: <statement Brampton.V1 made a le</statement 	ent>V2 was trave		artlake Road,	North	Packed snow	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly	
150282745	2015-Jul-18, Sat,18:12	Clear	Turning movement	P.D. only	South	Dry	Overtaking	Automobile, station wagon	Other motor vehicle	Improper passing	
Comments:	Statement #1: V2 travel private drive, V1 attemp collides with V2 making	ting to pass and			South	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly	
160045959	2016-Feb-03, Wed,04:45	Rain	SMV other	P.D. only	West		Going ahead	Automobile, station wagon	Ditch	Disobeyed traffic control	
Comments:	Statement #1: V1 W/B (DITCH BEFORE STRIK		THRU STOP SIG	N AND INTO				3			
160126821	2016-Apr-03, Sun,20:10	Snow	SMV other	P.D. only	West	Ice	Slowing or stopping	Automobile, station wagon	Skidding/sliding	Speed too fast for condition	
Comments:	Statement #1: V1 W/B F ROLLED INTO DITCH. ROAD CONDITIONS.					Ice		<u> </u>			
160193605	2016-May-21, Sat,20:10	Clear	Rear end	P.D. only	South	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close	
Comments:	Statement #1: V2: WAS ONTO R2V1: WAS BEH AND STRUCK V2.				South	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly	
160261654	2016-Jul-11, Mon,16:59	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly	
Comments:	Statement #1: V2 WAS LANE ON COUNTRYSI OF BRAMPTON. COUN WESTBOUND AT THE RUNS NORTH AND SO THE FRONT BUMPER OF V2. BOTH VEHICLE TO GO NORTHBOUND	IDE DRIVE AT HI NTRYSIDE DRIV THRU LANE OF DUTH. V2 WAS S OF V1 COLLIDE ES WERE FACIN	EARTLAKE ROA E HAS A POSTE HEARTLAKE RO STOPPED AT THE ED WITH THE RE IG WEST BOUNI	D IN THE CITY D STOP SIGN DAD WHICH E SIGN WHEN AR BUMPER) West	Dry	Stopped	Pick-up truck	Other motor vehicle	Driving properly	
160333102	2016-Sep-04, Sun,07:29	Clear	SMV other	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Tree, shrub, stump		
Comments:	Statement #1: V1 IS A S ROADWAY HEADING V HIT A TREE	STOLEN AUTO T WESTBOUND O	HAT WENT OFF N COUNTRYSID	THE E DRIVE AND		Dry			· 		

Page 1 of 4 Tuesday, April 14, 2020

160335865	2016-Sep-06, Tue,13:52	Clear	Turning movement	P.D. only	North	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V2 WAS PROCEEDING STRAIG COUNTRYSIDE DRIVE HEART LAKE RD AND PROCEED E/B. V1 MAE OF V2 WHICH HAD THE BETWEEN THE VEHICL	HT THROUGH T WHILE V1 WAS TURNING LEFT DE THE LEFT TU E RIGHT OF WA	/B ON HEART LA THE INTERSECT S INITALLY TRAV AT COUNTRYSI URN DIRECTLY I	TION OF ELLING S/B ON DE DR TO IN THE PATH	North	Dry	Going ahead	Pick-up truck	Other motor vehicle	Driving properly
	2017-Jan-21, Sat,22:10	smoke, dust	SMV other	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Tree, shrub, stump	Disobeyed traffic control
Comments:	Statement #1: D1 WAS COUNTRYSIDE DRIVE FAILING TO STOP AT T THE ROAD INTO THE EWERE SUSTAINED AS	WHEN HE FELI THE STOP SIGN DITCH COLLIDIN	L ASLEEP AT TH .IN RESULT, D1 I NG WITH A TREE	DROVE OFF E. NO INJURIES						
170048944	2017-Feb-06, Mon,23:26	Clear	SMV other	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Tree, shrub, stump	Lost control
Comments:	Statement #1: V1 IS W/E TURN S/B (LEFT) ONTO WITH TREE									
170056208	2017-Feb-12, Sun,06:13	Snow	SMV other	P.D. only	West	Packed snow	Slowing or stopping	Automobile, station wagon	Tree, shrub, stump	Lost control
Comments:	Statement #1: D1 was tr approaching a stop sign to stop at the stop sign tl stop sign and off the roa	at Heart Lake R he road condition	load, Brampton. A	As D1 attempted de through the	I	Packed snow		ŭ	·	
170187379	2017-May-20, Sat,17:30	Clear	Angle	P.D. only	South	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: - V1 ADVI ONTO R2 WHEN V2 RA V2 ADVISED HE WAS V AT R2 AND R1. V1 TUR WITH V2.	AN THE STOP S W/B ON R2 AND	IGN AND COLLIE STOPPED AT TH	DED WITH V1 HE STOP SIGN	West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
170230088	2017-Jun-21, Wed,18:35	Clear	Turning movement	P.D. only	West	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: R1 COUN TRAVELLING W/B ON F AT THE STOP SIGN ON R1.D2 PROCEEDDED A TRAFFIC ON R2.D1 RE	R1.D1 TRAVELL NR1.D1 STOPPE AND THEN STO	ING W/B ON R1. ED AT THE STOP	D2 STOPPED P SIGN ON	West	Dry	Merging	Automobile, station wagon	Other motor vehicle	Driving properly
170355103	2017-Sep-21, Thu,17:30	Clear	Rear end	P.D. only	West	Dry		Automobile, station wagon	Other motor vehicle	Following too close
								J .		

Tuesday, April 14, 2020 Page 2 of 4

170471857	2017-Dec-18, Mon,08:15	Clear	Angle	P.D. only	South	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: On Deceloperating V1 southboun R2 at R1. D2 completed unable to stop and collic and no stop sign.	d on R1 approad a left turn south	hing R2. D2 was bound in front of	westbound on V1 who was	s West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
180156726	2018-Apr-27, Fri,21:59	Rain	SMV other	P.D. only	North	Wet	Turning right	Automobile, station wagon	Pole (sign, parking meter)	Lost control
Comments:						Wet				
180223126	2018-Jun-14, Thu,14:27	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: D1 AND I COUNTRYSIDE ROAD.				West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
180231549	2018-Jun-19, Tue,18:30	Clear	Rear end	P.D. only	West	Dry	Going ahead	Truck - closed	Other motor vehicle	Following too close
Comments:	Statement #1: V2 TRAV INTERSECTION AND S TRAVELLING BEHIND ' WERE LAID AS THERE REPORT WAS TAKEN	STOPPED FOR 1 V2 AND REAR E WERE NO INJU	THE STOP SIGN. ENDED VEHICLE JRIES SUSTAINE	V1 NO CHARGES	West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
180366083	2018-Sep-27, Thu,15:15	Clear	Rear end	P.D. only	West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 STOP DRIVE ATTEMPTING TO ROAD. V2 WESTBOUN	O MAKE RIGHT	TURN ONTO HE	ARTLAKE	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Other
180369949	2018-Sep-30, Sun,19:50	Rain	SMV other	P.D. only	East	Wet	Going ahead	Pick-up truck	Tree, shrub, stump	Lost control
Comments:	Statement #1: V1 TURN ONTO COUNTRYSIDE DITCH AND HIT A TREE ANIMAL JUMPED OUT ATTEMPTED TO BRAK ROAD. DUE TO LACK (SLIPPERY ROAD CON	DR. V1 PROCE E IN THE S/E CO IN FRONT OF H E, HIS VEHICLE OF INDEPENDE	EDED OFF ROAI DRNER. D1 ADV IIS VEH AND WH : TIRES SLID AN NT WITNESSES	D INTO A ISED AN IEN HE D WENT OFF AND					•	
180452874	2018-Dec-02, Sun,08:13	Rain	Angle	P.D. only	West	Wet	Turning right	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: V2 GOIN A RIGHT (NORTHBOUN COUNTRYSIDE V1 CO	ND) TURN ONTO	HEARTLAKE F		North	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
	2019-Jan-08, Tue,15:49	Clear	Angle	P.D. only	West	Wet	Turning right	Automobile,	Other motor	Improper turn
190009709	, , , , , , , , , , , , , , , , , , , ,	0.00.	9	,				station wagon	vehicle	

Tuesday, April 14, 2020 Page 3 of 4

190029494	2019-Jan-23, Wed,07:50	Snow	Angle	P.D. only	East	Loose snow	Turning left	School bus	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 TRAVI V2 TRAVELLING EASTI LEFT ONTO HEARTLAN UNABLE TO STOP FOR WITHIN THE INTERSECT	BOUND ON CO KE ROAD. V1 L R THE RED LIGI	UNTRYSIDE DR OST CONTROL	, TURNING AND WAS	South	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190052524	2019-Feb-09, Sat,22:29	Clear	SMV other	P.D. only	North	Dry	Going ahead	Automobile, station wagon	Animal - domestic	Driving properly
Comments:	Statement #1: V1 TRAVI ROAD AT COUNTRYSII AND V1 STRUCK ONE	DE DRIVE. 4 D				Dry				
190126502	2019-Apr-07, Sun,18:25	Clear	SMV other	P.D. only	South	Dry	Going ahead	Automobile, station wagon	Animal - wild	Driving properly
Comments:	Statement #1: V1 S/B O ROADWAY FROM THE					Dry				
190137387	2019-Apr-15, Mon,18:00	Clear	Rear end	P.D. only	West	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 AND \ COUNTRYSIDE RD. V1 REPORTED AT 22 DIVIS	1 REAR ENDED	V2. NO CHARC		West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 4 of 4

Collision Details Report

From: January 1, 2015 **To:** December 31, 2019

Location COUNTRYSIDE DR @ ROSS DR Municipality....... Brampton

Traffic Control.... No control Total Collisions.... 2

Collision ID	Date/Day/Time	Environment	Impact Type	Classification	Direction	Surface Cond'n	Vehicle Manoeuver	Vehicle type	First Event	Driver Action	No. Ped
170485858	2017-Dec-29, Fri,20:35	Clear	Turning movement	P.D. only	West	Wet	O .	Automobile, station wagon	Other motor vehicle	Improper turn	
Comments	: Statement #1: D2 E/B C R1V2 STRUCK V1	N R1D1 TURNE	D LEFT ONTO R	2 FROM W/B	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly	
180019404	2018-Jan-15, Mon,16:20	Snow	Angle	Non-fatal injury	/East	Loose snow	0 0	Automobile, station wagon	Other motor vehicle	Lost control	
Comments	: Statement #1: D1 E/B C MAKES RIGHT TURN S COLLIDES WTH D2				North	Loose snow	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly	

Wednesday, April 15, 2020 Page 1 of 1

Collision Details Report

From: January 1, 2015 **To:** December 31, 2019

Location COUNTRYSIDE DR btwn ACE DR / NAPERTON DR & DIXIE RD

Municipality...... Brampton

Traffic Control.... No control

Total Collisions.... 2

Traffic Co	introl No control							i Otai Ct	JIII310113 Z		
Collision ID	Date/Day/Time	Environment	Impact Type	Classification	Direction	Surface Cond'n	Vehicle Manoeuver	Vehicle type	First Event	Driver Action	No. Ped
150317638	2015-Aug-12, Wed,20:53	Clear	SMV other	P.D. only	West	Dry	Other	Automobile, station wagon	Pole (sign, parking meter)	Driving properly	
Comments:	Statement #1: V1 WAS TOUNTRYSIDE ROAD. PUNCTURE. V1 THEN I CENTRE MEDIAN PUN WITH THE DRIVER THE RIGHT CURB LANE.	V1 FRONT DRI' LOST CONTROI CTURING THE I	VER SIDE TIRE (_ AND DROVE OF DRIVER SIDE RE	N TO THE AR TIRE,							
170207082	2017-Jun-05, Mon,05:30	Fog, mist, smoke, dust	Sideswipe	Non-reportable	East	Wet	Going ahead	Intercity bus	Other motor vehicle		
Comments:	Statement #1: V2 was travelling E/B on R1 in the struck V2. V1 failed to re	ne left lane.V1 m	ade an unsafe lar		East				Other motor vehicle	Driving properly	

Wednesday, April 15, 2020 Page 1 of 1

Collision Details Report

From: January 1, 2015 **To:** December 31, 2019

Location HEART LAKE RD @ SANDALWOOD PKY E

Municipality...... Brampton **Traffic Control....** Total Collisions.... 112

Traffic CO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							i Otai Ot	JIII310113 1	12	
Collision ID	Date/Day/Time	Environment	Impact Type	Classification	Direction	Surface Cond'n	Vehicle Manoeuver	Vehicle type	First Event	Driver Action	No. Ped
150003917	2015-Jan-04, Sun,11:20	Clear	SMV other	P.D. only	East	Wet	Changing lanes	Automobile, station wagon	Tree, shrub, stump	Driving properly	
Comments:	 Road #1: Sandalwood F M 25Statement #3: <s changed to the curb lan over the curb and struct sustained minor injuries precautionary.</s 	tatement>V1 on e. V1 lost control c a tree and City and was taken to	due to road cond of Brampton park	tbound R1 dition and went sign. The drive	г	Wet		-	·		
150005285	2015-Jan-03, Sat,13:00	Snow	Rear end	P.D. only	East	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close	
Comments:	: Road #1: SANDALWOO Statement #3: <statement SANDALWOOD PARKV ENDS V2.</statement 	ent>V1 AND V2 T VAY EAST. V2 S	RAVELLING E/B		East	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly	
150006510	2015-Jan-06, Tue,06:30	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn	
Comments:		#3: <statement>\ NTO ROAD 2 FF PTING TO PROO OAD 1 ON A GRE TEMPTING TO F</statement>	ROM ROAD 1 ON CEED THROUGH EEN LIGHT.V2 SI	PTING TO I A GREEN I THE UBSEQUENTLY	East ,	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly	
150007608	2015-Jan-06, Tue,19:29	Clear	Rear end	Non-fatal injury	/West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control	
Comments:	: Road #1: Sandalwood F M 25Statement #3: <s facing w/b on R1, at the V1 then rear ended V2.</s 	tatement>V1 and intersetion of R1	V2 were stoppe			Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly	
150021912	2015-Jan-16, Fri,09:10	Clear	Sideswipe	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Other	
Comments:	: Road #1: SANDALWOO 20Statement #3: <state R2, RIGHT TURN LANI GREEN AND V2 MADE SWIPED HIMV2 ADVIS V1 MADE FAST, WIDE VEHICLE.CONFLICTIN WITNESSES<td>ment>V1, N/B, R EV1 ADVISED TU WIDE RIGHT TO ED HAD GREEN LEFT TURN INT IG STORIES AND</td><td>JRNED LEFT ON JRN ONTO R1 A I LIGHT AND RIG O HIS LANE STF</td><td>ANEV2, S/B, I ADVANCE ND SIDE GHT OF WAY; RIKING HIS</td><td>West</td><td>Dry</td><td>Turning right</td><td>Automobile, station wagon</td><td>Other motor vehicle</td><td>Other</td><td></td></state 	ment>V1, N/B, R EV1 ADVISED TU WIDE RIGHT TO ED HAD GREEN LEFT TURN INT IG STORIES AND	JRNED LEFT ON JRN ONTO R1 A I LIGHT AND RIG O HIS LANE STF	ANEV2, S/B, I ADVANCE ND SIDE GHT OF WAY; RIKING HIS	West	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Other	

Tuesday, April 14, 2020 Page 1 of 16

150066729	2015-Feb-16, Mon,16:07	Clear	Rear end	P.D. only	East	Dry	Going ahead	Pick-up truck	Other motor vehicle	Following too close
Comments:	Road #1: sandalwood pa 5Statement #3: <statement slowing/stopping for trafficerar.</statement 	ent>V2 traveling			East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
150087565	2015-Mar-03, Tue,08:00	Clear	Turning movement	Non-fatal injur	y West	Dry	Turning left	Delivery van	Other motor vehicle	Improper turn
Comments:		3: <statement>\ AKE A LEFT ON AS PROCEEDIN</statement>	NG W/B ON R1 T	LING E/B ON .AKE ROAD ON 'HROUGH THE		Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150094231	2015-Mar-07, Sat,18:28	Other	Turning movement	P.D. only	North	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Road #1: HEART LAKE F Statement #3: <statement LEFT TURN LANE, GRE HESITATED THEN ATTE TIME TO AVOID COLLIS INTERSECTION.<td>nt>V2, S/B, R1, EN LIGHTV1 W MPTED TO TU ION AND COLL</td><td>AITING TO TUR RNV2 DID NOT I</td><td>HTV1, N/B, R1, N LEFT, HAVE ANY</td><td>South</td><td>Wet</td><td>Going ahead</td><td>Automobile, station wagon</td><td>Other motor vehicle</td><td>Driving properly</td></statement 	nt>V2, S/B, R1, EN LIGHTV1 W MPTED TO TU ION AND COLL	AITING TO TUR RNV2 DID NOT I	HTV1, N/B, R1, N LEFT, HAVE ANY	South	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150135353	2015-Apr-06, Mon,13:47	Clear	Rear end	Non-fatal injur	y East	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: On Monda (ESCOTO) were stopped (Sandalwood Pkwy E) an (HARKNESS) was travell Minor injuries. V1 was no driving HTA 130.	in e/b lane 1 at d R2(Heartlake ling e/b on R1 ir	the intersection Rd) facing a red lane 1 and rear	of R1 traffic signal. V´ ended V2.	East 1	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
150180134	2015-May-07, Thu,14:39	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V2 WAS O SANDALWOOD PKWY A WAS TAKEN TO THE HO PAIN.	T HEART LAKE	RD.V1 REAR E	NDED V2.D2	East	Dry	Slowing or stopping	_	Other motor vehicle	Driving properly
150198330	2015-May-20, Wed,10:02	Clear	Rear end	P.D. only	East	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: BOTH V1. SANDALWOOD PARKW. HEARTLAKE ROAD. THI PARKWAY WAS GREEN VEHICLES TURNED INT TO NAVIGATE A RIGHT HEARTLAKE ROAD.V1 I CHANNEL.	AY APPROACH E TRAFFIC SIG I ACCORDING ⁻ TO THE RIGHT HANDED TURN	ING THE INTER NAL FOR SAND TO BOTH DRIVE TURN CHANNEI I ONTO SOUTH	SECTION OF ALWOOD RS.BOTH AND ABOUT BOUND) East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 2 of 16

150200303	2015-May-21, Thu,15:10	Clear	Rear end	Non-fatal injury	y East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: V2 TRAVE CENER LANE JUST E/C CENTER LANE. V2 STO FAILED TO STOP AND I) HEART LAKE OPPED DUE TO	RD. V1 FOLLOW VEHICLE IN FRO	ING V2 IN	East	Dry	Slowing or stopping	0	Other motor vehicle	Driving properly
150232437	2015-Jun-12, Fri,19:43	Rain	SMV other	P.D. only	West	Wet	Turning left	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: D1 WAS THE PKWY TO SOUTHBOUN HER VEHICLE AND STE SOUTH OF SANDALWO CARELESS DRIVING.	ND HEART LAKI RUCK A POLE L	E RD.D1 LOST C OCATED ON HE	ONTROL OF ART LAKE RD)	Wet		-		
150233693	2015-Jun-13, Sat,19:50	Clear	Rear end	Non-fatal injury	y West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: Both vehic	cles W/B R1. V1	1 rear ends V2 in	left turn lane.	West	Dry	Slowing or stopping		Other motor vehicle	Driving properly
150233722	2015-Jun-13, Sat,20:20	Clear	Sideswipe	P.D. only	West	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: V1 TRAVE INTERSECTION AT R2V INTERSECTION AT R2E FROM L2 TO L1 AND SI	/2 TRAVELLING DIRECTLY BESI	W/B ON R1 IN L DE V1V1 CHANG	1 WEST OF SES LANES	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150308475	2015-Aug-05, Wed,22:33	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 TRAVE PARKWAY TO MAKE LE LAKE ROAD. V2 TRAVE PARKWAY TO GO STRA LEFT TURN AND FRON SIDE OF V2 WITHIN IN	EFT TURN TO G ELLING EASTBO AIGHT THROUG IT BUMPER OF	O SOUTHBOUN OUND ON SANDA GH INTERSECTIO	D ON HEART ALWOOD ON. V1 MADE	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150325131	2015-Aug-18, Tue,12:43	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: D1 DRIVI PARKWAY.D2 DRIVING PARKWAY.D1 MAKES A AT FAULT**	EASTBOUND C	ON SANDALWOO)D	East	Dry	Going ahead	Pick-up truck	Other motor vehicle	Driving properly
150329112	2015-Aug-21, Fri,08:26	Clear	Rear end	P.D. only	East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: ALL VEHI RIGHT LANE. A MOTOR CROSSED R1 NORTHE V1 REAR-ENDED V2 W	RIZED WHEEL C BOUND CAUSIN	CHAIRED PEDES G ALL VEHICLES	TRIAN S TO BREAK,	East	Dry	Slowing or stopping	· ·	Other motor vehicle	Following too close
150339255	2015-Aug-23, Sun,11:00	Clear	Other	P.D. only	South	Dry	Reversing	Truck-other	Other motor vehicle	Lost control
Comments:	Statement #1: V2 STOP FLEES ON R1.	PED ON R1.V1	REVERSES, STF	RIKES V2 AND	South	Dry	Stopped	Pick-up truck	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 3 of 16

150402876	2015-Oct-14, Wed,13:34	Clear	Angle	P.D. only	East	Dry	Going ahead	Passenger van	Other motor vehicle	Other
Comments:	Statement #1: Vehicle 2 made a left to go south or traveling east on Sandal intersection.	on Heartlake Roa	ad in Brampton. \	/ehicle 1 was	South	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150425894	2015-Oct-31, Sat,00:30	Clear	Turning movement	P.D. only	South	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 WAS TURNED INTO THE WE				South	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150430041	2015-Nov-03, Tue,21:10	Clear	Rear end	P.D. only	East	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: V1, V2, a V3.	nd V3 E/B on R1	. V1 struck V2, a	nd V2 struck	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150436563	2015-Nov-08, Sun,20:30	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 was tr made a left turn to go so the city of Brampton. V2 parkway going straight ti v1 made the turn the fro front bumper of V2.	outhbound at the was travelling ea hrough the inters	intersection of He astbound on San section at Heartla	eartlake road in dalwood ke road. when		Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150458994	2015-Nov-25, Wed,12:09	Clear	Turning movement	Non-fatal injur	y West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 EAST ATTEMPTS TO TURN S V2.				East	Dry	Going ahead	Pick-up truck	Other motor vehicle	Driving properly
150475866	2015-Dec-07, Mon,17:45	Clear	Turning movement	P.D. only	East	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: V1 travell Sandlewood V1 turning Heartlake NBV1 and V2 Sandalwood.	left onto Heartlal	ke NBV2 turning	right on	West	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Other
150488351	2015-Dec-16, Wed,19:22	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 WB R	1V2 EB R1V1 TI	JRNS SB R2V1	STRIKES V2	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
150488508	2015-Dec-16, Wed,20:15	Clear	Turning movement	P.D. only	West	Dry	Turning left	Delivery van	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 WB R	1V2 EB R1V1 TI	JRNS SB R2V1	STRIKES V2	East	Dry	Going ahead	Pick-up truck	Other motor vehicle	Driving properly
150491278	2015-Dec-18, Fri,17:30	Snow	Rear end	P.D. only	East	Wet	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: BOTH V1 MERGE ONTO THE 410 WAS UNABLE TO STOI THE TIME AND REAR E OF THE COLLISION WI) S/B. V2 STOP P BECAUSE OF ENDED V2. ROA	PED FOR TRAF THE ROAD CON AD CONDITIONS	FIC, AND V1 NDITIONS AT S AT THE TIME	East		Stopped	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 4 of 16

160011421	2016-Jan-08, Fri,21:54	Rain	Angle	P.D. only	West	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 WAS SANDALWOOD PARKY PROCEEDING NORTH RED LIGHT.V1 STRUC WITH RED LIGHT - FA	WAY THROUGH A BOUND ON HEA K V2.THE DRIVE	A GREEN LIGHT. ART LAKE ROAD ER OF V2 WAS C	V2 WAS THROUGH A	North	Wet	Going ahead	Pick-up truck	Other motor vehicle	Disobeyed traffic control
160021897	2016-Jan-16, Sat,13:11	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 WAS BOTH VEHICLES WEF INTERSECTION OF R ENDED V2.	RE APPROACHIN	IG A RED LIGHT	AT THE	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160039970	2016-Jan-29, Fri,15:30	Clear	Rear end	P.D. only	South	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: V2 AND ON R1 IN L3.V1 CRAS BACK OF V3.V1 MAKE FAILING TO REMAIN A	H INTO BACK OF U-TURN AND TI	V2, V3 THEN C	RASH INTO	South	Dry	Going ahead	Pick-up truck	Other motor vehicle	Driving properly
160052131	2016-Feb-07, Sun,20:00	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 WAS ON R1 IN L2.V1 STRU		OM R1 TO S/B R	2.V2 WAS E/B	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160062671	2016-Feb-15, Mon,16:51	1 Snow	Angle	Non-fatal injury	/East	Slush	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Disobeyed traffic control
Comments:	Statement #1: - V2 TRAPASSING LANE AT 40 SANDALWOOD PKWY GREEN LIGHT AND RIATTEMPTED TO SLOV CONDITIONS, V1 SLIFPROCEEDED TO ENT COLLIDED WITH V2. VCAUTION SIGN.	KM/HR. V1 TRAV E IN CURB LAN GHT OF WAY V V DOWN AND ST PPED. D1 UNABL ER THE INTERSI	'ELLING E/B ON E AT 50 KM/HR 1 HAD RED LIGH 'OP. DUE TO WE E TO STOP V1 II ECTION ON A RE	V2 HAD HT. D1 IT ROAD N TIME, ED LIGHT V1	South	Slush	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160069212	2016-Feb-20, Sat,09:45	Clear	Rear end	P.D. only	East	Wet	Turning right	Delivery van	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V1 north facing a red light at Sar eastbound Sandalwood	ndalwood Parkwa	y East; struck by	V2 travelling	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 5 of 16

160092697	2016-Mar-09, Wed,06:16	6 Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1ADVIS SANDALWOOD PARKY FIRST UP IN THE TUR INTERSECTION, THE PROCEEDED WITH HI THE RED LIGHT TRAV PARKWAY CAUSING A SANDALWOOD PARKY PROCEEDS THROUGI OF HIM CAUSING AN I CONFLICTING STORIE DRIVEABLE. PARTIES CIVIC HOSPITAL PREC	WAY AND HEART N LANE IN THE I TRAFFIC LIGHTS S TURN HOWEV ELLING EASTBO MVC. V2 ADVIS WAY FACING A S H INTERSECTIO MVC. NO INDEPI ES. NO CHARGE INSIDE V1 TRAS	THE LEFT TURN LAKE ROAD. V MIDDLE OF THE S CYCLED TO RI VER V2 FAILED T DUND ON SAND. ED HE WAS EAS OLID GREEN LI N AND V1 TURN ENDANT WITNE S LAID. BOTH V ENPORTED TO E	I WAS THE ED AND V1 TO STOP FOR ALWOOD STBOUND ON GHT. V1 S IN FRONT SSES. EHICLE'S NOT	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160111191	2016-Mar-22, Tue,19:00	Rain	Turning movement	P.D. only	West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 WB FINTERSECTIONV1 FT				East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160134522	2016-Apr-08, Fri,22:45	Clear	Other	P.D. only	East	Dry	Changing lanes	Automobile, station wagon		Improper lane change
Comments:	unknown				East	Dry	Going ahead	Automobile, station wagon	Ran off road	Driving properly
160231881	2016-Jun-17, Fri,20:15	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V2 WAS CONTACT WITH V2'S I REPORTED AT CASSII	REAR BUMPER.	NO CHARGES L	AID, SELF-	East	Dry	Slowing or stopping	_	Other motor vehicle	Driving properly
160244744	2016-Jun-28, Tue,08:08	Clear	Turning movement	P.D. only	West	Dry	Turning left	Bicycle	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 W/B (R2V2 HITS V1 WITHIN			O GO S/B ON	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160252880	2016-Jul-04, Mon,18:36	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: VEHICLE PWY, APPROACHING VEHICLE 2 SLOWED D TIME IT WAS REAR-EN	THE INTERSECT DOWN FOR THE	TION AT HEARTL TRAFFIC AHEAI	AKE RD.	West	Dry	Slowing or stopping	•	Other motor vehicle	Driving properly
160306257	2016-Aug-14, Sun,17:00	Clear	Rear end	P.D. only	East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 AND SLOWS V1 HITS V2	V2 TRAVELLING	SOUTH ON SAM	NDLEWOODV2	East	Dry	Slowing or stopping	•	Other motor vehicle	Driving properly
160307800	2016-Aug-15, Mon,19:10) Clear	Angle	P.D. only	East	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V2 N/B C R2GREEN LIGHT FOR STRUCK BY V2V1 AT F	N/B AND S/B ON			North	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 6 of 16

160308225	2016-Aug-16, Tue,07:57	Rain	Rear end	P.D. only	South	Wet	Turning left	Automobile,	Other motor	Following too close
Comments:	Statement #1: V2 WAS I PROCEEDING TO MAKI HEAD E/B WHEN V1 WI COLLIDED WITH V2 RE	E A LEFT TURN HICH WAS ALS	ON SANDALWO	OÓ (R2) TO	South	Wet	Turning left	station wagon Pick-up truck	vehicle Other motor vehicle	Driving properly
160332319	2016-Sep-03, Sat,16:25	Clear	Rear end	Non-fatal injury	y East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: V2 WAS F SUSTAINED NECK AND BCH. PASSENGER OF PAIN.DRIVER OF V1 WA) KNEE INJURY V2 WAS ALSO	AND WAS TRAN TRANSPORTED	ISPORTED TO FOR NECK	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160357642	2016-Sep-22, Thu,23:40	Clear	Turning movement	Non-fatal injury	y West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 WAS V LEFT TURN FROM R1 T CAUSED ACCIDENT		AS EB ON R1V1		East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160362106	2016-Sep-26, Mon,16:14	Rain	SMV other	P.D. only	East	Wet	Turning left	Automobile, station wagon	Ditch	Driving properly
Comments:	Statement #1: V1 INITIA STOPPED IN INTERSEC R2.V1 BACK TIRES LOS V1 SPIN AND END UP C CORNER OF INTERSEC	CTION WAITING SE TRACTION F OVER CURB AN	TO MAKE LEFT ROM ROAD CO	TURN ONTO NDITIONS AND)	Wet		caucii nagoii		
160366958	2016-Sep-29, Thu,19:00	Clear	Rear end	P.D. only	North	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: D2 STATE ROAD, IN THE CITY OF STATION PARKING LOT STRUCK BY D1 WHO W NAME AND SOME INFO AFTERWARDS D2 CON LEARNED SHE DID NO INFORMATION, AT WHI VERSION OF EVENTS V LANE AND CHANGED L NOT ATTENDED, BUT E AND THEIR DESCRIPTI APPEAR TO BE MOSTATION OF THE ROAD	BRAMPTON. A AND PREPARI AND PREPARI AND PREPARI T HAVE ALL TH CH POINT POL WAS THAT D2 N LANES INTO HE BASED UPON B ION OF VEHICL	S SHE NEARED ED TO PULL IN, S G BEHIND. D1 P I LEFT IN A HUR NSURANCE CON E OTHER DRIVE ICE WERE CALL VAS IN THE NUM ER PATH. THE SC OTH VERSIONS	THE GAS SHE WAS ROVIDED HER RY. MPANY AND ER'S ED. D1'S MBER ONE CENE WAS OF EVENTS		Dry	Slowing or stopping	•	Other motor vehicle	Driving properly
160401025	2016-Oct-26, Wed,06:53	Rain	Turning movement	Non-fatal injury	y West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 travellifacing green light. Effects through intersection and Sandalwood Pkwy in left advises he observed coll stop within intersection. V3 in intersection due to	s left turn in fron vehicles collided turn lane. Effect lision and subse V4 travelling e/b	t of v2 who was tr d. V3 also travelling ted left turn follow quently had to co on sandalwood p	ravelling e/b ng w/b on ring V1. vV3 me to a sudden	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 7 of 16

160467416	2016-Dec-16, Fri,14:02	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: VEHICLI SANDALWOOD PARKI EASTBOUND ON SAN WAS GREEN FOR BO VEHICLE TWO REASO COLLISION. VEHICLE ONTO HEARTLAKE RI VEHICLE TWO.	WAY EAST. VEH DALWOOD PAR TH PARTIES. VE DNABLE OPPOR ONE TURNED N	AVELING WESTE ICLE TWO WAS T KWAY EAST. TRA EHICLE ONE DID RTUNITY TO AVOI MADE A TURN SO	TRAVELLING AFFIC LIGHT NOT AFFORD ID A DUTHBOUND	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170019253	2017-Jan-15, Sun,16:05	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 E.B C WAY AS LIGHT CHANG MAKES LEFT TURN S TO RED STRIKING V2	GES FROM RED /B TO R2 AFTER	TO GREEN. V1	W/B ON R1	East)	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170032838	2017-Jan-25, Wed,19:01	l Clear	Turning movement	Non-fatal injur	y West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 W/B LANE, V1 E/B ON SAN INTERSECTION AT HE FRONT OF V2 CAUSIN	DALWOOD IN L ART LAKE ROA	ANE 3, BOTH ÉN	TER	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170036564	2017-Jan-28, Sat,15:40	Clear	Rear end	P.D. only	West	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
Comments:	Statement #1: V2 TRAV LAKE ROAD IN LANE : HEART LAKE ROAD IN UNABLE TO STOP SW WITH LEFT REAR OF	2V1 TRAVELLIN I LANE 2V2 STO /ERVED TO AVC	G W/B ON SAND OPPED FOR CON	ALWOOD AT GESTIONV1	West	Dry	Going ahead	Ü	Other motor vehicle	
170042656	2017-Feb-02, Thu,06:55	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V1 FACI TRAVELLING E/B ON I			ITO R2.V2	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170091152	2017-Mar-10, Fri,17:07	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 TRAV AND R2V2 TRAVELING AND R2 V2 AND V1 PP AND R2V1 INITIATED STRUCK V2 AS A RES	G E/B ON R1 TO ROCEEDED INTO A TURN TO GO	WARDS INTERSE O THE INTERSE	ECTION OF R1 CTION OF R1	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170149943	2017-Apr-23, Sun,22:37	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V3 WAS INTERSECTION AT A F STOPPED BEHIND V3 TRAVELING W/B ON F RED LIGHT WHEN V2 IMPACT OF THE COLL IT THEN STRUCK V3.V APPROACHING R2 WITH V2 WHICH THEN	REDLIGHT AT R.' COLLIDIED WI' AT STOPOPED A' WAS STRUCK F LISION CAUSED /1 WAS TRAVEL HEN IT WAS UN	2 WHEN V2 WHIC ITH HIS NEAR BU IT THE INTERSEC FROM THE REAR V2 TO PULL FOI LING W/B ON R1 ABLE TO STOP I	CH WAS MPER.V2 WAS CTION AT A R BY V3. THE RWARD WHEN		Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 8 of 16

170211807	2017-Jun-08, Thu,16:00	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 W/B S E/B SANDALWOOD PK TURN S/B HEARTLAK	WY IN RIGHT C	PKWY IN LEFT T CURB LANE.V1 M		East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170213587	2017-Jun-09, Fri,22:50	Clear	Turning movement	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 eastb turn, failing to yield right suspended driver. Serve validation on plate.D2 is	t of way. V1 strike ed notice 006467	es V2.No injuries. 7. Issued PON for	D1 is a	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
170232552	2017-Jun-23, Fri,14:40	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 TRAV WAS STOPPED W/B O STOPPED W/B ON R1.	N R1. V2 THEN			West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
170242341	2017-Jun-30, Fri,15:12	Clear	Rear end	Non-reportable	e West	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 WAS SANDALWOOD PKWY REACHED DOWN TO A DEAD STOP CAUSIN	BEHIND V2, V1 GRAB SOMETH	DRIVER ADVISEING WHEN TRAF	ED HE FIC CAME TO	West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
170254399	2017-Jul-09, Sun,15:39	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1- TRA' LANE.V2- TRAVELING INTERSECTION AND I VOLUME.V1- INITIATE INTERSECTION.	E/B ON R1, PRO N THRU LANE 2	OCEEDING THRO TRAFFIC HEAV	DUGH Y IN	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170298964	2017-Aug-11, Fri,12:20	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: ON AUG THE DRIVER OF VEHI 2004 TOYOTA CAMRY BZEB354 ON SANDAL' THE CITY OF BRAMPT A LEFT TURN FROM S ROAD TO CONTINUE: OF THE DRIVER OF V OPERATING A 2008 TO CBVB935 AS SHE WAS PARKWAY, BOTH VEH INTERSECTION, HOW SUSTAINED DAMAGE WHILE VEHICLE 2 SUS	CLE 1, ALLISTEI BROWN BEARI WOOD PARKWA 'ON. RIVERS W. ANDALWOOD F SOUTHBOUND 'EHICLE 2, CYNT DYOTA UCS BEAS B HEADED EAS ICLES COLLIDE EVER, THERE V TO THE PASSE	R RIVERS, WAS NG ONTARIO MA AY AT HEART LAF AS ATTEMPTING PARKWAY ONTO WHEN HE TURN ITHIA HADLEY, WI ARING ONTARIO TBOUND ON SAF ID IN THE MIDDL WERE NO INJUR NGER SIDE OF TO	OPERATING A ARKER KE ROAD IN TO CONDUCT HEART LAKE ED IN FRONT HO WAS MARKER NDALWOOD E OF THE IES. VEHICLE		Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 9 of 16

170299540	2017-Aug-11, Fri,20:37	Rain	Turning movement	P.D. only	West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: - D1 OPE SANDALWOOD PKWY AND GO S/B ON HEAF TRAVELLING E/B ON S AND WAS GOING STR INTERSECTION TO TU INTERSECTION AROU WITHIN THE INTERSE	E IN THE LEFT RTLAKE RD D2 SANDALWOOD I AIGHT AHEAD. JRN LEFT D2 & IND THE SAME	TURN LANE TO 2 OPERATING V2 PKWY E IN THE - D1 & V1 ENTER 3 V2 ENTERED T	TURN LEFT 2 AND CURB LANE RED THE THE	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170325465	2017-Aug-31, Thu,09:43	Clear	Sideswipe	Non-fatal injur	y East	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: V1 WAS APPROACHING HEAR EASTBOUND ON SAN LAKE ROAD, IN THEN THE CURBED LANE A	T LAKE ROAD, DALWOOD PAR CENTRE LANE.	IN THE CURB LA KWAY, APPROAG V1 PROCEEDE	NE. V2 WAŚ CHING HEART	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170331312	2017-Sep-04, Mon,22:49) Clear	Approaching	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: R1 IS SA LAKE ROAD - 3 LANES LEFT TURN ONTO R2. INTERSECTION ON R CLEAR, CAUSING D2 EITHER DRIVER	SD1 OPERATINO D2 OPERATINO 1. D1 TURNED L	G W/B R1 WAITIN G E/B THROUGH LEFT BEFORE W	IG TO MAKE AY WAS	East	Dry	Making "U" turn	Automobile, station wagon	Other motor vehicle	Driving properly
170353142	2017-Sep-20, Wed,11:55	5 Clear	Angle	P.D. only	North	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Disobeyed traffic control
Comments:	Statement #1: V1 WAS SANDALWOOD PKWY PKWY. THE INTERSE HEARTLAKE ROAD is CROSSED THE PATH CHARGED.NO PASSE TRANSPORTED TO BO	V2 WAS TRAVE CTION OF SAND CONTROLLED I OF V1, CAUSING NGERS IN BOTI	LLING W/B ON SADALWOOD PKWY BY A TRAFFIC SI G A COLLISION.E H VEHICLES.D1.	ANDALWOOD AND GNAL .V2 D1 WAS	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170370142	2017-Oct-03, Tue,07:50	Clear	Turning movement	P.D. only	South	Dry	Turning right	Truck - car carrier	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V1 WAS LAKE ROAD. V2 WAS COLLIDED INTO V2.		ATE DRIVE ONT		South	Dry	Going ahead	Passenger van	Other motor vehicle	Driving properly
170417290	2017-Nov-07, Tue,08:35	Clear	Sideswipe	P.D. only	West	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: V#2 WAS 2V#1 WAS TRAVELLIN ATTEMPTED TO CHAN SIDE SWIPPED V#2 C	IG WESTBOUND NGE LANES FRO	O ON R#2 IN LAN OM LANE 1 INTO	E 1V#1 LANE 2V#1		Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170448328	2017-Nov-30, Thu,09:11	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2, E/B, STRAIGHT THROUGH TURNING LEFT TO S/E OF V1, SIDE SWIPE C	INTERSECTION B HEART LAKE I	PY, CURB LANE N. V1, W/B, SANE	ALWOOD PY	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 10 of 16

180040752	2018-Jan-31, Wed,10:02	Snow	Approaching	P.D. only	East	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: both vehic snow covered roads	les in right turn l	lane, v1 slide into	the back of v2,	West	Loose snow	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
180056763	2018-Feb-12, Mon,14:37	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V2 E/B ON HEART LAKE ROAD V1 LIGHT; V1 COLLIDES W ON SANDALWOOD PKW WITH AN UNKNOWN BL HONDA IN LA 1 CUTS IN LANEV1(3) SLAMMS IN COLLISION.DRVIER V2 BOTH CHARGED.	FOLLOWING B ITH REAR OF \ VY INVOLVED I .UE HONDA; V1 NFRONT OF V1 TO REAR OF V	EHING V2V2 ST /2; MINOR DAM/ N A ROAD RAGE I(3) TRAVELING (3); MOVING TO 1 FROM PRIOR	OPS FOR RED AGE.V1(3) E/B E INCIDENT IN LN2BLUE RIGHT TURN	East	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
180075304	2018-Feb-26, Mon,18:22	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 TRAVE LIGHT. AS V2 IS PASSIN TO YELLOW AND V1 AT ONTO HEART LAKE RD TO BCH AS PRECAUTIO	IG THROUGH II TEMPTS S/B TI . V2 COLLIDES	NTERSECTION I URN FROM SAN	LIGHT CYCLES DALWOOD		Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180135726	2018-Apr-12, Thu,08:00	Rain	Turning movement	P.D. only	West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 TRAVE PARKWAYV2 TRAVELIN PARKWAYV2 WAS CON AND WAS STUCK BY V' LIGHTS PRIOR TO THE TRAFFIC	G EAST BOUN TINUING THRO 1 WHO WAS MA	D ON SANDLAW DUGH THE INTEF AKING A LEFT TU	OOD RSECTION JRN AT THE	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180219046	2018-Jun-11, Mon,19:00	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 IS WES ENTERING THE INTERS LEFT TURN FROM WES PROCEED SOUTHBOUI PATH OF V2, STRIKING	SECTION AT HE STBOUND SANI ND ON HEART	ART LAKE ROA DALWOOD PKW	D. V1 MAKES Y E, TO	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180221908	2018-Jun-13, Wed,16:00	Clear	Angle	P.D. only	South	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 TRAVE THROUGH INTERSECT SOUTHBOUND ON R1 A AND HIT V2.NO CHARG INJURIES SUSTAINED A DESK.	ION ON GREEN AND MADE A RI ES WERE LAID	N LIGHT.V1 TRA\ GHT HAND TUR) AS THERE WEI	/ELLING N ONTO R1 RE NO	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 11 of 16

180261642	2018-Jul-12, Thu,18:00 C	Clear	Turning movement	P.D. only	West	Dry	Turning right	Delivery van	Other motor vehicle	Improper turn
Comments:	Statement #1: ACCORDIN RIGHT TURN LANE APPF ONTO N/B R2.V1 WAS TF APPROACHING R2, PRO N/B R2 FROM THE LEFT STRUCK BY V2. NO INJU	ROACHING R2 RAVELLING W/ CEEDED TO N LANE CUTTIN	/AS TRAVELLING TO MAKE A RIG /B ON R1 LEFT L MAKE A RIGHT T IG IN FRONT OF	SHT TURN LANE TURN ONTO	West	Dry	Turning right	Automobile, station wagon	Other motor vehicle	Driving properly
180296946	2018-Aug-08, Wed,05:40 F	Rain	Turning movement	Non-fatal injur	y West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: 1. V2 DRIV LAKE RD.2. V1 STOPPED PY TO GO S/B HEART LA AND COLLIDES WITH V2	D IN LEFT TUR AKE RD.3. V1 F	N LANE W/B SA	NDALWOOD	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180308535	2018-Aug-15, Wed,13:30 C	Clear	Approaching	Non-fatal injur	y West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: ***SELF-RE COMMUNITY STATION. S POLICE***- D3 OPERATIN PKWY E IN PASSING LAN TRAFFIC LIGHTS D2 OF FULLY STOPPED D1 OF SLOWING DOWN V1 RE REAR END V3.	SCENE/COLLIS NG V3. GOING NE. FULLY STO PERATING V2. PERATING V1.	SION NOT INVES W/B ON SANDA OPPED AT HEAR DIRECTLY BEH DIRECTLY BEH	STIGATED BY ALWOOD RTLAKE RD IIND D3 & V3. IND D2 & V2.	East	Dry	Slowing or stopping	•	Other motor vehicle	Driving properly
180314719	2018-Aug-21, Tue,06:45 F	Rain	Turning movement	P.D. only	East	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 IS TURN TO HEART LAKE RDV2 IS SANDALWOODV2 HAS IN RIGHT, HOWEVER PROC STRIKING V2	S PROCEEDIN NDICATOR STA	OM SANDALWO G WESTBOUND ATING VEHICLE	ON IS TURNING	West	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	
	TO HEART LAKE RDV2 IS SANDALWOODV2 HAS IN RIGHT, HOWEVER PROC	S PROCEEDIN NDICATOR STA CEEDS THROU	OM SANDALWO G WESTBOUND ATING VEHICLE	ON IS TURNING	West	Wet Dry	Going ahead Turning left	Automobile,	Other motor	Improper turn
180318844	TO HEART LAKE RDV2 IS SANDALWOODV2 HAS IN RIGHT, HOWEVER PROC STRIKING V2	S PROCEEDIN NDICATOR STA CEEDS THROU Clear g westbound or ake a left turn to	OM SANDALWO G WESTBOUND ATING VEHICLE JGHV1 MAKES 1 Turning movement n sandalwood pal o go southbound	P.D. only rkway at heart on heart lake				Automobile, station wagon Automobile,	Other motor Vehicle Other motor	Improper turn Driving properly
180318844 Comments:	TO HEART LAKE RDV2 IS SANDALWOODV2 HAS IN RIGHT, HOWEVER PROC STRIKING V2 2018-Aug-24, Fri,10:58 Statement #1: d1 travelling lake road attempting to maroad d2 travelling eastbour	S PROCEEDIN NDICATOR STA CEEDS THROU Clear g westbound or ake a left turn to nd on sandalwo	OM SANDALWO G WESTBOUND ATING VEHICLE JGHV1 MAKES 1 Turning movement n sandalwood pal o go southbound	P.D. only rkway at heart on heart lake	West	Dry	Turning left	Automobile, station wagon Automobile, station wagon Automobile,	Other motor vehicle Other motor vehicle Other motor	
180318844 Comments:	TO HEART LAKE RDV2 IS SANDALWOODV2 HAS IN RIGHT, HOWEVER PROC STRIKING V2 2018-Aug-24, Fri,10:58 Statement #1: d1 travelling lake road attempting to marked to make road d2 travelling eastbour with d2 2018-Aug-26, Sun,18:02	S PROCEEDIN NDICATOR STA CEEDS THROU Clear g westbound or ake a left turn to nd on sandalwo Clear PORTED**V1 v ade a left turn to	OM SANDALWO G WESTBOUND ATING VEHICLE JGHV1 MAKES 1 Turning movement n sandalwood pan o go southbound ood at a green lig Turning movement was traveling W/E	P.D. only rkway at heart on heart lake th. d1 collides P.D. only P.D. only	West East West	Dry Dry	Turning left Going ahead	Automobile, station wagon Automobile, station wagon Automobile, station wagon Automobile, station wagon	Other motor vehicle Other motor vehicle Other motor vehicle Other motor	Driving properly
180318844 Comments: 180321782 Comments:	TO HEART LAKE RDV2 IS SANDALWOODV2 HAS IN RIGHT, HOWEVER PROCESTRIKING V2 2018-Aug-24, Fri,10:58 Statement #1: d1 travelling lake road attempting to maroad d2 travelling eastbour with d2 2018-Aug-26, Sun,18:02 Statement #1: **SELF REI traveling E/B on R1. V1 mare	S PROCEEDIN NDICATOR STA CEEDS THROU Clear g westbound or ake a left turn to nd on sandalwo Clear PORTED**V1 v ade a left turn t ed.	OM SANDALWO G WESTBOUND ATING VEHICLE JGHV1 MAKES 1 Turning movement n sandalwood pan o go southbound ood at a green lig Turning movement was traveling W/E	P.D. only rkway at heart on heart lake th. d1 collides P.D. only P.D. only	West East West	Dry Dry	Turning left Going ahead Turning left	Automobile, station wagon Automobile, station wagon Automobile, station wagon Automobile, station wagon Automobile, station wagon Automobile,	Other motor vehicle Other motor	Driving properly Improper turn

Tuesday, April 14, 2020 Page 12 of 16

180359689	2018-Sep-22, Sat,20:40	Clear	Turning movement	Non-fatal injury	/South	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 WES' ROAD. V2 TRAVELLIN FRONT OF V2, COLLIE PETRO CANADA LOT REAR OF V3.	G EASTBOUND DING. V2 VEERS	NG LEFT TURN A IN LANE 1. V1 TU OFF ROADWAY	JRNS LEFT IN AND INTO	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
180362722	2018-Sep-25, Tue,08:00	Rain	Turning movement	P.D. only	West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: ** Self Reintersection at R2. V1 w turned left and struck V:	as W/B on R1 tu	rning left to go so		East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180368261	2018-Sep-29, Sat,10:47	Clear	Turning movement	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 WES INTERSECTION OF HE SANDALWOOD PARKV HEARTLAKE ROAD. V	EARTLAKE ROA VAY MAKING LE	D. V2 EASTBOU! FT TURN TO GO	ND ON NORTH ON	East	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
180405795	2018-Oct-27, Sat,08:45	Rain	Turning movement	P.D. only	West	Wet	Making "U" turn	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: BOTH VI SANDALWOOD PARKV AT HEART LAKE RD.S. SEPERATED BY A COI TO LOCATE A SPOT TO STRUCK BY V2	VAY PASSING T ANDALWOOD PA NTINUOUS ISLA	HROUGH THE IN ARKWAY IS WES NDV1 SLOWS IN	T AND EAST IS ATTEMPTS	West	Wet	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
180411744	2018-Nov-01, Thu,04:30	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 struck travelling eastbound on			l in traffic	East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
180425763	2018-Nov-09, Fri,01:46	Clear	Sideswipe	P.D. only	South	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: ** SELF to turn left to go east on also make a left turn an make report.ON SUND, EMAILED THE OIC TH	R2. D2 alleges of the left state of the left sta	/1 "squeezed in" ide of V2. D1 did 18TH, 2018 AT 6:	beside them to not attend to	South	Dry	Changing lanes	Delivery van	Other motor vehicle	Driving properly
180447478	2018-Nov-28, Wed,07:00) Snow	Angle	Non-fatal injury	/South	Loose snow	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 W/B ON R1. V1 MADE L/T				East	Mud	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180460332	2018-Dec-07, Fri,15:00	Clear	Turning movement	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 TRAV PKWY, TURNING SOU COLLIDED WITH V2. V SANDALWOOD PKWY	THBOUND ON F	IEARTLAKE RD \	WHEN V1	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 13 of 16

180465397	2018-Dec-11, Tue,17:30	Rain	Turning movement	P.D. only	West	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: "TRAFFIO SANDALWOOD. I DROV VEHICLE TURNINNG L LAKE ROAD SOUTH. I INTERSECTION BY OT	VE THROUGH II EEFT FROOM S WAS STRUCK E	GREEN EASTBO NTERSECTION A SANDALWOOD (AND SAW ONTO HEART	East	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
180468878	2018-Dec-14, Fri,07:52	Rain	Turning movement	P.D. only	West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V1 WAS \\ S/B ON HEART LAKE, \\ INTERSECTION, RESU \\ SANDALWOOD.	V1 DID NOT ALL	OW V2 TO CLEA	AR	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180478090	2018-Dec-21, Fri,06:50	Rain	Turning movement	P.D. only	West	Wet	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V2 WAS (FRONT OF V2.V1 AND				East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180481503	2018-Dec-23, Sun,21:35	Fog, mist, smoke, dust	SMV other	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: v1 east of applied breaks lost contri					Wet				
180481533	2018-Dec-23, Sun,22:30	Rain	Rear end	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V2 STOP OF HEARTLAKE RD- S' COLLISION. V1 COMPL HEARTLAKE RD TO E/I V1 LOSSES CONTROL	TOPPED FOR A LETES RIGHT H B SANDALWOO	SSISTANCE FOI AND TURN FRO D. WHILE COMF	R EARLIER M N/B	East	Wet	Going ahead	Pick-up truck	Other motor vehicle	Speed too fast for condition
180489313	2018-Dec-31, Mon,13:28	Rain	Turning movement	P.D. only	North	Wet	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 TRAV TURN ONTO R2 WHEN OUT AND COLLIDED W	V2 COLLIEDED	WITH V1. V1 T		West	Wet	Turning left	Pick-up truck	Other motor vehicle	Driving properly
190024746	2019-Jan-19, Sat,13:30	Clear	SMV other	P.D. only	East	Loose snow	Going ahead	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: V1 TRAV AHEAD APPORACHING COLLIDING WITH POLI	G HEARTLAKE F				Loose snow		Ç		
190025760	2019-Jan-20, Sun,15:00	Clear	Rear end	P.D. only	East	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V2 WAS I EMERGENCY VEHICLE ENDED V2. ***SELF RE ATTENDANCE***	E. V1 WAS ALSO	EB R1 IN CRB	LN AND REAR	East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 14 of 16

190025954	2019-Jan-20, Sun,17:20	Clear	Angle	P.D. only	East	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Disobeyed traffic control
Comments:	Statement #1: V2 WAS & R2 WITH A GREEN L STOP FOR RED LIGHT TRAVELLING BEHIND STATING 'IT LOOKED AT CASSIE CAMPBELI	.IGHT. V1 WAS E F, AND STRUCK V2 CONFIRMED LIKE HE TRIED 1	EBR1 IN CRBLN V2 WITNESS V V1 RAN THE RI TO STOP'***SELI	I, FAILED TO WHO WAS ED LIGHT	South	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190032810	2019-Jan-25, Fri,17:35	Snow	Turning movement	P.D. only	East	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V1 E/B C APPLIES BREAKS FOI BEGINS TO SLIDE. V2 LEFT TURN TO PROC TURN AND IS STRUCK	R AMBER LIGHT W/B ON SANDA EED S/B ON HE	, VEH UNABLE T LOOD PKWY AT ARTLAKE RD. V2	O STOP TEMPTING BEGINS	West	Loose snow	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
190039871	2019-Jan-31, Thu,12:45	Clear	Rear end	P.D. only	East	Dry	Going ahead	Pick-up truck	Other motor vehicle	Following too close
Comments:	Statement #1: D1 AND TRAFFIC AND WAS S1			PED FOR	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190040531	2019-Jan-31, Thu,18:40	Snow	SMV other	P.D. only	East	Ice	Going ahead	Automobile, station wagon	Curb	Lost control
Comments:	Statement #1: V1 E/B C HEARTLAKE RD. V1 L MEDIAN AND ENDS U	OSSES CONTRO	OL STRIKES CUF			Ice		_		
190040592	2019-Jan-31, Thu,19:30	Drifting Snow	Rear end	P.D. only	East	Ice	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V2 E/B C REDLIGHT AT HEARTI STOPPED TRAFFIC.V	AKE RD. V2 CO	MES TO A STOP		East	Loose snow	Stopped	Pick-up truck	Other motor vehicle	Driving properly
190043078	2019-Feb-02, Sat,19:00	Clear	Rear end	P.D. only	North	Wet	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Other
Comments:	Statement #1: V1 AND HEARTLAKE RD. V2 S ENDS V2.				North	Wet	Slowing or stopping	•	Other motor vehicle	Driving properly
190047472	2019-Feb-06, Wed,07:30	Drifting Snow	Turning movement	P.D. only	West	Loose snow	Turning left	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 TRAV PKWY, TURNING LEFT TRAVELLING NORTHE MAKES LEFT TURN A	T, SOUTHBOUNE BOUND ONTO SA), ONTO HEARTI ANDALWOOD PI	LAKE RD. V2	East	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190057274	2019-Feb-13, Wed,17:00) Clear	SMV other	P.D. only	North	Loose snow	Turning right	Automobile, station wagon	Pole (utility, power)	Improper turn
Comments:	Statement #1: V1 was t approaching sandalwood Sandalwood PY E from struck the center light p	od PY E. V1 atten Heart lake Rd. V	npted to make a r 1 slid threw the ir	ight turn on to		Loose snow		3	,	

Tuesday, April 14, 2020 Page 15 of 16

190061960	2019-Feb-17, Sun,03:00	Clear	SMV other	P.D. only	West	Ice	Going ahead	Automobile,	Snowbank/drift	Driving properly
Comments:	Statement #1: V1 TRAV PKWY AND LOST CON BANK ON THE NORTH, AND HEARTLAKE RD.	TROL ON ICE A	ND COLLIDED W	/ITH A SNOW		Ice		station wagon		
190070518	2019-Feb-23, Sat,19:22	Clear	Turning movement	Non-fatal injury	/West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Improper turn
Comments:	Statement #1: V1 TRAV PARKWAY APPROACH EASTBOUND APPROA GREEN LIGHT. V1 TUR STRIKES V2. V1 TURN	ING HEART LAI CHING HEART RNS SOUTHBOL	SOUND ON SAND KE ROAD. V2 IS ^T LAKE ROAD THF JND ON HEARTL	TRAVELLING ROUGH A	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190075741	2019-Feb-27, Wed,19:30	Snow	Turning movement	P.D. only	West	Loose snow	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V1 was w travelling eastbound on on Heart Lake Road and	Sandalwood Pa	rkway East. V1 m		East	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190113219	2019-Mar-28, Thu,09:00	Rain	Sideswipe	P.D. only	South	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: V1 was tr southbound on Heart La light. V1 side swiped V2	ike Rd at Sanda			South	Wet	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
190130253	2019-Apr-10, Wed,13:11	Clear	Rear end	P.D. only	East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:					East	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly
190155871	2019-Apr-29, Mon,21:20	Rain	Turning movement	Non-fatal injury	/East	Wet	Turning left	Pick-up truck	Other motor vehicle	Improper turn
Comments:	Statement #1: D1 WAS MAKE A NB TURN ONT ON SANDALWOOD PAI YELLOW LIGHT AND W COMPLETE THE LEFT	O HEARTLAKE RKWAYD2 CON VAS STRUCK B	ROADD2 WAS D	RIVING WB ROUGH THE	West	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190183443	2019-May-20, Mon,18:40	Clear	Turning movement	P.D. only	West	Dry	Turning left	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: V1 TRAV TURNING LEFT, WEST TRAVELLING EASTBOI COLLIDE WITHIN THE WESTBOUND AND EAS DIVISION FRONT DESI	BOUND, ONTO UND ON SANDA INTERSECTION STBOUND TRA	SANDALWOOD I ALWOOD PKWY. I. GREEN SIGNA FFIC. REPORTE	PKWY. V2 V1 AND V2 AL FOR	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly

Tuesday, April 14, 2020 Page 16 of 16

Collision Details Report

From: January 1, 2015 **To:** December 31, 2019

Location HIGHWAY 410 @ SANDALWOOD PKY E (2) Municipality....... Brampton

Traffic Control.... Traffic signal Total Collisions.... 1

Collision ID	Date/Day/Time	Environment	Impact Type	Classification	Direction	Surface Cond'n	Vehicle Manoeuver	Vehicle type	First Event	Driver Action	No. Ped
170141468	2017-Apr-17, Mon,15:16	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close	
Comments	: Statement #1: D2 STOP	S FOR RED LIG	SHT D1 REAR EN	IDS D2	West	Dry	Stopped	Automobile, station wagon	Other motor vehicle	Driving properly	

Wednesday, April 15, 2020 Page 1 of 1

Collision Details Report

From: January 1, 2015 **To:** December 31, 2019

Location SANDALWOOD PKY E btwn GLOVER GATE / ROYAL PALM DRIVE & HEART LAKE RD Municipality....... Brampton

Traffic Control.... No control Total Collisions.... 44

Collision ID	Date/Day/Time	Environment	Impact Type	Classification	Direction	Surface Cond'n	Vehicle Manoeuver	Vehicle type	First Event	Driver Action	No. Ped
150035175	2015-Jan-25, Sun,16:05	Clear	Rear end	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close	
Comments:	Road #1: SANDALWOO W M 200Statement # SANDALWOOD. V2 WE DUE TO TRAFFIC. V1 F	3: <statement>V STBOUND ON S</statement>	SANDALWOOD.	ON	West		Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly	
150053792	2015-Feb-07, Sat,09:50	Snow	Rear end	P.D. only	East	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control	
Comments:	Road #1: Sandalwood F V2 were traveling east of and was rear ended by V	n Sandalwood P			East		Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly	
150078506	2015-Feb-24, Tue,17:49	Snow	Rear end	P.D. only	East	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close	
Comments:	Road #1: SANDALWOO 100Statement #3: <stat IN L2.V2 AND V3 SLOW REAR OF V2, FORCING V3.</stat 	ement>V1, V2, A /ED DUE TO TR	AFFIC.V1 SLID II	L E/B ON R1, NTO THE	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly	
150232091	2015-Jun-12, Fri,15:00	Rain	Rear end	P.D. only	West	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close	
Comments:	Statement #1: DRIVER TRAVELLING E/B ON S SLOWED TO ENTER A STREET EAST OF HEA DRIVER TWO	ANDALWOOD P PRIVATE DRIVE	PARKWAY WHEN ON THE NORTH	DRIVER TWO I SIDE OF THE	West		Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly	
150328020	2015-Aug-20, Thu,12:46	Clear	Angle	Non-fatal injury	South		Going ahead	Automobile, station wagon	Other motor vehicle	Other	
Comments:	Statement #1: V1 WAS SIDEWALK WHEN HE			THE	East		Going ahead	_	Other motor vehicle	Driving properly	
150454159	2015-Nov-21, Sat,20:53	Rain	SMV other	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Tree, shrub, stump	Lost control	
Comments:	Statement #1: V1 TRAV PARKWAY IN LANE ON CONDITIONS, AND WE TREENO INDEPENDEN LAID	EV1 LOST CON NT OFF THE RO	TROL DUE TO T DADWAY, COLLIE	HE ROAD DED INTO A				_	,		

Wednesday, April 15, 2020 Page 1 of 6

150496032	2015-Dec-22, Tue,07:30	Rain	Sideswipe	Non-fatal injury	y East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V1 WAS T PARKWAY IN LANE 1. V SANDALWOOD PARKW VEHCILE AND COLIDED	2 WAS TRAVEL AY IN LANE 2. \	ING EASTBOUN	ID ON	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160040767	2016-Jan-30, Sat,07:58	Clear	Approaching	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V1 TRAVE MOUNTED AND DROVE WHEN IT WAS HIT IN TH	OVER THE ME	EDICAN INTO TH	IE W/B LANES	West	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160055131	2016-Feb-10, Wed,02:15	Snow	SMV other	Non-fatal injury	y East	Ice	Going ahead	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: V1 east bo on center median.	ound on R1. Los	es control and st	rikes light post				3	' '	
160068164	2016-Feb-19, Fri,13:57	Clear	Sideswipe	P.D. only	East	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: ON FEBR 2:00PM, DRIVER 1 WAS ONTARIO MARKER *BN LANE 2 OF 3, ON SAND LAKE ROAD, IN THE CI' OPERATING A MOTOR ' *9450MK* AND TRAVEL SANDWALWOOD PARK 1.DRIVER 1 CHANGED DRIVER 2 WAS TRAVEL 2 TO THE FRONT DRIVI	OPERATING A ISM855* AND TE IALWOOD PARK TY OF BRAMPT VEHICLE BEAR LING EASTBOU WAY, JUST SLIC LANES FROM I LLING AND SUB	MOTOR VEHICI RAVELLING EAS (WAY, JUST WES ON.DRIVER 2 W SING ONTARIO M JND, IN LANE 3 (GHTLY BEHIND I LANE 2 TO LANE	LE BEARING STBOUND, IN ST OF HEART /AS MARKER OF 3, ON DRIVER E 3 WHERE	East		Going ahead	Pick-up truck	Other motor vehicle	Driving properly
160195225	2016-May-23, Mon,18:15	Clear	Rear end	P.D. only	East	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 / V2 / V REAR END V2V3 TURN				East		Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
160198369	2016-May-25, Wed,19:11	Clear	Sideswipe	P.D. only	East	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: v1 was att into the esso gas station. on r2. v1 changed lanes	v2 was in the It			East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160246084	2016-Jun-29, Wed,10:15	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: Both vehic the east bound lanes of S forward with traffic and th with traffic and failed to s	Sandlewood, We nen braked as tra	est of Heartlake R affic slowed. D2 n	load. D1 moved noved forward			Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
	2016-Jul-31, Sun,03:50 Statement #1: V1 WB on off roadway and flips, lan	R1. V1 looses	SMV other		y West	Dry	Going ahead	Automobile, station wagon	Curb	Lost control

Wednesday, April 15, 2020 Page 2 of 6

160300357	2016-Aug-10, Wed,07:36	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 EB R1 REARENDS V2	V2 EB R1V2 ST	OPPED FOR TR	RAFFICV1	East	Dry	Stopped	Pick-up truck	Other motor vehicle	Driving properly
160392671	2016-Oct-20, Thu,13:31	Rain	Rear end	Non-fatal injury	/East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1, V2 AN V2 AND V3 ADJUST SP REAR END OF V2, PUS	EED FOR TRAF	FIC. V1 COLLID	ES WITH THE	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
160457464	2016-Dec-08, Thu,23:27	Snow	SMV other	P.D. only	East	Packed snow	Going ahead	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: V1 E/B OI LAKE ROAD, V1 LOSES BETWEEN EAST BOUN	S CONTROL CO	LLIDES WITH A					Ţ.	, ,	
160461855	2016-Dec-11, Sun,18:30	Snow	Sideswipe	P.D. only	West	Loose snow	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V2 TRAV DRIVE. V1 E/B SANDA RIGHT SIDE OF V2				West		Turning right	Automobile, station wagon	Other motor vehicle	Driving properly
170003508	2017-Jan-03, Tue,23:13	Clear	SMV other	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Pole (utility, power)	Speed too fast for condition
Comments:	Statement #1: V1 TRAVE ON CURVE MOUNTED LIGHT POLE								, ,	
170165623	2017-May-05, Fri,06:50	Rain	Approaching	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V1 E/B OI CROSSES MEDIAN ANI		/2 W/B ON R1 IN	I W/B L1V1	West		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170168164	2017-May-07, Sun,06:55	Clear	SMV other	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Pole (utility, power)	Speed too fast for condition
Comments:	: Statement #1: - V1 TRAV E- V1 LOSES CONTRO BETWEEN EAST AND V LOCATED IN THE MIDE WEST BOUND LANE AT	L OF MOTOR V VEST BOUND L DLE OF THE BA	EHICLE, CROSS ANES- V1 HITS RRIER- V1 STOF	SES BARRIER LIGHT POLE						
170258622	2017-Jul-12, Wed,16:00	Rain	SMV other	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Tree, shrub, stump	Lost control
Comments:	Statement #1: V1 TRAVE ROADWAY AND LOOSE MEDIAN, PASSING TWO DRIVES INTO A DITCH NO INJURIES, NO DAM ONE VEHICLE INVOLVE ROADWAY VERY SLIPE	E CONTROL OF O LANES OF OI ON THE NORTI IAGE TO ANY O ED.HAPPENED	VEHICLE.V1 CF N COMING TRAI H SIDE.NO CHA THER PROPER	ROSS OVER FFIC, AND RGES LAID AS TY, AND ONLY				j	,	
170278199	2017-Jul-27, Thu,08:14	Rain	SMV other	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: V1 was tra east when D1 lost contro hit a pole.							ŭ	. ,	

Wednesday, April 15, 2020 Page 3 of 6

170278355	2017-Jul-27, Thu,10:47	Clear	SMV other	Non-fatal injur	y West	Wet	Going ahead	Automobile, station wagon	Pole (utility, power)	Lost control
Comments:	Statement #1: DVR trav VEH and strikes Light P corner of VEH; moment pole upon impact. Single	Pole, located on dum tum causes VEH	center median, wit	th right front				9	, ,	
170325858	2017-Aug-31, Thu,14:13	Clear	Sideswipe	P.D. only	West	Dry	Merging	Automobile, station wagon	Other motor vehicle	Failed to yield right-of- way
Comments:	Statement #1: on Augus collision near the interse Police attended and obs the plaza turning westo vehicle 2. vehicle 2 had occurredno further police	ection of sandalv served 2 vehicle ound onto sanda right of way; ve	wood parkway and s involved. vehicl alwood parkway co hicle 1 was charge	I heartlake road e 1 pulled out of olliding with			Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170398180	2017-Oct-23, Mon,20:08	Rain	Approaching	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V1 WAS WHEN V1 LOST CONT SIDE OF THE ROAD TO V2 GOING W/B ON SA	ROLAND CRO O TRAFFIC GO	SSED OVER TO ¹ ING W/B AND CO	THE OTHER	West		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170398325	2017-Oct-23, Mon,23:37	Rain	SMV other	P.D. only	East		Going ahead	Automobile, station wagon	Tree, shrub, stump	Lost control
Comments:	Statement #1: V1 INVO OF ROAD ARE 'S' BEN THE ACCELERATOR O OFF THE RDWY AND S	IDS IN RDWY. D CAUSING HER T	1'S FOOT SLIPPI O LOSE CONTR	ED, HITTING	l			ů,	·	
170420482	2017-Nov-07, Tue,17:25	Clear	SMV other	P.D. only	West	Dry	Going ahead	Automobile, station wagon	Animal - wild	Driving properly
Comments:	Statement #1: V1 W/B S HEARS A BANG AND S POLICE VIEW PICTUR DEER	STOPS. DAMAG	E DOWN TO DRI	VER SIDE.				Ü		
170446189	2017-Nov-28, Tue,20:15	Clear	Sideswipe	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: V1 IN LA PARKWAY. V2 IN LANE V2 AND STRUCK THE DRIVER SIDE MIRROR	2 OF SANDAL PASSENGER S	WOOD PARKWAY	7. V1 PASSED	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
170483761	2017-Dec-28, Thu,06:56	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V2 WAS PARKWAY COMING TO TRAFFIC AHEAD WHE IMPACT THEN CAUSE REAR END EACH OTH	D A STOP AS TH EN V2 WAS STR D A CHAIN REA	IERE WAS HEAV UCK IN THE REA	Y VEHICLULAR IR BY V1. THE			Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180038086	2018-Jan-29, Mon,14:07	Snow	Approaching	P.D. only	East	Loose snow	Going ahead		Other motor vehicle	Lost control
Comments:	Statement #1: V1 eastb	ound V2 westbo	ound V1 crosses m	nedian struck V2	2 West		Going ahead		Other motor vehicle	Driving properly

Wednesday, April 15, 2020 Page 4 of 6

180043684	2018-Feb-02, Fri,08:55	Clear	SMV other	P.D. only	West	Dry	Pulling away from shoulder or curb	Pick-up truck	Pole (sign, parking meter)	Lost control
Comments:	Statement #1: D1 W/B (HIS VEHICLE					, ,	
180055217	2018-Feb-11, Sun,09:55	Clear	Approaching	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Lost control
Comments:	Statement #1: ON SUN 9:55AM V1 WAS TRAV! PARKWAY IN THE CIT CONTROL OF HER MOTHE MEDIAN INTO ON TRAVELLING WESTBO CURB LANE. ULTIMAT DRIVERS WERE CLEAVEHICLES SUFFERED PON# 5135120B FOR OTRAFFIC ACT SECTIO	ELLING EASTBO Y OF BRAMPTO OTOR VEHICLE ICOMING WEST DUND ON SAND ELY V1 COLLIDI IRED BY AMBUL MAJOR FONT CARELESS DRIV	DUND ON SAND, N. AT THIS TIME SUBSEQUENTLY BOUND TRAFFIO ALWOOD PARKY ED HEAD-ON WI LANCE AT THE SEND DAMAGE. V	ALWOOD V1 LOST CROSSING C. V2 WAS VAY IN THE TH V2. BOTH CENE. BOTH V1 WAS ISSUED			Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180095175	2018-Mar-13, Tue,02:30	Clear	Sideswipe	P.D. only	East	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: V2 EAST CURB LANE, SIDESWI SANDALWOOD. V2 LO SMALL TREE. V1 STOI REMAIN AT SCENE OF	PED BY V1 ALS SES CONTROL PS BRIEFLY DO	O EASTBOUND (, MOUNTS CURE	ON 3 AND STRIKES	5		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180123775	2018-Apr-03, Tue,06:04	Rain	Sideswipe	Non-fatal injur	y East	Wet	Going ahead	Pick-up truck	Other motor vehicle	Speed too fast for condition
Comments:	Statement #1: V1 E/B C LANE. V1 COLLIDES I LEFT, MOUNTS THE M TO A STOP FACING W LIGHT POLE FALLS OF	NTO V2, OVER IEDIAN, COLLID /B IN ONCOMIN	CORRECTS MAN ES INTO LIGHT I G TRAFFIC. DE	NOUVERING POLE, COMES BRIS FROM	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180275238	2018-Jul-22, Sun,23:00	Clear	Rear end	P.D. only	East	Dry	Going ahead	Automobile, station wagon	Other motor vehicle	
Comments:	Statement #1: 22 DIVIS R1V2 TRAVELING E/B TRAVELING E/B ON R COLLIDED WITH V1,V3 V3.V1 PROCEEDED TO	ON R1V3 TRAV 1V1 CUT OF V2 3 COLLIDED WI	ELING E/B ON R ON R1, AS A RES TH V2,V4 COLLIE	1V4 SULT V2 DED WITH	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180329175	2018-Sep-01, Sat,05:25	Clear	Rear end	P.D. only	West	Dry	Slowing or stopping	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: ** SELF curb lane. V1 was W/B				West		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180384553	2018-Nov-11, Sun,19:58	Clear	Sideswipe	P.D. only	West	Dry	Changing lanes	Automobile, station wagon	Other motor vehicle	Improper lane change
Comments:	Statement #1: V1 WAS CROSSED OVER TO T			ON R1 IN L/LV1	West		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
180413917	2018-Nov-02, Fri,12:50	Rain	Rear end	P.D. only	West	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 AND STOPPED DUE TO TR			RAMPTON.V2	West		Stopped	Automobile, station wagon	Other motor vehicle	Driving properly

Wednesday, April 15, 2020 Page 5 of 6

180423764	2018-Nov-09, Fri,19:00	Rain	Rear end	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 WAS SLOWED FOR TRAFFI			N R1 IN R/LV2	East		Slowing or stopping	Automobile, station wagon	Other motor vehicle	Driving properly
180472834	2018-Dec-15, Sat,21:20	Snow	SMV other	P.D. only	East	Slush	Going ahead	Automobile, station wagon	Curb	Lost control
Comments:	Statement #1: V1 WAS AVOIDING ANOTHER V STRUCK THE CURB C	VEHICLE, SWEA	RVED TO THE L					•		
190041196	2019-Feb-01, Fri,08:24	Clear	Rear end	P.D. only	East	Ice	Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
Comments:	Statement #1: SELF REDIVISION. V1 AND V2 PARKWAY APPROACH BRAMPTON. V2 WAS A PATCH OF ICE ON TON TIME AND STRUCK	TRAVELLIN EAS HING HEARTLAK DIRECTLY IN FR HE ROADWAY A	TBOUND ON SA E ROAD IN THE ONT OF V1 IN L	NDALWOOD CITY OF ANE 1. V1 HIT	East		Going ahead	Automobile, station wagon	Other motor vehicle	Driving properly
190116856	2019-Mar-31, Sun,14:00	Snow	Rear end	P.D. only	East	Loose snow	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 AND DOWN FOR ACCIDEN				East		Stopped	Tow truck	Other motor vehicle	Driving properly
190172722	2019-May-11, Sat,20:00	Rain	Rear end	P.D. only	East	Wet	Going ahead	Automobile, station wagon	Other motor vehicle	Following too close
Comments:	Statement #1: V1 AND REAR ENDS V2	V2 E/B ON R1V2	SLOWING/STO	PPINGV1	East		Stopped	Automobile, station wagon	Other motor vehicle	Driving properly

Wednesday, April 15, 2020 Page 6 of 6

Appendix B

Base Year Synchro Analysis Outputs

Base Year AM Peak Hour

1: Heart Lake Road & Mayfield Road

	*	-	•	•	-	•	1	†	1		ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	22	1175	366	84	765	15	120	12	21	38	64	41
v/c Ratio	0.05	0.36	0.32	0.24	0.21	0.01	0.40	0.03	0.06	0.37	0.46	0.22
Control Delay	13.5	13.5	2.2	8.2	7.8	0.0	47.7	40.8	0.4	70.6	72.1	4.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.5	13.5	2.2	8.2	7.8	0.0	47.7	40.8	0.4	70.6	72.1	4.6
Queue Length 50th (m)	2.3	57.0	0.0	6.3	26.1	0.0	29.2	2.8	0.0	10.8	18.2	0.0
Queue Length 95th (m)	7.8	84.2	14.9	14.7	40.5	0.0	43.5	8.0	0.2	22.6	33.6	2.4
Internal Link Dist (m)		638.5			401.6			1215.6			450.1	
Turn Bay Length (m)	115.0		180.0	80.0		70.0	110.0		45.0	30.0		25.0
Base Capacity (vph)	422	3294	1157	351	3679	1160	297	567	518	336	448	438
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.36	0.32	0.24	0.21	0.01	0.40	0.02	0.04	0.11	0.14	0.09

HCM Signalized Intersection Capacity Analysis
1: Heart Lake Road & Mayfield Road

Base Year AM Peak Hour

	1	→	•	•	+	•	4	†	~	•	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T.	444	15	Ţ	444	- 7	Ţ	- 1	- 7	7	- 1	- 7
Traffic Volume (vph)	22	1175	366	84	765	15	120	12	21	38	64	41
Future Volume (vph)	22	1175	366	84	765	15	120	12	21	38	64	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.7	3.7	3.7	3.7	3.7	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1789	5142	1601	1789	5142	1601	1750	1842	1566	1750	1842	1566
Flt Permitted	0.35	1.00	1.00	0.20	1.00	1.00	0.54	1.00	1.00	0.75	1.00	1.00
Satd. Flow (perm)	659	5142	1601	371	5142	1601	988	1842	1566	1381	1842	1566
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	22	1175	366	84	765	15	120	12	21	38	64	41
RTOR Reduction (vph)	0	0	135	0	0	4	0	0	17	0	0	38
Lane Group Flow (vph)	22	1175	231	84	765	11	120	12	4	38	64	3
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	88.3	88.3	88.3	98.8	98.8	98.8	27.6	27.6	27.6	9.0	9.0	9.0
Effective Green, g (s)	88.3	88.3	88.3	98.8	98.8	98.8	27.6	27.6	27.6	9.0	9.0	9.0
Actuated g/C Ratio	0.63	0.63	0.63	0.71	0.71	0.71	0.20	0.20	0.20	0.06	0.06	0.06
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	415	3243	1009	337	3628	1129	279	363	308	88	118	100
v/s Ratio Prot		c0.23		c0.01	0.15		c0.05	0.01			0.03	
v/s Ratio Perm	0.03		0.14	0.16		0.01	c0.04		0.00	0.03		0.00
v/c Ratio	0.05	0.36	0.23	0.25	0.21	0.01	0.43	0.03	0.01	0.43	0.54	0.03
Uniform Delay, d1	9.9	12.4	11.2	7.1	7.1	6.1	48.5	45.4	45.2	63.0	63.5	61.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.3	0.5	0.4	0.1	0.0	1.1	0.0	0.0	3.4	5.0	0.1
Delay (s)	10.1	12.7	11.7	7.4	7.3	6.1	49.5	45.5	45.3	66.4	68.5	61.5
Level of Service	В	В	В	Α	A	Α	D	D	D	Е	E	Е
Approach Delay (s)		12.4			7.3			48.6			65.9	_
Approach LOS		В			A			D			E	
Intersection Summary												
HCM 2000 Control Delay			15.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.38									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			19.6			
Intersection Capacity Utiliza	ation		55.3%	IC	U Level	of Service	е		В			
Analysis Period (min)			15									
c Critical Lane Group												

Queues
3: Dixie Road & Countryside Drive

	•	-	\searrow	•	•	•	\land	1	1	\	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	13	325	146	58	302	41	75	235	136	162	490	
v/c Ratio	0.05	0.37	0.29	0.22	0.34	0.10	0.19	0.24	0.15	0.27	0.51	
Control Delay	17.5	19.6	6.1	20.3	19.4	7.2	9.3	8.9	2.2	9.7	11.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.5	19.6	6.1	20.3	19.4	7.2	9.3	8.9	2.2	9.7	11.8	
Queue Length 50th (m)	1.1	16.0	0.6	5.2	14.7	0.0	4.2	13.7	0.0	9.6	33.5	
Queue Length 95th (m)	4.7	26.0	12.3	13.8	24.4	6.2	10.7	24.9	6.6	20.0	56.2	
Internal Link Dist (m)		1354.0			266.3			317.4			333.2	
Turn Bay Length (m)	85.0		80.0	25.0		80.0	110.0			50.0		
Base Capacity (vph)	985	3298	1484	963	3298	1478	404	966	888	592	963	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.01	0.10	0.10	0.06	0.09	0.03	0.19	0.24	0.15	0.27	0.51	
Intersection Summary												

	•	4	t	1	\	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	4	7		#
Traffic Volume (veh/h)	283	110	43	150	334	179
Future Volume (Veh/h)	283	110	43	150	334	179
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	283	110	43	150	334	179
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	890	43			193	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	890	43			193	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	0.0	89			76	
cM capacity (veh/h)	240	1030			1392	
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	
Volume Total	283	110	43	150	513	
		0	43			
Volume Left	283	110	-	0 150	334 0	
Volume Right cSH	0 240	1030	0 1700	1700	1392	
	1.18				0.24	
Volume to Capacity		0.11	0.03	0.09		
Queue Length 95th (m)	106.6				7.5	
Control Delay (s)	158.0	8.9	0.0	0.0	6.3	
Lane LOS	F	Α			A	
Approach Delay (s)	116.3		0.0		6.3	
Approach LOS	F					
Intersection Summary						
Average Delay			44.5			
Intersection Capacity Utili	zation		56.9%	IC	U Level	of Service
Analysis Period (min)			15			

	1	-	•	*	-	•	4	†	1	·	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	,	11	7	,	11	7	,	- 1	7	,	ţ.	
Traffic Volume (vph)	13	325	146	58	302	41	75	235	136	162	474	16
Future Volume (vph)	13	325	146	58	302	41	75	235	136	162	474	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.7	3.7	3.7	3.7	3.7
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1750	3500	1566	1750	3500	1566	1789	1883	1601	1789	1874	
Flt Permitted	0.57	1.00	1.00	0.56	1.00	1.00	0.42	1.00	1.00	0.61	1.00	
Satd. Flow (perm)	1046	3500	1566	1023	3500	1566	787	1883	1601	1153	1874	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	13	325	146	58	302	41	75	235	136	162	474	16
RTOR Reduction (vph)	0	0	104	0	0	31	0	0	66	0	1	0
Lane Group Flow (vph)	13	325	42	58	302	10	75	235	70	162	489	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2	_	2	6		6	4	•	4	8	Ū	
Actuated Green, G (s)	15.0	15.0	15.0	15.0	15.0	15.0	30.4	30.4	30.4	30.4	30.4	
Effective Green, q (s)	15.0	15.0	15.0	15.0	15.0	15.0	30.4	30.4	30.4	30.4	30.4	
Actuated g/C Ratio	0.25	0.25	0.25	0.25	0.25	0.25	0.51	0.51	0.51	0.51	0.51	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	265	886	396	259	886	396	404	966	822	592	962	
v/s Ratio Prot	200	c0.09	000		0.09	000		0.12	VLL		c0.26	
v/s Ratio Perm	0.01	00.00	0.03	0.06	0.00	0.01	0.10	0.12	0.04	0.14	00.20	
v/c Ratio	0.05	0.37	0.11	0.22	0.34	0.03	0.19	0.24	0.08	0.27	0.51	
Uniform Delay, d1	16.7	18.2	17.0	17.5	18.1	16.6	7.7	8.0	7.3	8.2	9.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.3	0.1	0.4	0.2	0.0	1.0	0.6	0.2	1.1	1.9	
Delay (s)	16.8	18.4	17.1	17.9	18.3	16.6	8.8	8.6	7.5	9.3	11.4	
Level of Service	В	В	В	В	В	В	Α	Α	A	Α	В	
Approach Delay (s)		18.0			18.1			8.3			10.9	
Approach LOS		В			В			Α			В	
Intersection Summary												
HCM 2000 Control Delay			13.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.46									
Actuated Cycle Length (s)			59.2	S	um of los	time (s)			13.8			
Intersection Capacity Utiliza	ation		83.9%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	4	t	1	V	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	1	NUIN	ODL	4	
Traffic Volume (veh/h)	372	10	305	0	0	509	
Future Volume (Veh/h)	372	10	305	0	0	509	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	372	10	305	0	0	509	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)		4					
Median type			None			None	
Median storage veh)							
Upstream signal (m)			243				
pX, platoon unblocked	0.94	0.94			0.94		
vC, conflicting volume	814	305			305		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	772	232			232		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	0	99			100		
cM capacity (veh/h)	347	761			1259		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	382	305	509				
Volume Left	372	0	0				
Volume Right	10	0	0				
cSH	353	1700	1700				
Volume to Capacity	1.08	0.18	0.30				
Queue Length 95th (m)	111.3	0.0	0.0				
Control Delay (s)	106.5	0.0	0.0				
Lane LOS	F						
Approach Delay (s)	106.5	0.0	0.0				
Approach LOS	F						
Intersection Summary							
Average Delay			34.0				
Intersection Capacity Utiliza	ation		54.1%	IC	U Level	of Service	A
Analysis Period (min)			15				

	•	-	•	-	•	1	†	1		ţ	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	131	1875	161	1026	70	61	104	111	414	420	95	
v/c Ratio	0.45	0.77	0.86	0.58	0.10	0.32	0.26	0.26	1.00	0.90	0.22	
Control Delay	19.7	35.8	73.6	30.2	6.1	34.6	46.7	8.5	89.9	75.3	18.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.7	35.8	73.6	30.2	6.1	34.6	46.7	8.5	89.9	75.3	18.7	
Queue Length 50th (m)	17.4	178.7	34.0	121.5	0.3	12.4	26.2	0.0	109.1	126.5	8.1	
Queue Length 95th (m)	32.7	225.7	#87.2	167.1	10.5	23.0	43.5	15.6	#175.6	173.1	23.7	
Internal Link Dist (m)		97.9		281.6			369.2			219.0		
Turn Bay Length (m)	35.0		60.0					30.0	90.0		35.0	
Base Capacity (vph)	321	2423	191	1757	703	225	592	566	412	598	544	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.41	0.77	0.84	0.58	0.10	0.27	0.18	0.20	1.00	0.70	0.17	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	1	-	•	•	•	•	4	†	1	~	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T T	ተተኩ		Ţ	11	T.	Ţ	- 1	7	T T	- 1	- 7
Traffic Volume (vph)	131	1820	55	161	1026	70	61	104	111	414	420	95
Future Volume (vph)	131	1820	55	161	1026	70	61	104	111	414	420	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.99	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	5004		1700	3535	1346	1767	1824	1514	1606	1842	1551
Flt Permitted	0.19	1.00		0.06	1.00	1.00	0.17	1.00	1.00	0.63	1.00	1.00
Satd. Flow (perm)	345	5004		98	3535	1346	317	1824	1514	1069	1842	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	131	1820	55	161	1026	70	61	104	111	414	420	95
RTOR Reduction (vph)	0	2	0	0	0	34	0	0	86	0	0	46
Lane Group Flow (vph)	131	1873	0	161	1026	36	61	104	25	414	420	49
Confl. Peds. (#/hr)	1					1			2	2		
Heavy Vehicles (%)	1%	2%	4%	5%	1%	16%	1%	3%	4%	11%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6		6	4		4	8		8
Actuated Green, G (s)	80.6	70.7		84.6	72.7	72.7	40.9	33.0	33.0	48.1	37.2	37.2
Effective Green, g (s)	80.6	70.7		84.6	72.7	72.7	40.9	33.0	33.0	48.1	37.2	37.2
Actuated g/C Ratio	0.55	0.48		0.58	0.50	0.50	0.28	0.22	0.22	0.33	0.25	0.25
Clearance Time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	285	2411		186	1751	667	166	410	340	394	467	393
v/s Ratio Prot	0.03	0.37		c0.07	0.29		0.02	0.06		c0.09	0.23	
v/s Ratio Perm	0.22			c0.43		0.03	0.08		0.02	c0.26		0.03
v/c Ratio	0.46	0.78		0.87	0.59	0.05	0.37	0.25	0.07	1.05	0.90	0.13
Uniform Delay, d1	18.6	31.5		41.5	26.3	19.2	41.3	46.7	44.8	48.2	52.9	42.2
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.2	2.5		31.7	1.4	0.2	1.4	0.3	0.1	59.3	19.8	0.1
Delay (s)	19.8	34.0		73.2	27.7	19.3	42.7	47.1	44.9	107.5	72.7	42.4
Level of Service	В	С		Е	С	В	D	D	D	F	Е	D
Approach Delay (s)		33.1			33.1			45.2			85.1	
Approach LOS		С			С			D			F	
Intersection Summary												
HCM 2000 Control Delay			44.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Cap	acity ratio		0.97			,						
Actuated Cycle Length (s)			146.7	S	um of lost	time (s)			19.0			
Intersection Capacity Utiliz	ation		94.3%		U Level		е		F			
Analysis Period (min)			15			2210						
c Critical Lane Group												

	$\overline{}$					
- (()	Ш	Р	п	ρ	c

1: Heart Lake Road & Mayfield Road

Base Year PM Peak Hour

	*	-	•	•	-	•	1	1	1	~	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	25	857	219	27	1054	30	346	21	17	40	19	25
v/c Ratio	0.10	0.32	0.23	0.07	0.36	0.03	0.61	0.03	0.03	0.40	0.14	0.13
Control Delay	26.8	22.6	4.1	16.9	18.8	1.5	36.9	23.9	0.1	71.1	59.6	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	26.8	22.6	4.1	16.9	18.8	1.5	36.9	23.9	0.1	71.1	59.6	1.4
Queue Length 50th (m)	3.8	53.8	0.0	3.1	59.3	0.0	74.2	3.9	0.0	11.0	5.1	0.0
Queue Length 95th (m)	12.6	82.5	17.8	9.9	90.1	2.1	83.5	8.1	0.0	23.3	13.2	0.0
Internal Link Dist (m)		638.5			401.6			1215.6			450.1	
Turn Bay Length (m)	115.0		180.0	80.0		70.0	110.0		45.0	30.0		25.0
Base Capacity (vph)	267	2941	1035	373	3176	1000	569	697	626	336	451	461
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.29	0.21	0.07	0.33	0.03	0.61	0.03	0.03	0.12	0.04	0.05

HCM Signalized Intersection Capacity Analysis
1: Heart Lake Road & Mayfield Road

Base Year PM Peak Hour

	1	-	\rightarrow	•	•	*	$^{\wedge}$	†	1	•	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ļ	444	7	'n	111	7	'n	- 1	7	j	- 1	- 1
Traffic Volume (vph)	25	857	219	27	1054	30	346	21	17	40	19	25
Future Volume (vph)	25	857	219	27	1054	30	346	21	17	40	19	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.7	3.7	3.7	3.7	3.7	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1755	5092	1633	1825	5142	1585	1785	1879	1597	1700	1789	1597
Flt Permitted	0.25	1.00	1.00	0.27	1.00	1.00	0.55	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	461	5092	1633	520	5142	1585	1035	1879	1597	1331	1789	1597
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	25	857	219	27	1054	30	346	21	17	40	19	25
RTOR Reduction (vph)	0	0	109	0	0	13	0	0	11	0	0	23
Lane Group Flow (vph)	25	857	110	27	1054	17	346	21	6	40	19	2
Heavy Vehicles (%)	4%	3%	0%	0%	2%	3%	0%	0%	0%	5%	5%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	67.7	67.7	67.7	74.9	74.9	74.9	46.5	46.5	46.5	8.5	8.5	8.5
Effective Green, g (s)	67.7	67.7	67.7	74.9	74.9	74.9	46.5	46.5	46.5	8.5	8.5	8.5
Actuated g/C Ratio	0.50	0.50	0.50	0.55	0.55	0.55	0.34	0.34	0.34	0.06	0.06	0.06
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	231	2553	818	329	2852	879	550	647	550	83	112	100
v/s Ratio Prot		0.17		0.00	c0.20		c0.16	0.01			0.01	
v/s Ratio Perm	0.05		0.07	0.04		0.01	c0.05		0.00	0.03		0.00
v/c Ratio	0.11	0.34	0.13	0.08	0.37	0.02	0.63	0.03	0.01	0.48	0.17	0.02
Uniform Delay, d1	17.7	20.2	18.0	14.0	16.8	13.5	36.0	29.3	29.1	61.1	59.9	59.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.9	0.4	0.3	0.1	0.4	0.0	2.3	0.0	0.0	4.4	0.7	0.1
Delay (s)	18.7	20.5	18.3	14.1	17.2	13.6	38.3	29.4	29.1	65.5	60.6	59.4
Level of Service	В	С	В	В	В	В	D	С	С	Е	Е	Е
Approach Delay (s)		20.0			17.0			37.4			62.6	
Approach LOS		С			В			D			Е	
Intersection Summary												
HCM 2000 Control Delay			22.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.49									
Actuated Cycle Length (s)			135.0	S	um of lost	time (s)			19.6			
Intersection Capacity Utiliza	ation		60.9%	IC	U Level	of Service	е		В			
Analysis Pariod (min)			15									

Analysis Period (min) c Critical Lane Group

Synchro 10 Report Page 1 Paradigm Transportation Solutions Limited Paradigm Transportation Solutions Limited Synchro 10 Report Page 2

HCM Unsignalized Intersection Capacity Analysis 2: Heart Lake Road & Countryside Drive

Base Year PM Peak Hour 200333

	•	•	Ť	~	~	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	- 1	7		4	_
Traffic Volume (veh/h)	396	298	91	287	212	137	
Future Volume (Veh/h)	396	298	91	287	212	137	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	396	298	91	287	212	137	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	652	91			378		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	652	91			378		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	0	69			82		
cM capacity (veh/h)	356	969			1180		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1		
Volume Total	396	298	91	287	349		
Volume Left	396	0	0	0	212		
Volume Right	0	298	0	287	0		
cSH	356	969	1700	1700	1180		
Volume to Capacity	1.11	0.31	0.05	0.17	0.18		
Queue Length 95th (m)	119.4	10.5	0.0	0.0	5.2		
Control Delay (s)	115.7	10.4	0.0	0.0	6.0		
Lane LOS	F	В			Α		
Approach Delay (s)	70.5		0.0		6.0		
Approach LOS	F						
Intersection Summary							
Average Delay			35.9				
Intersection Capacity Utiliza	ation		54.2%	IC	U Level of	Service	
Analysis Period (min)			15				

Queues

Base Year PM Peak Hour 200333

3: Dixie Road & Countryside Drive

	*	-	$\mathbf{\hat{r}}$	•	-	*	\wedge	†	1	*	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	38	327	26	211	657	130	28	301	200	119	255	
v/c Ratio	0.19	0.29	0.05	0.67	0.58	0.22	0.05	0.35	0.23	0.23	0.30	
Control Delay	17.8	16.9	3.7	30.3	20.4	4.1	12.2	13.9	3.1	13.9	13.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.8	16.9	3.7	30.3	20.4	4.1	12.2	13.9	3.1	13.9	13.0	
Queue Length 50th (m)	3.4	16.1	0.0	22.8	36.0	0.0	1.8	22.3	0.0	8.3	17.8	
Queue Length 95th (m)	9.7	24.8	3.2	43.6	50.1	9.5	7.3	51.1	11.7	23.7	42.4	
Internal Link Dist (m)		1354.0			266.3			317.4			333.2	
Turn Bay Length (m)	85.0		80.0	25.0		80.0	110.0			50.0		
Base Capacity (vph)	543	3011	1358	850	3071	1342	539	865	853	507	860	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.11	0.02	0.25	0.21	0.10	0.05	0.35	0.23	0.23	0.30	
Intersection Summary												

Synchro 10 Report Page 3 Synchro 10 Report
Paradigm Transportation Solutions Limited Page 4

200333

	•	•	1	1	V	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	٦	7	- 1			- 1
Traffic Volume (veh/h)	66	3	377	0	0	533
Future Volume (Veh/h)	66	3	377	0	0	533
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	66	3	377	0	0	533
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)		4				
Median type			None			None
Median storage veh)			110110			110110
Upstream signal (m)			243			
pX, platoon unblocked	0.95	0.95	240		0.95	
vC, conflicting volume	910	377			377	
vC1, stage 1 conf vol	310	311			311	
vC1, stage 1 conf vol						
vCu, unblocked vol	882	324			324	
tC, single (s)	6.4	6.2			4.1	
	0.4	0.2			4.1	
tC, 2 stage (s)	3.5	3.3			2.2	
tF (s)						
p0 queue free %	78	100			100	
cM capacity (veh/h)	299	689			1191	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	69	377	533			
Volume Left	66	0	0			
Volume Right	3	0	0			
cSH	312	1700	1700			
Volume to Capacity	0.22	0.22	0.31			
Queue Length 95th (m)	6.6	0.0	0.0			
Control Delay (s)	20.0	0.0	0.0			
Lane LOS	C					
Approach Delay (s)	20.0	0.0	0.0			
Approach LOS	C	0.0	0.0			
Intersection Summary						
			1.4			
Average Delay			38.4%	10	U Level of	0
Intersection Capacity Utiliz	zation			IC	U Level of	Service
Analysis Period (min)			15			

Movement	EBL	EBI	EBR	WBL	WBI	WBR	NBL	NRI	NBK	SBL	SBT	SBR
Lane Configurations	T.	44	17	T T	11	- 7	T ₁	- 1	7	T T	4	
Traffic Volume (vph)	38	327	26	211	657	130	28	301	200	119	225	30
Future Volume (vph)	38	327	26	211	657	130	28	301	200	119	225	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.7	3.7	3.7	3.7	3.7
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.99	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1782	3500	1575	1698	3570	1542	1821	1847	1595	1805	1829	
Flt Permitted	0.34	1.00	1.00	0.55	1.00	1.00	0.60	1.00	1.00	0.57	1.00	
Satd. Flow (perm)	632	3500	1575	990	3570	1542	1152	1847	1595	1083	1829	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	38	327	26	211	657	130	28	301	200	119	225	30
RTOR Reduction (vph)	0	0	18	0	0	89	0	0	106	0	4	0
Lane Group Flow (vph)	38	327	8	211	657	41	28	301	94	119	251	0
Confl. Peds. (#/hr)	4		3	3		4	5		2	2		5
Heavy Vehicles (%)	0%	2%	0%	5%	0%	1%	0%	4%	1%	1%	3%	3%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2	_	2	6		6	4	•	4	8	•	
Actuated Green, G (s)	20.8	20.8	20.8	20.8	20.8	20.8	30.6	30.6	30.6	30.6	30.6	
Effective Green, q (s)	20.8	20.8	20.8	20.8	20.8	20.8	30.6	30.6	30.6	30.6	30.6	
Actuated g/C Ratio	0.32	0.32	0.32	0.32	0.32	0.32	0.47	0.47	0.47	0.47	0.47	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	201	1116	502	315	1138	491	540	866	748	508	858	
v/s Ratio Prot	201	0.09	002	0.0	0.18	101	010	c0.16	7 10	000	0.14	
v/s Ratio Perm	0.06	0.00	0.01	c0.21	0.10	0.03	0.02	00.10	0.06	0.11	0.14	
v/c Ratio	0.19	0.29	0.02	0.67	0.58	0.08	0.05	0.35	0.13	0.23	0.29	
Uniform Delay, d1	16.1	16.7	15.2	19.2	18.5	15.5	9.4	11.0	9.8	10.3	10.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.5	0.1	0.0	5.3	0.7	0.1	0.2	1.1	0.3	1.1	0.9	
Delay (s)	16.5	16.8	15.2	24.6	19.2	15.6	9.6	12.1	10.1	11.4	11.5	
Level of Service	В	В	В	C	В	В	Α.	В	В	В	В	
Approach Delay (s)		16.7		Ŭ	19.9		- /\	11.2			11.5	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			16.0	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.48									
Actuated Cycle Length (s)			65.2	S	um of lost	time (s)			13.8			
Intersection Capacity Utiliza	tion		89.3%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 10 Report Page 5

Synchro 10 Report Paradigm Transportation Solutions Limited Page 6 Base Year PM Peak Hour

5: Heart Lake Road & Sandalwood Parkway

	•	-	•	•	•	1	1	1	•	ţ	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	131	1251	127	1644	181	90	121	105	237	127	224	
v/c Ratio	0.80	0.50	0.49	0.93	0.22	0.21	0.24	0.21	0.53	0.25	0.40	
Control Delay	67.4	27.3	20.4	48.1	10.4	36.0	46.5	8.3	45.0	46.6	12.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	67.4	27.3	20.4	48.1	10.4	36.0	46.5	8.3	45.0	46.6	12.5	
Queue Length 50th (m)	26.5	100.1	17.6	267.3	13.9	20.3	31.7	0.0	58.4	33.3	10.6	
Queue Length 95th (m)	#62.0	114.7	28.1	#306.5	29.4	34.6	50.6	15.8	83.7	52.9	35.0	
Internal Link Dist (m)		97.9		281.6			369.2			219.0		
Turn Bay Length (m)	35.0		60.0					30.0	90.0		35.0	
Base Capacity (vph)	170	2506	273	1768	819	427	508	501	445	518	566	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.77	0.50	0.47	0.93	0.22	0.21	0.24	0.21	0.53	0.25	0.40	

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 5: Heart Lake Road & Sandalwood Parkway

Base Year PM Peak Hour

Page 8

	•	-	•	•	•	•	\wedge	†	<i>/</i> *	\	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ļ	111		j	111	7	j	- 1	7	ļ	- 1	7
Traffic Volume (vph)	131	1170	81	127	1644	181	90	121	105	237	127	224
Future Volume (vph)	131	1170	81	127	1644	181	90	121	105	237	127	224
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	5011		1785	3570	1550	1715	1842	1542	1764	1879	1576
Flt Permitted	0.05	1.00		0.16	1.00	1.00	0.65	1.00	1.00	0.66	1.00	1.00
Satd. Flow (perm)	93	5011		293	3570	1550	1171	1842	1542	1223	1879	1576
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	131	1170	81	127	1644	181	90	121	105	237	127	224
RTOR Reduction (vph)	0	5	0	0	0	51	0	0	76	0	0	132
Lane Group Flow (vph)	131	1246	0	127	1644	130	90	121	29	237	127	92
Confl. Peds. (#/hr)	4		3	3		4	1		3	3		1
Heavy Vehicles (%)	1%	1%	5%	0%	0%	0%	4%	2%	2%	1%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2	_		6	U	6	4		4	8	U	8
Actuated Green, G (s)	90.2	79.7		88.8	79.0	79.0	51.0	44.0	44.0	51.0	44.0	44.0
Effective Green, g (s)	90.2	79.7		88.8	79.0	79.0	51.0	44.0	44.0	51.0	44.0	44.0
Actuated g/C Ratio	0.57	0.50		0.56	0.50	0.50	0.32	0.28	0.28	0.32	0.28	0.28
Clearance Time (s)	3.0	6.0		3.0	6.0	6.0	3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	162	2503		254	1768	767	398	508	425	414	518	434
v/s Ratio Prot	c0.05	0.25		0.03	c0.46	101	0.01	0.07	423	c0.03	0.07	404
v/s Ratio Perm	0.40	0.23		0.05	CU.40	0.08	0.06	0.07	0.02	c0.03	0.07	0.06
v/c Ratio	0.40	0.50		0.50	0.93	0.00	0.00	0.24	0.02	0.57	0.25	0.00
Uniform Delay, d1	45.2	26.6		18.8	37.7	22.2	39.0	44.8	42.6	44.2	44.9	44.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	24.8	0.7		1.5	10.2	0.5	0.3	1.00	0.3	1.00	1.00	1.00
Delay (s)	70.0	27.3		20.4	47.9	22.6	39.2	45.9	42.9	46.2	46.0	45.5
Level of Service	70.0 E	27.5 C		20.4 C	41.3 D	22.0 C	39.2 D	45.5 D	42.9 D	40.2 D	40.0 D	43.3 D
Approach Delay (s)		31.3		C	43.7	U	U	43.0	U	U	45.9	D
Approach LOS		31.3 C			43.7 D			43.0 D			45.9 D	
Intersection Summary												
HCM 2000 Control Delay			39.9	Н	CM 2000	I evel of	Service		D			
HCM 2000 Volume to Cap	acity ratio		0.79	- ''	O141 2000	L0 V G I O I	COLAIOG		J			
Actuated Cycle Length (s)	adity ratio		159.5	Q	um of lost	time (s)			19.0			
Intersection Capacity Utiliz	ation		119.2%		U Level		٥		13.0 H			
Analysis Period (min)	uuon		15.276	- 10	C LOVEI (JI OCI VICE			- 11			
c Critical Lane Group												

Synchro 10 Report Page 7

Synchro 10 Report Paradigm Transportation Solutions Limited

Appendix C

Detailed Collision Summary

# Collisions		Loca	ition										Road Surfa	ce Condition		
	Road 1	Location	Road 2	Year Da	ate	Time	V1	V2	Description	Classification of Accident	Environment	First Event	Rd Surface Road 1	Rd Surface Road 2	Traffic Control Condition	Notes
	Countryside Drive at H	Heart Lake Re	oad													
5.2	Countryside Drive	at	Heart Lake Road	2015	2015-02-08	11:55 Car		Car	Turning Movement	Property Damage Only	Snow	Other motor vehicle	Packed Snow	Packed Snow	Stop Sign	Driver 1 failed to yield ROW
	Countryside Drive	at	Heart Lake Road	2015	2015-07-18	18:12 Car		Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 improper passing
	Countryside Drive	at	Heart Lake Road	2016	2016-02-03	4:45 Car			SMV Other	Property Damage Only	Rain	Ditch			Stop Sign	Driver 1 disobeyed traffic control
	Countryside Drive	at	Heart Lake Road	2016	2016-04-03	20:10 Car			SMV Other	Property Damage Only	Snow	Skidding/Sliding		Ice		Driver 1 speeding
	Countryside Drive	at	Heart Lake Road	2016	2016-05-21	20:10 Car		Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 following too closely
	Countryside Drive	at	Heart Lake Road	2016	2016-07-11	16:59 Car		Pick-up truck	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 struck a stopped Driver 2
	Countryside Drive	at	Heart Lake Road	2016	2016-09-04	7:29 Car			SMV Other	Property Damage Only	Clear	Tree, shrub, stump	Dry	Dry	Stop Sign	Stolen vehicle
	Countryside Drive	at	Heart Lake Road	2016	2016-09-06			Pick-up truck	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry		Driver 1 failed to yield ROW
	Countryside Drive	at	Heart Lake Road	2017	2017-01-21	22:10 Car			SMV Other	Property Damage Only	Fog, mist, smoke, dust	Tree, shrub, stump	Dry		Stop Sign	Driver 1 disobeyed traffic control
	Countryside Drive	at	Heart Lake Road	2017	2017-02-06	23:26 Car			SMV Other	Property Damage Only	Clear	Tree, shrub, stump	Dry		Stop Sign	Driver 1 lost control
	Countryside Drive	at	Heart Lake Road	2017	2017-02-12	6:13 Car			SMV Other	Property Damage Only	Snow	Tree, shrub, stump	Packed Snow	Packed Snow	Stop Sign	Driver 1 lost control
	Countryside Drive	at	Heart Lake Road	2017	2017-05-20	17:30 Car		Car	Angle	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	
	Countryside Drive	at	Heart Lake Road	2017	2017-06-21	18:35 Car		Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 following too closely
	Countryside Drive	at	Heart Lake Road	2017	2017-09-21	17:30 Car		Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 following too closely
	Countryside Drive	at	Heart Lake Road	2017	2017-12-18	8:15 Car		Car	Angle	Property Damage Only	Clear	Other motor vehicle	Wet	Wet	Stop Sign	Driver 2 failed to yield ROW
	Countryside Drive	at	Heart Lake Road	2018	2018-04-27	21:59 Car			SMV Other	Property Damage Only	Rain	Pole	Wet	Wet	Stop Sign	Driver 1 lost control
	Countryside Drive	at	Heart Lake Road	2018	2018-06-14	14:27 Car		Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 following too closely
	Countryside Drive	at	Heart Lake Road	2018	2018-06-19	18:30 Truck	c - closed	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 following too closely
	Countryside Drive	at	Heart Lake Road	2018	2018-09-27	15:15 Car		Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Stop Sign	Driver 1 struck a stopped Driver 2
	Countryside Drive	at	Heart Lake Road	2018	2018-09-30	19:50 Pick-	up truck		SMV Other	Property Damage Only	Rain	Tree, shrub, stump	Wet		Stop Sign	Driver 1 lost control
	Countryside Drive	at	Heart Lake Road	2018	2018-12-02	8:13 Car		Car	Angle	Property Damage Only	Rain	Other motor vehicle	Wet	Wet	Stop Sign	Driver 1 improper lane change
	Countryside Drive	at	Heart Lake Road	2019	2019-01-08	15:49 Car		Car	Angle	Property Damage Only	Clear	Other motor vehicle	Wet	Wet	Stop Sign	Driver 1 improper turn
	Countryside Drive	at	Heart Lake Road	2019	2019-01-23	7:50 Scho	ol bus	Car	Angle	Property Damage Only	Snow	Other motor vehicle	Loose Snow	Loose Snow		Driver 1 lost control
	Countryside Drive	at	Heart Lake Road	2019	2019-02-09	22:29 Car			SMV Other	Property Damage Only	Clear	Animal	Dry	Dry	Stop Sign	
	Countryside Drive	at	Heart Lake Road	2019	2019-04-07	18:25 Car			SMV Other	Property Damage Only	Clear	Animal	Dry	Dry	Stop Sign	
	Countryside Drive	at	Heart Lake Road	2019	2019-04-15	18:00 Car		Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry		Driver 1 struck a slowing Driver 2

¹⁰ SMV other collisions and 7 rear end (5 angle & 4 turning movement - expected more of both for this intersection) 5 collisions lost control and 5 were following to close 2 collisions with animals - both were with deer and both occurred in 2019 1 collision notes a vehicle being unable to stop at a red light in Jan. 2019

Avg#	Collisions	
------	------------	--

ions		Local	ion									Road Surfa	ce Condition		1
HUIIS	Road 1	Location	Road 2	Year	Date	Time V1	V2	Description	Classification of Accident	Environment	First Event	Rd Surface Road 1	Rd Surface Road	2 Traffic Control Condition	Notes
22 -	Heart Lake Road at Heart Lake Road	Sandalwood Par	kway Sandalwood Parkway	2015	2015-01-0	1 11:20 Car		SMV Other	Property Damage Only	Clear	Tree, shrub, stump	Wet	Wet	Traffic Signal	Driver 1 lost control due to road conditions
22.5	Heart Lake Road	at	Sandalwood Parkway	2015	2015-01-03	3 13:00 Car	Car	Rear end	Property Damage Only	Snow	Other motor vehicle	Loose Snow	Loose Snow	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2015	2015-01-06		Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2015 2015		5 19:29 Car 5 9:10 Car	Car	Rear end Sideswipe	Non-fatal Injury Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry	Traffic Signal Traffic Signal	Driver 1 lost control
	Heart Lake Road	at at	Sandalwood Parkway	2015	2015-02-16	6 16:07 Pick-up truck	Car Car	Rear end	Property Damage Only Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2015		3 8:00 Delivery van	Car	Turning Movement	Non-fatal Injury	Clear	Other motor vehicle	Drý	Drý	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2015 2015		7 18:28 Car 5 13:47 Car	Car	Turning Movement Rear end	Property Damage Only Non-fatal Injury	Other	Other motor vehicle	Wet Dry	Wet	Traffic Signal Traffic Signal	Driver 1 failed to yield ROW Driver 1 lost control
	Heart Lake Road	at at	Sandalwood Parkway	2015		7 14:39 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2015	2015-05-20	0 10:02 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2015	2015-05-21	1 15:10 Car	Passenger van	Rear end	Non-fatal Injury	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2015 2015		2 19:43 Car 3 19:50 Car	Car	SMV Other Rear end	Property Damage Only Non-fatal Injury	Rain Clear	Pole (utility, power) Other motor vehicle	Wet Dry	Wet Dry	Traffic Signal Traffic Signal	Driver 1 lost control Driver 1 following too close
	Heart Lake Road	at at	Sandalwood Parkway	2015		3 20:20 Car	Car	Sideswipe	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 initiowing too close Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2015		5 22:33 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2015		8 12:43 Car	Pick-up truck	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at	Sandalwood Parkway Sandalwood Parkway	2015 2015	2015-08-21	1 8:26 Car 3 11:00 Truck-other	Car Pick-up truck	Rear end Other	Property Damage Only Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry	Traffic Signal Traffic Signal	Driver 1 following too close Driver 1 lost control
	Heart Lake Road	at	Sandalwood Parkway	2015	2015-10-14	4 13:34 Passenger van	Car	Angle	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2015	2015-10-31	1 0:30 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Drý	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at	Sandalwood Parkway Sandalwood Parkway	2015 2015		3 21:10 Car 8 20:30 Car	Car Car	Rear end Turning Movement	Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry	Traffic Signal Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2015		5 12:09 Car	Pick-up truck	Turning Movement	Property Damage Only Non-fatal Injury	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2015	2015-12-07	7 17:45 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 disobeyed traffic control
	Heart Lake Road	at	Sandalwood Parkway	2015		5 19:22 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway Sandalwood Parkway	2015	2015-12-16	5 20:15 Delivery van 8 17:30 Car	Pick-up truck	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry Wet	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2015 2016		8 17:30 Car 8 21:54 Car	Pick-up truck	Rear end Angle	Property Damage Only Property Damage Only	Snow	Other motor vehicle	Wet	Wet	Traffic Signal Traffic Signal	Driver 1 lost control Driver 2 disobeved traffic control
	Heart Lake Road	at	Sandalwood Parkway	2016	2016-01-16	5 13:11 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2016	2016-01-29	9 15:30 Car	Pick-up truck	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	
	Heart Lake Road	at	Sandalwood Parkway	2016		7 20:00 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2016 2016		5 16:51 Car 9:45 Delivery van	Car	Angle Rear end	Non-fatal Injury Property Damage Only	Snow Clear	Other motor vehicle Other motor vehicle	Slush Wet	Slush Wet	Traffic Signal Traffic Signal	Driver 1 disobeyed traffic control Driver 1 failed to yield ROW
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2016 2016		9:45 Delivery van 9:6:16 Car	Car	Turning Movement	Property Damage Only Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver i railed to yield ROW
	Heart Lake Road	at	Sandalwood Parkway	2016	2016-03-22	2 19:00 Car	Car Car	Turning Movement	Property Damage Only	Rain	Other motor vehicle	Wet	Dry Wet	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2016	2016-04-08	3 22:45 Car	Car Car	Other	Property Damage Only	Clear	Ran off road	Dry	Dry Dry	Traffic Signal	Driver 1 improper lane change
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2016 2016	2016-06-17	7 20:15 Car 8 8:08 Bicycle	Car	Rear end Turning Movement	Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry	Dry	Traffic Signal Traffic Signal	Driver 1 following too close Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway	2016 2016	2016-07-04	4 18:36 Car	Car	Turning Movement Rear end	Property Damage Only Property Damage Only	Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2016	2016-08-14	4 17:00 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2016		5 19:10 Car	Car	Angle	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 failed to yield ROW
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2016 2016		5 7:57 Car 3 16:25 Car	Pick-up truck	Rear end Rear end	Property Damage Only Non-fatal Injury	Rain Clear	Other motor vehicle	Wet Dry	Wet	Traffic Signal Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2016	2016-09-22	2 23:40 Car	Car	Turning Movement	Non-fatal Injury	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2016		5 16:14 Car		SMV Other	Property Damage Only	Rain	Ditch	Wet	Wet	Traffic Signal	Driver 1 lost control
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2016	2016-09-29	9 19:00 Car 5 6:53 Car	Car	Rear end	Property Damage Only	Clear Rain	Other motor vehicle Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2016 2016		5 14:02 Car	Car Car	Turning Movement Turning Movement	Non-fatal Injury Property Damage Only	Clear	Other motor vehicle	Dry	Wet Dry	Traffic Signal Traffic Signal	Driver 1 improper turn Driver 1 failed to vield ROW
	Heart Lake Road	at	Sandalwood Parkway	2017	2017-01-15	5 16:05 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2017		5 19:01 Car	Car	Turning Movement	Non-fatal Injury	Clear	Other motor vehicle	Drý	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2017 2017		8 15:40 Car 2 6:55 Car	Car	Rear end Turning Movement	Property Damage Only Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry	Traffic Signal Traffic Signal	Driver 1 following too close Driver 1 failed to yield ROW
	Heart Lake Road	at at	Sandalwood Parkway	2017	2017-02-02	2 6:55 Car 3 17:07 Car	Car	Turning Movement	Property Damage Only Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry Dry	Traffic Signal	Driver 1 lailed to yield ROW Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2017	2017-04-23	3 22:37 Car	Car Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2017		8 16:00 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at	Sandalwood Parkway Sandalwood Parkway	2017 2017		9 22:50 Car 3 14:40 Car	Car	Turning Movement Rear end	Property Damage Only Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry Dry	Traffic Signal Traffic Signal	Driver 2 improper turn Driver 1 following too close
	Heart Lake Road	at at	Sandalwood Parkway	2017		3 14:40 Car 3 15:12 Car	Car	Rear end	Non-reportable	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 following too close Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2017	2017-07-09	9 15:39 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2017		1 12:20 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry Wet	Dry Wet	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2017 2017	2017-08-11	1 20:37 Car 1 9:43 Car	Car	Turning Movement Sideswipe	Property Damage Only Non-fatal Injury	Rain Clear	Other motor vehicle Other motor vehicle	Wet Dry	Wet Dry	Traffic Signal Traffic Signal	Driver 1 improper turn Driver 1 improper lane change
	Heart Lake Road	at	Sandalwood Parkway	2017		4 22:49 Car	Car	Approaching	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2017		11:55 Car	Car	Angle	Property Damage Only	Clear	Other motor vehicle	Drý	Dry	Traffic Signal	Driver 1 disobeyed traffic control
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2017 2017	2017-10-03	 7:50 Truck - car carr 8:35 Car 	ie Passenger van Car	Turning Movement Sideswipe	Property Damage Only Property Damage Only	Clear Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry	Traffic Signal Traffic Signal	Driver 1 failed to yield ROW Driver 1 improper lane change
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2017		7 8:35 Car 1 9:11 Car	Car	Turning Movement	Property Damage Only Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal Traffic Signal	Driver 1 improper lane change Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018		1 10:02 Car	Car	Approaching	Property Damage Only	Snow	Other motor vehicle	Loose Snow	Loose Snow	Traffic Signal	Driver 1 lost control
	Heart Lake Road	at	Sandalwood Parkway	2018	2018-02-12	2 14:37 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018 2018		5 18:22 Car 2 8:00 Car	Car	Turning Movement Turning Movement	Property Damage Only Property Damage Only	Clear Rain	Other motor vehicle Other motor vehicle	Dry Wet	Drý Wet	Traffic Signal Traffic Signal	Driver 1 improper turn Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018 2018	2018-06-11	1 19:00 Car	Car Car	Turning Movement Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018	2018-06-13	3 16:00 Car	Car Car	Angle	Property Damage Only	Clear Clear	Other motor vehicle	Drý	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway	2018 2018	2018-07-12	2 18:00 Delivery van 8 5:40 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Drý Wet	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018 2018		8 5:40 Car 5 13:30 Car	Car	Turning Movement Approaching	Non-fatal Injury Non-fatal Injury	Rain Clear	Other motor vehicle Other motor vehicle	Wet Dry	Wet Dry	Traffic Signal Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018		1 6:45 Car	Car	Turning Movement	Property Damage Only	Rain	Other motor vehicle	Wet	Wet	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018	2018-08-24	4 10:58 Car	Car Car Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018		5 18:02 Car 1 5:30 Car	Car	Turning Movement Rear end	Property Damage Only Property Damage Only	Clear	Other motor vehicle	Dry Dry	Dry	Traffic Signal Traffic Signal	Driver 1 improper turn Driver 1 following too close
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018 2018		1 5:30 Car 2 20:40 Car	Car Car	Rear end Turning Movement	Property Damage Only Non-fatal Injury	Clear	Other motor vehicle Other motor vehicle	Dry Dry	Dry Dry	Traffic Signal Traffic Signal	Driver 1 following too close Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018	2018-09-25	5 8:00 Car	Car	Turning Movement	Property Damage Only	Rain	Other motor vehicle	Wet	Wet	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018		9 10:47 Car	Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018 2018	2018-10-27	7 8:45 Car 1 4:30 Car	Car	Turning Movement Rear end	Property Damage Only Property Damage Only	Rain Clear	Other motor vehicle Other motor vehicle	Wet Dry	Wet Dry	Traffic Signal Traffic Signal	Driver 1 improper turn Driver 1 following too close
	Heart Lake Road	at at	Sandalwood Parkway	2018	2018-11-09	9 1:46 Car	Delivery van	Sideswipe	Property Damage Only Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 indiowing too close Driver 1 improper lane change
	Heart Lake Road	at	Sandalwood Parkway	2018	2018-11-28		Car	Angle	Non-fatal Injury	Snow	Other motor vehicle	Loose Snow	Dry Mud	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018		7 15:00 Car	Car Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Dry	Dry	Traffic Signal	Driver 1 improper turn
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018 2018		1 17:30 Car 4 7:52 Car	Car Car	Turning Movement Turning Movement	Property Damage Only Property Damage Only	Rain Rain	Other motor vehicle Other motor vehicle	Wet Wet	Wet Wet	Traffic Signal Traffic Signal	Driver 2 failed to yield ROW Driver 1 failed to yield ROW
	Heart Lake Road	at at	Sandalwood Parkway	2018	2018-12-21	1 6:50 Car	Car	Turning Movement	Property Damage Only	Rain	Other motor vehicle	Wet	Wet	Traffic Signal	Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2018	2018-12-23	3 21:35 Car		SMV Other	Property Damage Only	Fog, mist, smoke, dust	Pole (utility, power)	Wet	Wet	Traffic Signal	Driver 1 lost control
	Heart Lake Road	at	Sandalwood Parkway	2018 2018		3 22:30 Car 1 13:28 Car	Pick-up truck	Rear end	Property Damage Only	Rain	Other motor vehicle	Wet	Wet	Traffic Signal Traffic Signal	Driver 1 speeding
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2018 2019		1 13:28 Car 9 13:30 Car	Pick-up truck	Turning Movement SMV Other	Property Damage Only Property Damage Only	Rain	Other motor vehicle Pole (utility, power)	Wet Loose Snow	Wet Loose Snow	Traffic Signal Traffic Signal	Driver 1 lost control
	Heart Lake Road	at	Sandalwood Parkway	2019	2019-01-20	15:00 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Loose Snow	Dry	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2019	2019-01-20	17:20 Car	Car	Angle	Property Damage Only	Clear	Other motor vehicle	Loose Snow	Loose Snow	Traffic Signal	Driver 1 disobeyed traffic control
	Heart Lake Road	at	Sandalwood Parkway	2019	2019-01-25	5 17:35 Car 1 12:45 Pick-up truck	Car	Turning Movement	Property Damage Only	Snow Clear	Other motor vehicle	Loose Snow	Loose Snow	Traffic Signal Traffic Signal	Driver 1 lost control
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2019 2019	2019-01-31	1 12:45 Pick-up truck 1 18:40 Car	car	Rear end SMV Other	Property Damage Only Property Damage Only	Clear Snow	Other motor vehicle Curb	Dry Ice	Dry Ice	Traffic Signal Traffic Signal	Driver 1 following too close Driver 1 lost control
	Heart Lake Road	at	Sandalwood Parkway Sandalwood Parkway	2019		1 19:30 Car	Pick-up truck	Rear end	Property Damage Only Property Damage Only	Drifting Snow	Other motor vehicle	loe	Loose Snow	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2019	2019-02-02	2 19:00 Car	Car	Rear end	Property Damage Only	Clear	Other motor vehicle	Wet	Wet	Traffic Signal	Driver 1 following too close
	Heart Lake Road	at	Sandalwood Parkway	2019	2019-02-06		Car	Turning Movement	Property Damage Only	Drifting Snow	Other motor vehicle	Loose Snow	Loose Snow	Traffic Signal	Driver 1 disobeyed traffic control
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2019 2019	2019-02-13	3 17:00 Car 7 3:00 Car		SMV Other SMV Other	Property Damage Only Property Damage Only	Clear	Pole (utility, power) Snowbank/drift	Loose Snow	Loose Snow	Traffic Signal Traffic Signal	Driver 1 improper turn Driver 1 lost control due to road conditions
	Heart Lake Road Heart Lake Road	at at	Sandalwood Parkway Sandalwood Parkway	2019 2019		7 3:00 Car 3 19:22 Car	Car	SMV Other Turning Movement	Property Damage Only Non-fatal Injury	Clear	Snowbank/drift Other motor vehicle	Ice Dry	Ice Dry	Traffic Signal Traffic Signal	Driver 1 lost control due to road conditions Driver 1 improper turn
	Heart Lake Road	at	Sandalwood Parkway	2019	2019-02-27	7 19:30 Car	Car	Turning Movement	Property Damage Only	Snow	Other motor vehicle	Loose Snow	Loose Snow	Traffic Signal	Driver 1 Improper turn Driver 1 failed to yield ROW
			Sandalwood Parkway	2019		8 9:00 Car	Car	Sideswipe	Property Damage Only	Rain	Other motor vehicle	Wet	Wet	Traffic Signal	•
	Heart Lake Road	at													
		at at	Sandalwood Parkway Sandalwood Parkway	2019 2019 2019	2019-04-10	3 13:11 Car 9 21:20 Pick-up truck	Car	Rear end Turning Movement	Property Damage Only Non-fatal Injury	Clear	Other motor vehicle Other motor vehicle	Dry	Dry Wet	Traffic Signal Traffic Signal	Driver 1 following too close Driver 1 improper turn

52 turning movement collisions and 33 rear end collisons
45 collisions due to improper turns and 24 collisions due to following too close
39 collisions occur in non-dry conditions (wet, ice, snow, slush)
1 collision with cyclist (#39)

turning movemer	52	46.429%
rear end	33	29.464%
SMV other	7	6.250%
angle	8	7.143%
sideswipe	6	5.357%
approaching	3	2.679%
other	2	1.786%

Avg # Collisions		Loca	ation											Road Surfac			
			Road 2	Year D	Date	Time	V1	V2	Description	Classification of Accident	Environment	First Event	Rd Surface Road 1	Rd Surface Road 2	Traffic Control Condition	Notes	
	Countryside Drive at R	Ross Drive															
0.	4 Countryside Drive	at	Ross Drive		2017	2017-12-29	20:35 Car		Car	Turning Movement	Property Damage Only	Clear	Other motor vehicle	Wet	Wet	NB Stop control	Driver 1 improper turn
	Countryside Drive	at	Ross Drive		2018	2018-01-15	16:20 Car		Car	Angle	Non-fatal injury	Snow	Other motor vehicle	Loose Snow	Loose Snow	NB Stop control	Driver 1 lost control due to road conditions

The 2 events are unrelated: 1 was a driver making an aggressive turn and the other was a driver losing control in the snow.

Avg # Collisions			Locatio	on											ce Condition		Ī
	Ro	ad 1	Location	Road 2	Year D	ate	Time	V1	V2	Description	Classification of Accident	Environment	First Event	Rd Surface Road 1	Rd Surface Road 2	Traffic Control Condition	Notes
	Countryside	Drive betwee	n Ace Drive	/Naperton Drive and Dixie Road													
0.4	Countryside	Drive	west of (Countryside Drive	2015	2015-08-12	20:53	Car		SMV Other	Property Damage Only	Clear	Pole (sign, parking me	Dry		n/a	
	Countryside	Drive	east of A	Ace Drive/Naperton Drive	2017	2017-06-05	5:30 I	ntercity bus		Sideswipe	Non-reportable	Fog, mist, smoke, dust	Other motor vehicle	Wet		n/a	Driver

The 2 events are unrelated: 1 was a driver making an aggressive lane change and the other was a driver blowing two tires.

sions		Locati	on											Road Surface Co	ondition		
	Road 1	Location	Road 2	Year D	Date	Time	V1	V2	Description	Classification of Acci	dent E	nvironment	First Event	Rd Surface Road 1 Rd	Surface Road 2 Traf	fic Control Condition	Notes
Sandaly	wood Parkway be	tween Glov	er Gate/Royal Palm Drive and H	eart Lake	Road												
8.8 Sandaly	wood Parkway	west of	Heart Lake Road	2015	2015-01-25	16:05 Ca	r	Car	Rear end	Property Damage Only	C	lear	Other motor vehicle	Dry	n/a		Driver 1 following too close
Sandaly	wood Parkway	east of	Glover Gate/Royal Palm Drive	2015	2015-02-07	9:50 Ca	r	Car	Rear end	Property Damage Only		now	Other motor vehicle	Loose snow	n/a		Driver 1 lost control
Sandaly	wood Parkway	east of	Glover Gate/Royal Palm Drive	2015	2015-02-24	17:49 Ca	r	Car	Rear end	Property Damage Only		now	Other motor vehicle	Loose snow	n/a		Driver 1 following too close
	wood Parkway	west of	Heart Lake Road	2015	2015-06-12	15:00 Ca	r	Car	Rear end	Property Damage Only		ain	Other motor vehicle		n/a		Driver 1 following too close
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2015-08-20			Car	Angle	Non-fatal injury		lear	Other motor vehicle		n/a		
Sandaly	wood Parkway	east of	Glover Gate/Royal Palm Drive	2015	2015-11-21	20:53 Ca	r	Car	SMV Other	Property Damage Only	R	ain	Tree, shrub, stump	Wet	n/a		Driver 1 lost control due to road condition
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2015-12-22			Car	Sideswipe	Non-fatal injury		ain		Wet	n/a		Driver 1 lost control
	wood Parkway	west of	Heart Lake Road	2016	2016-01-30			Car	Approaching	Property Damage Only	C	lear	Other motor vehicle	Dry	n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2016-02-10				SMV Other	Non-fatal injury		now		Ice	n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive	2016	2016-02-19			Pick-up truck	Sideswipe	Property Damage Only		lear	Other motor vehicle		n/a		Driver 1 improper lane change
	wood Parkway	east of		2016	2016-05-23			Car	Rear end	Property Damage Only		lear	Other motor vehicle		n/a		Driver 1 following too close
	wood Parkway	east of		2016	2016-05-25			Car	Sideswipe	Property Damage Only		lear		Dry	n/a		Driver 1 improper lane change
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2016-06-29			Car	Rear end	Property Damage Only		lear		Dry	n/a		Driver 2 following to close
	wood Parkway	west of	Heart Lake Road	2016	2016-07-31			oui	SMV Other	Non-fatal injury		lear	Curb	Dry	n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2016-08-10			Pick-up truck	Rear end	Property Damage Only		lear		Dry	n/a		Driver 1 following too close
	wood Parkway	east of		2016	2016-10-20			Car	Rear end	Non-fatal injury		ain		Wet	n/a		Driver 1 following too close
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2016-12-08			oui	SMV Other	Property Damage Only		now		Packed snow	n/a		Driver 1 lost control
	wood Parkway	west of	Heart Lake Road	2016	2016-12-11			Car	Sideswipe	Property Damage Only		now	Other motor vehicle		n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2017-01-03			Odi	SMV Other	Property Damage Only		lear		Wet	n/a		Driver 1 speeding
	wood Parkway	west of	Heart Lake Road	2017	2017-05-05			Car	Approaching	Property Damage Only		ain	Other motor vehicle		n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2017-05-03			Odi	SMV Other	Property Damage Only		lear		Wet	n/a		Driver 1 speeding
	wood Parkway	east of	Glover Gate/Royal Palm Drive	2017	2017-03-07				SMV Other	Property Damage Only				Wet	n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive	2017	2017-07-12				SMV Other	Property Damage Only		ain		Wet	n/a		Driver 1 lost control
	wood Parkway	west of	Heart Lake Road	2017	2017-07-27				SMV Other	Non-fatal injury		lear		Wet	n/a		Driver 1 lost control
	wood Parkway	west of	Heart Lake Road	2017	2017-07-27			Car	Sideswipe	Property Damage Only		lear	Other motor vehicle		n/a		Driver 1 failed to yield ROW
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2017-10-23			Car	Approaching	Property Damage Only		ain	Other motor vehicle		n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2017-10-23			Cai	SMV Other	Property Damage Only		ain	Tree, shrub, stump	vvet	n/a		Driver 1 lost control
	wood Parkway	west of	Heart Lake Road	2017	2017-10-23				SMV Other	Property Damage Only		lear		Drv	n/a		Driver 1 struck a deer
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2017-11-28			Car	Sideswipe	Property Damage Only		lear		Dry	n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive	2017	2017-11-28			Car	Rear end	Property Damage Only		lear	Other motor vehicle		n/a		Driver 1 following too close
	wood Parkway	east of	Glover Gate/Royal Palm Drive		2018-01-29			Odi	Approaching	Property Damage Only		now	Other motor vehicle		n/a		Driver 1 lost control
	wood Parkway	west of	Heart Lake Road	2018	2018-02-02		de un trunk		SMV Other	Property Damage Only		lear	Pole (sign, parking m		n/a		Driver 1 lost control
	wood Parkway	east of		2018	2018-02-02			Car	Approaching	Property Damage Only		lear	Other motor vehicle		n/a		Driver 1 lost control
	wood Parkway	east of	Glover Gate/Royal Palm Drive	2018	2018-02-11			Car	Sideswipe	Property Damage Only Property Damage Only		lear	Other motor vehicle		n/a n/a		Driver 1 iost control Driver 1 improper lane change
		east of	Glover Gate/Royal Palm Drive	2018	2019-04-03			Car				ain		Wet	n/a		
	wood Parkway wood Parkway	east of			2018-07-22			Car	Sideswipe Rear end	Non-fatal injury Property Damage Only		ain lear		Dry	n/a n/a		Driver 1 speeding Driver 1 improper lane change
	wood Parkway	west of	Heart Lake Road	2018	2018-07-22			Car	Rear end	Property Damage Only Property Damage Only		lear		Dry	n/a n/a		Driver 1 improper lane change Driver 1 following too close
	wood Parkway		Heart Lake Road	2018	2018-11-11			Car	Sideswipe			lear	Other motor vehicle		n/a		Driver 1 improper lane change
	wood Parkway	west of	Heart Lake Road	2018	2018-11-11			Car	Rear end	Property Damage Only Property Damage Only		ain		Wet	n/a		Driver 1 improper lane change Driver 1 following too close
								Car	Rear end			ain ain		Wet	n/a n/a		
	wood Parkway wood Parkway	east of east of	Glover Gate/Royal Palm Drive Glover Gate/Royal Palm Drive	2018 2018	2018-11-09 2018-12-15			Car	SMV Other	Property Damage Only		ain now	Other motor vehicle Curb	Slush	n/a n/a		Driver 1 following too close Driver 1 lost control
			Glover Gate/Royal Palm Drive		2018-12-15			Car		Property Damage Only							
	wood Parkway	east of							Rear end	Property Damage Only		lear		Ice	n/a		Driver 1 lost control due to road condition
	wood Parkway	east of			2019-03-31			Tow truck	Rear end	Property Damage Only		now		Loose snow	n/a		Driver 1 following too close
Sandalv	wood Parkway	east of	Glover Gate/Royal Palm Drive	2019	2019-05-11	20:00 Ca	r	Car	Rear end	Property Damage Only	R	ain	Other motor vehicle	vvet	n/a		Driver 1 following too close
			e., wet, ice, slush, snow, etc.)					rear end			1.091%						
20 drive	ers lost control in	the collision						SMV other			9.545%						
16 rear	end collisions							sideswipe		9 20	.455%						
13 case	s of following too	close						approaching		5 11	.364%						
	•							angle		1 2	2.273%						
								turning movem	er		0.000%						
								other	•		0.000%						

Appendix D

Growth Calculations

5A-150 Pinebush Road Cambridge ON N1R 8J8 p: 519.896.3163 905.381.2229 416.479.9684

www.ptsl.com

19 January 2021 Project: 200333

Ghaz Mohammad, M.Eng., P.Eng., PMP Project Engineer, Infrastructure Planning Public Works & Engineering City of Brampton

Dear Mr. Mohammad:

RE: TRAFFIC GROWTH PROJECTIONS MEMORANDUM

ENVIRONMENTAL ASSESSMENT STUDY FOR HEART LAKE ROAD AND

COUNTRYSIDE DRIVE INTERSECTION, CITY OF BRAMPTON

Introduction and Purpose

The purpose of this memorandum is to provide the approach to forecast intersection turning movement volumes for horizon years 2031 and 2041 for the study area intersections assessed as part of the Environmental Assessment for the Heart Lake Road and Countryside Drive intersection. The methodology is based on provided EMME modelling outputs and traffic count data provided by City staff.

The City provided EMME model plots for the 2011 (base year), and 2031 and 2041 (future year) horizons which captured all roadway sections including the subject study area segments and adjacent roadways. Specifically, model output plots of link volumes, roadway capacity, number of lanes, and speed were provided for the AM and PM peak hours.

The provided EMME model output plots have been utilized to determine applicable growth rates to generate future traffic volume forecasts. This document summarizes the growth rates derived.

Methodology

Traffic growth rates for each planning horizon for the study area intersections have been developed from the EMME model output link volumes. For this analysis, the land use and population and employment assumptions of the current traffic model are deemed to be representative of the planned growth in the study area and the city at large. The growth rates will be applied to the base year traffic volumes derived to develop the future traffic forecasts.

Analysis and Findings

Applicable roadway link volumes for the AM and PM peak hours were assessed. The 2011, 2031, and 2041 volumes were used to calculate the per annum growth rates. The data was analyzed on an individual road-by-road basis, as well examining the overall growth for all study area roadway links.

Table 1 summarizes the calculated annual compounded growth rates, sorted by overall study area as well as on a roadway-by-roadway basis. It should be noted that although the ADT volumes are broken down by direction in the EMME model plots, the two-way volumes (i.e., total volume on each segment) are the values summarized in the table.

Analysis worksheets are attached for reference.

TABLE 1: CALCULATED GROWTH RATES

		Percentage Gro	wth Per Annu	m
Road	2011	– 2031	2031	– 2041
	AM	PM	AM	PM
Countryside Drive	4.3%	5.4%	-0.4%	-0.7%
Heart Lake Road	3.3%	5.5%	1.0%	1.1%
Highway 410 Off-Ramp	22.2%	11.5%	9.3%	5.8%
Mayfield Road	1.1%	1.8%	0.5%	0.7%
Sandalwood Parkway	2.9%	2.8%	0.7%	0.2%
Dixie Road	4.4%	4.7%	2.0%	2.0%
Overall Study Area	2.9%	4.0%	0.6%	0.6%

The calculated annual growth rates indicate significant growth is expected to occur along the study area roadways up to the 2031 horizon. In reviewing link volumes between 2031 and 2041 it is noted that growth reaches a plateau, as is typical. High growth cannot be sustained for such long periods, and it was determined growth occurring between 2031 and 2041 follows a lower rate. For the overall study area roadways, a 0.6% per annum growth rate was calculated between 2031 and 2041. City staff have confirmed that the corridor growth rates calculated between 2011 – 2031 are reflective of the proposed developments situated on the east side of Heart Lake Road, north and south of Countryside Drive.

To develop the 2031 traffic forecasts, the calculated corridor growth rates will be applied to the derived base year traffic volumes.

To develop the 2041 traffic forecasts, the calculated corridor growth rates will be applied to the derived 2031 traffic volumes. For any calculated negative growth rates, a conservative approach will be taken (i.e., errs on the high side) where zero growth will be considered.

The average of AM and PM corridor growth rates will be applied for uniformity.

Yours very truly,

PARADIGM TRANSPORTATION SOLUTIONS LIMITED

Adrian Soo

P.Eng. Senior Project Manager

Heart Lake Road EA Study Traffic Analysis Project:

Project #: Task: 200333

Growth Rate Calculations

	Roadway Section						AM Peak H	our			
	Roadway Section		20	11 Model C	utput	203	31 Model C	utput	20	41 Model O	utput
Roadway	То	From	NB/EB	SB/WB	Two-Way	NB/EB	SB/WB	Two-Way	NB/EB	SB/WB	Two-Way
Heart Lake Road	Mayfield Road	Highway 410	41	571	612	364	789	1153	801	686	1487
Heart Lake Road	Mid-Block	Countryside Drive	13	388	401	65	764	829	133	859	992
Heart Lake Road	Countryside Drive	Mid-Block	16	388	404	246	663	909	298	683	981
Heart Lake Road	Mid-Block	Countryside Drive	185	440	625	605	712	1317	628	627	1255
Heart Lake Road	Highway 410	Mid-Block	186	439	625	609	800	1409	611	895	1506
Heart Lake Road	Sandalwood Parkway	Highway 410	186	441	627	609	910	1519	611	1166	1777
Heart Lake Road	Mid-Block	Sandalwood Parkway	722	603	1325	808	869	1677	794	895	1689
Mayfield Road	Mid-Block	Heart Lake Road	1443	475	1918	1868	613	2481	1960	801	2761
Mayfield Road	Highway 410	Heart Lake Road	1545	422	1967	1689	708	2397	1337	1019	2356
Countryside Drive	Highway 410	Heart Lake Road	367	250	617	1013	708	1721	1006	629	1635
Countryside Drive	Dixie Road	Highway 410	360	244	604	931	668	1599	928	582	1510
Countryside Drive	Fernforest Drive	Dixie Road	650	381	1031	1019	916	1935	974	935	1909
Highway 410	Heart Lake Road	Off-Ramp		2	2		111	111		271	271
Sandalwood Parkway	Heart Lake Road	Mid-Block	1486	391	1877	2427	873	3300	2457	1069	3526
			7200	5435	12635	12253	10104	22357	12538	11117	23655

GR (2031 - 2011)

GR (2041 - 2011) 2.1%

GR (2041 - 2031) 0.6%

·	Roadway Section	·					PM Peak H	our			
	Roadway Section		20	11 Model C	Output	203	31 Model C	utput	20	41 Model C	utput
Roadway	То	From	NB/EB	SB/WB	Two-Way	NB/EB	SB/WB	Two-Way	NB/EB	SB/WB	Two-Way
Heart Lake Road	Mayfield Road	Highway 410	326	130	456	774	583	1357	832	953	1785
Heart Lake Road	Mid-Block	Countryside Drive	143	62	205	712	386	1098	788	374	1162
Heart Lake Road	Countryside Drive	Mid-Block	149	70	219	664	546	1210	702	515	1217
Heart Lake Road	Mid-Block	Countryside Drive	176	249	425	615	740	1355	649	764	1413
Heart Lake Road	Highway 410	Mid-Block	182	252	434	705	762	1467	865	758	1623
Heart Lake Road	Sandalwood Parkway	Highway 410	182	265	447	705	886	1591	865	975	1840
Heart Lake Road	Mid-Block	Sandalwood Parkway	491	705	1196	995	823	1818	1085	892	1977
Mayfield Road	Mid-Block	Heart Lake Road	652	1254	1906	1031	1897	2928	1200	1893	3093
Mayfield Road	Highway 410	Heart Lake Road	571	1288	1859	882	1614	2496	1289	1446	2735
Countryside Drive	Highway 410	Heart Lake Road	113	271	384	782	1032	1814	653	973	1626
Countryside Drive	Dixie Road	Highway 410	89	248	337	647	799	1446	494	745	1239
Countryside Drive	Fernforest Drive	Dixie Road	432	648	1080	904	1014	1918	982	1004	1986
Highway 410	Heart Lake Road	Off-Ramp		14	14		124	124		218	218
Sandalwood Parkway	Heart Lake Road	Mid-Block	814	1453	2267	1534	2378	3912	1609	2396	4005
•											
			4320	6909	11229	10950	13584	24534	12013	13906	25919

GR (2031 - 2011)

4.0%

2.9%

GR (2041 - 2011)

2.8%

GR (2041 - 2031)

0.6%

Project #: 200333

Task: Growth Rate Calculations

	Roadway Section						AM Peak F	lour			
	Roduway Section		20	11 Model (Output	20	31 Model (Dutput	20	41 Model (Dutput
	То	From	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Heart Lake Road	Mayfield Road	Highway 410	41	571	612	364	789	1153	801	686	1487
Heart Lake Road	Mid-Block	Countryside Drive	13	388	401	65	764	829	133	859	992
Heart Lake Road	Countryside Drive	Mid-Block	16	388	404	246	663	909	298	683	981
Heart Lake Road	Mid-Block	Countryside Drive	185	440	625	605	712	1317	628	627	1255
Heart Lake Road	Highway 410	Mid-Block	186	439	625	609	800	1409	611	895	1506
Heart Lake Road	Sandalwood Parkway	Highway 410	186	441	627	609	910	1519	611	1166	1777
Heart Lake Road	Mid-Block	Sandalwood Parkway	722	603	1325	808	869	1677	794	895	1689
			1349	3270	4619	3306	5507	8813	3876	5811	9687

GR (2031 - 2011)

3.3%

GR (2041 - 2011)

2.5%

GR (2041 - 2031)

1.0%

	Roadway Section						PM Peak H	lour			
	Roduway Section		20	11 Model (Output	20:	31 Model (Output	204	11 Model (Jutput
	То	From	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Heart Lake Road	Mayfield Road	Highway 410	326	130	456	774	583	1357	832	953	1785
Heart Lake Road	Mid-Block	Countryside Drive	143	62	205	712	386	1098	788	374	1162
Heart Lake Road	Countryside Drive	Mid-Block	149	70	219	664	546	1210	702	515	1217
Heart Lake Road	Mid-Block	Countryside Drive	176	249	425	615	740	1355	649	764	1413
Heart Lake Road	Highway 410	Mid-Block	182	252	434	705	762	1467	865	758	1623
Heart Lake Road	Sandalwood Parkway	Highway 410	182	265	447	705	886	1591	865	975	1840
Heart Lake Road	Mid-Block	Sandalwood Parkway	491	705	1196	995	823	1818	1085	892	1977
<u> </u>											
			1649	1733	3382	5170	4726	9896	5786	5231	11017

GR (2031 - 2011)

5.5%

GR (2041 - 2011)

4.0%

GR (2041 - 2031)

1.1%

Project #: Task: 200333

Growth Rate Calculations

	Roadway Section	•				,	AM Peak H	lour			
	Roduway Section	201	.1 Model (Dutput	203	31 Model (Dutput	204	11 Model (Dutput	
	То	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way	
Mayfield Road	Mid-Block	Heart Lake Road	1443	475	1918	1868	613	2481	1960	801	2761
Mayfield Road	Highway 410	Heart Lake Road	1545	422	1967	1689	708	2397	1337	1019	2356
			2988	897	3885	3557	1321	4878	3297	1820	5117

GR (2031 - 2011)

1.1%

GR (2041 - 2011)

0.9%

GR (2041 - 2031)

0.5%

	Roadway Section						PM Peak H	our			
	Roadway Section	20	11 Model (Dutput	203	31 Model C	Dutput	204	41 Model (Dutput	
	То	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way	
Mayfield Road	Mid-Block	Heart Lake Road	652	1254	1906	1031	1897	2928	1200	1893	3093
Mayfield Road	Highway 410	Heart Lake Road	571	1288	1859	882	1614	2496	1289	1446	2735
			1223	2542	3765	1913	3511	5424	2489	3339	5828

GR (2031 - 2011)

1.8%

GR (2041 - 2011)

1.5%

GR (2041 - 2031)

0.7%

Project #: 200333

Task: Growth Rate Calculations

	Roadway Section					,	AM Peak H	lour			
	Roduway Section		201	.1 Model (Output	203	31 Model (Dutput	204	1 Model (Dutput
	To From Highway 410 Heart Lake Road			SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Countryside Drive	Highway 410	Heart Lake Road	367	250	617	1013	708	1721	1006	629	1635
Countryside Drive	Dixie Road	Highway 410	360	244	604	931	668	1599	928	582	1510
Countryside Drive	Fernforest Drive	Dixie Road	650	381	1031	1019	916	1935	974	935	1909
	Jacobine Dimension										
			1377	875	2252	2963	2292	5255	2908	2146	5054

GR (2031 - 2011)

4.3%

GR (2041 - 2011)

2.7%

GR (2041 - 2031)

-0.4%

	Roadway Section						PM Peak H	our			
	Roadway Section		20:	11 Model (Dutput	20:	31 Model (Dutput	204	41 Model (Output
	To From Highway 410 Heart Lake Road				Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Countryside Drive	Highway 410	Heart Lake Road	113	271	384	782	1032	1814	653	973	1626
Countryside Drive	Dixie Road	Highway 410	89	248	337	647	799	1446	494	745	1239
Countryside Drive	Fernforest Drive	Dixie Road	432	648	1080	904	1014	1918	982	1004	1986
			634	1167	1801	2333	2845	5178	2129	2722	4851

GR (2031 - 2011)

5.4%

GR (2041 - 2011)

3.4%

GR (2041 - 2031)

-0.7%

Project #: 200333

Task: Growth Rate Calculations

	Roadway Section						AM Peak F	lour			
	Roadway Section		20	11 Model	Output	20	31 Model (Output	20	41 Model	Output
	То	From	EB	WB	Two-Way	EB	WB	Two-Way	EB	WB	Two-Way
Highway 410	Heart Lake Road	Off-Ramp	0	2	2	0	111	111	0	271	271
•		•									
			0	2	2	0	111	111	0	271	271

GR (2031 - 2011)

22.2%

GR (2041 - 2011)

17.8%

9.6%

GR (2041 - 2031)

9.3%

	Roadway Section					1	PM Peak H	lour			
	Roadway Section	I	20:	11 Model (Output	203	31 Model (Output	20	41 Model (Output
	То	From	EB	WB	Two-Way	EB	WB	Two-Way	EB	WB	Two-Way
Highway 410	Heart Lake Road	Off-Ramp	0	14	14	0	124	124	0	218	218
			0	14	14	0	124	124	0	218	218

GR (2031 - 2011) 11.5%

GR (2041 - 2011)

GR (2041 - 2031) 5.8%

Project #: 200333

Task: Growth Rate Calculations

	Roadway Section					A	AM Peak F	lour			
	Roadway Section		201	1 Model	Output	203	31 Model (Output	204	11 Model C)utput
	То	From	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Sandalwood Parkway	Heart Lake Road	Mid-Block	1486	391	1877	2427	873	3300	2457	1069	3526
			1486	391	1877	2427	873	3300	2457	1069	3526

GR (2031 - 2011)

GR (2041 - 2011) 2.1%

2.9%

GR (2041 - 2031) 0.7%

	Roadway Section						PM Peak H	our			
	Roadway Section		20	11 Model (Output	203	31 Model (Output	204	41 Model (Dutput
	То	From	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Sandalwood Parkway	Heart Lake Road	Mid-Block	814	1453	2267	1534	2378	3912	1609	2396	4005
			814	1453	2267	1534	2378	3912	1609	2396	4005

GR (2031 - 2011) 2.8%

GR (2041 - 2011) 1.9%

GR (2041 - 2031) 0.2%

Project #: Task: 200333

Growth Rate Calculations

	Roadway Section						AM Peak H	lour			
	Roadway Section		20	11 Model (Output	20	2031 Model Output		204	41 Model (Output
	То	From	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Dixie Road	South of Countryside Dr		176	502	678	546	1455	2001	719	1737	2456
Dixie Road	North of Countryside Dr		143	622	765	347	1096	1443	516	1227	1743
			319	1124	1443	893	2551	3444	1235	2964	4199

GR (2031 - 2011)

4.4%

GR (2041 - 2011)

3.6%

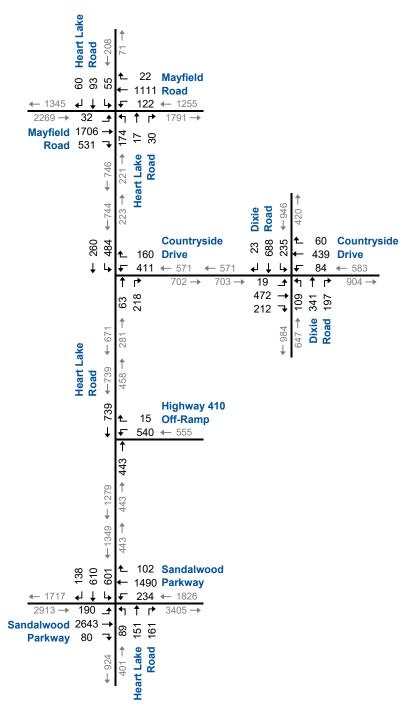
GR (2041 - 2031)

2.0%

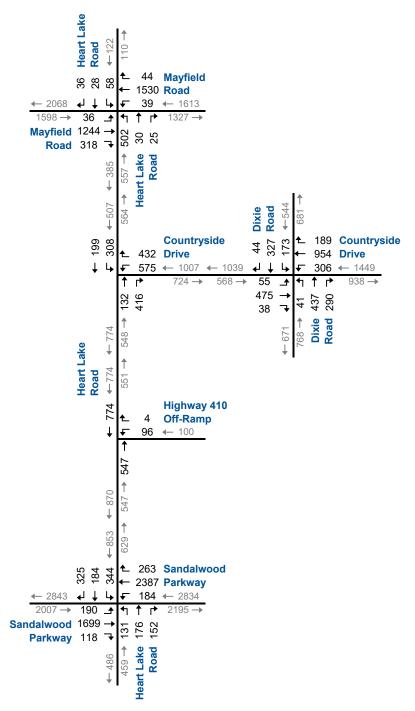
4.7%

3.8%

	Roadway Section					1	PM Peak H	lour			
	Roduway Section		201	1 Model (Output	2031 Model Output 204			2041 Model Output		
	То	From	NB	SB	Two-Way	NB	SB	Two-Way	NB	SB	Two-Way
Dixie Road	South of Countryside Dr		413	218	631	1457	860	2317	1777	1051	2828
Dixie Road	North of Countryside Dr		598	345	943	1087	532	1619	1239	741	1980
			1011	563	1574	2544	1392	3936	3016	1792	4808

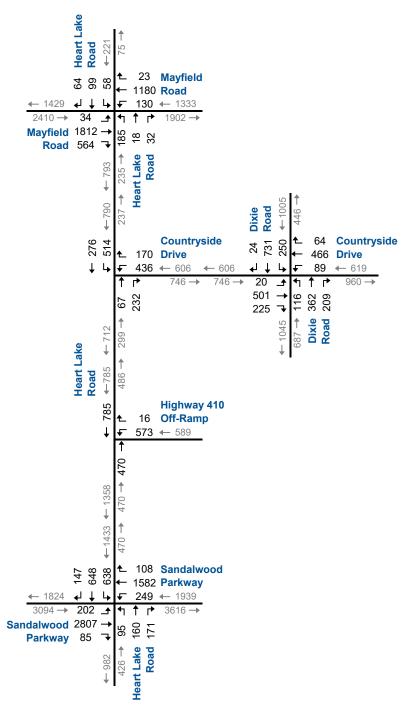

GR (2031 - 2011)

GR (2041 - 2011)

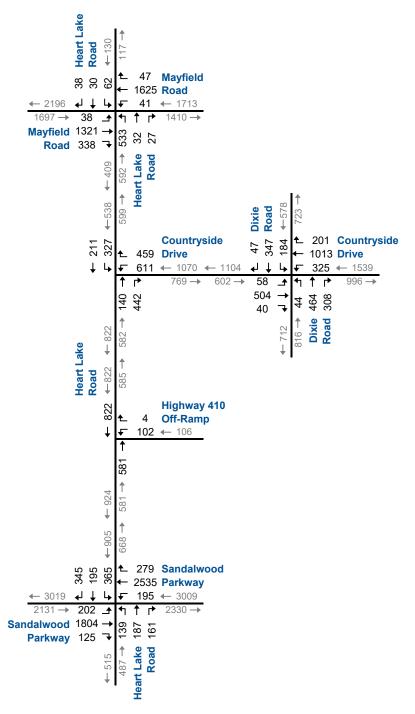

GR (2041 - 2031) 2.0%

Future Growth (2031) Traffic Volumes

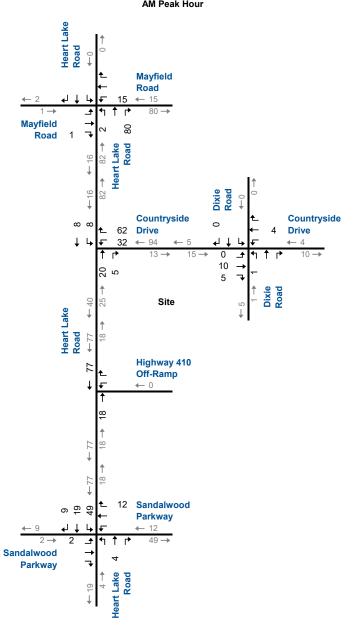
AM Peak Hour

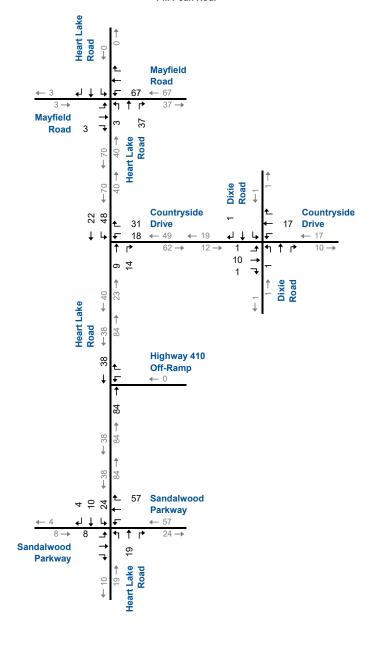


PM Peak Hour



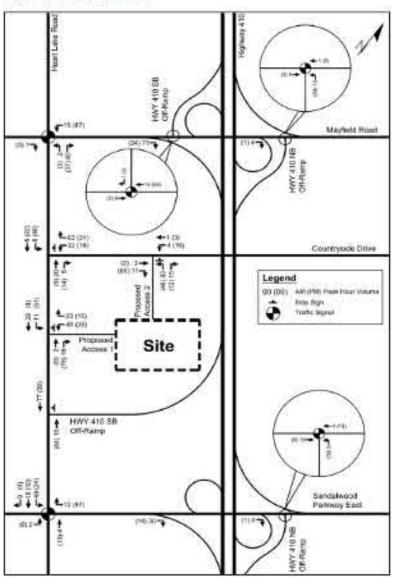
Future Growth (2041) Traffic Volumes


AM Peak Hour


PM Peak Hour

BG Development (Countryside Villages) Traffic Volumes AM Peak Hour

PM Peak Hour



	TIME	INTID	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Mayfield/Heart Lake	900	1	2	0	80	0	0	0	0	0	1	15	0	0
Countryside/Heart Lake	900	2		20	5	8	8					32		62
Dixie	900	3	1	0	0	0	0	0	0	10	5	0	4	0
Hwy 410	900	4		18			77					0		0
Sandalwood	900	5	0	4	0	49	19	9	2	0	0	0	0	12
Mayfield/Heart Lake	1700	1	3	0	37	0	0	0	0	0	3	67	0	0
Countryside/Heart Lake	1700	2		9	14	48	22					18		31
Dixie	1700	3	1	0	0	0	0	1	1	10	1	0	17	0
Hwy 410	1700	4		84			38					0		0
Sandalwood	1700	5	0	19	0	24	10	4	8	0	Ω	0	0	57

NOTES

residury 2017

Figure 10: Site Total Trips

Appendix E

2031 Synchro Analysis Outputs

2031 AM Peak Hour 200333

1: Heart Lake Road & Mayfield Road

	*	-	•	*	•	•	1	†	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	32	1706	532	137	1111	22	176	17	110	55	93	60
v/c Ratio	0.12	0.59	0.47	0.54	0.32	0.02	0.50	0.04	0.25	0.45	0.57	0.29
Control Delay	18.4	22.0	2.8	20.9	10.4	0.0	47.1	39.9	12.1	71.1	73.8	10.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.4	22.0	2.8	20.9	10.4	0.0	47.1	39.9	12.1	71.1	73.8	10.6
Queue Length 50th (m)	4.5	121.5	0.0	12.9	49.4	0.0	41.2	3.8	3.5	15.5	26.5	0.0
Queue Length 95th (m)	11.0	138.4	17.0	31.0	54.9	0.1	65.1	10.6	19.6	29.5	44.3	9.9
Internal Link Dist (m)		638.5			401.6			1215.6			450.1	
Turn Bay Length (m)	115.0		180.0	80.0		70.0	110.0		45.0	30.0		25.0
Base Capacity (vph)	262	2928	1140	252	3450	1092	355	567	547	334	448	438
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.58	0.47	0.54	0.32	0.02	0.50	0.03	0.20	0.16	0.21	0.14

HCM Signalized Intersection Capacity Analysis
1: Heart Lake Road & Mayfield Road

2031 AM Peak Hour 200333

	1	-	•	•	•	•	\land	†	<i>*</i>	~	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ļ	444	7	j	111	7	j	- 1	7	j	- 1	7
Traffic Volume (vph)	32	1706	532	137	1111	22	176	17	110	55	93	60
Future Volume (vph)	32	1706	532	137	1111	22	176	17	110	55	93	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.7	3.7	3.7	3.7	3.7	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1789	5142	1601	1789	5142	1601	1750	1842	1566	1750	1842	1566
Flt Permitted	0.24	1.00	1.00	0.08	1.00	1.00	0.56	1.00	1.00	0.75	1.00	1.00
Satd. Flow (perm)	460	5142	1601	158	5142	1601	1031	1842	1566	1375	1842	1566
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	32	1706	532	137	1111	22	176	17	110	55	93	60
RTOR Reduction (vph)	0	0	233	0	0	7	0	0	72	0	0	55
Lane Group Flow (vph)	32	1706	299	137	1111	15	176	17	38	55	93	5
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	78.7	78.7	78.7	93.9	93.9	93.9	32.5	32.5	32.5	12.5	12.5	12.5
Effective Green, g (s)	78.7	78.7	78.7	93.9	93.9	93.9	32.5	32.5	32.5	12.5	12.5	12.5
Actuated g/C Ratio	0.56	0.56	0.56	0.67	0.67	0.67	0.23	0.23	0.23	0.09	0.09	0.09
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	258	2890	899	248	3448	1073	326	427	363	122	164	139
v/s Ratio Prot		c0.33		c0.05	0.22		c0.07	0.01			0.05	
v/s Ratio Perm	0.07		0.19	0.32		0.01	c0.06		0.02	0.04		0.00
v/c Ratio	0.12	0.59	0.33	0.55	0.32	0.01	0.54	0.04	0.10	0.45	0.57	0.04
Uniform Delay, d1	14.4	20.1	16.5	15.0	9.7	7.7	45.9	41.7	42.3	60.5	61.2	58.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	0.9	1.0	2.7	0.2	0.0	1.7	0.0	0.1	2.6	4.4	0.1
Delay (s)	15.4	21.0	17.5	17.6	9.9	7.7	47.6	41.7	42.4	63.1	65.6	58.4
Level of Service	В	С	В	В	Α	Α	D	D	D	Е	E	Е
Approach Delay (s)		20.1			10.7			45.4			62.9	
Approach LOS		С			В			D			E	
Intersection Summary												
HCM 2000 Control Delay			21.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.59									
Actuated Cycle Length (s)			140.0	S	um of lost	time (s)			19.6			
Intersection Capacity Utiliza	ation		71.6%	IC	U Level	of Service	е		С			
Analysis Period (min)			15									
o Critical Lana Croup												

Intersection Summary				
HCM 2000 Control Delay	21.2	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.59			
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	19.6	
Intersection Capacity Utilization	71.6%	ICU Level of Service	С	
Analysis Period (min)	15			
c Critical Lane Group				

203 I	AIVI	Peak	Hour
			200333

	•	•	Ť	1		ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	4	7		#	
Traffic Volume (veh/h)	443	222	83	223	492	268	
Future Volume (Veh/h)	443	222	83	223	492	268	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	443	222	83	223	492	268	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1335	83			306		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1335	83			306		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	0	77			61		
cM capacity (veh/h)	105	979			1266		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1		
Volume Total	443	222	83	223	760		_
Volume Left	443	0	0	0	492		
Volume Right	0	222	0	223	0		
cSH	105	979	1700	1700	1266		
Volume to Capacity	4.23	0.23	0.05	0.13	0.39		
Queue Length 95th (m)	Err	7.0	0.0	0.0	15.0		
Control Delay (s)	Err	9.8	0.0	0.0	7.8		
Lane LOS	F	Α.	0.0	0.0	Α.		
Approach Delay (s)	6664.2	А	0.0		7.8		
Approach LOS	F		0.0		7.0		
**							
Intersection Summary			0500.0				
Average Delay			2563.6				
Intersection Capacity Utiliz	zation		79.2%	IC	U Level o	of Service	
Analysis Period (min)			15				

3: Dixie Road & Co	untrysio	de Driv	е						20	01711	n r our	20033
	1	→	•	•	+	4	4	1	*	1	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	19	482	217	84	443	60	110	341	197	235	711	
v/c Ratio	0.08	0.53	0.49	0.37	0.48	0.13	0.50	0.36	0.22	0.45	0.75	
Control Delay	17.6	21.3	18.2	23.4	20.7	6.2	20.0	10.4	2.2	13.1	18.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.6	21.3	18.2	23.4	20.7	6.2	20.0	10.4	2.2	13.1	18.4	
Queue Length 50th (m)	1.7	25.0	15.7	7.9	22.6	0.0	7.5	21.1	0.0	15.4	58.0	
Queue Length 95th (m)	6.1	37.7	33.2	19.1	34.6	7.3	#26.1	40.9	8.8	35.1	#115.3	
Internal Link Dist (m)		1354.0			266.3			317.4			333.2	
Turn Bay Length (m)	85.0		80.0	25.0		80.0	110.0			50.0		
Base Capacity (vph)	850	3263	1464	815	3263	1464	221	956	910	527	953	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.15	0.15	0.10	0.14	0.04	0.50	0.36	0.22	0.45	0.75	

Queues

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2031 AM Peak Hour

200333

HCM Unsignalized Intersection Capacity Analysis 4: Highway 410 Off-Ramp & Heart Lake Road

	•	4	†	*	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	- 4			- 1
Traffic Volume (veh/h)	540	15	461	0	0	816
Future Volume (Veh/h)	540	15	461	0	0	816
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	540	15	461	0	0	816
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)		4				
Median type			None			None
Median storage veh)						
Upstream signal (m)			243			
pX, platoon unblocked	0.88	0.88			0.88	
vC, conflicting volume	1277	461			461	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1245	314			314	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	0	98			100	
cM capacity (veh/h)	168	636			1092	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	555	461	816			
Volume Left	540	0	0			
Volume Right	15	0	0			
cSH	172	1700	1700			
Volume to Capacity	3.23	0.27	0.48			
Queue Length 95th (m)	Err	0.0	0.0			
Control Delay (s)	Err	0.0	0.0			
Lane LOS	F					
Approach Delay (s)	Err	0.0	0.0			
Approach LOS	F	0.0	0.0			
Intersection Summary						
Average Delay			3029.2			
Intersection Capacity Utiliz	ration		79.5%	IC	III evel d	of Service
Analysis Period (min)	-4.011		15	10	C 20101 (. 501 1100
Allalysis i eliuu (IIIII)			10			

	۶	-	$\mathbf{\hat{z}}$	•	-	•	1	1	1	•	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	,	44	7	,	44	7	7	- 1	7	٦	4	
Traffic Volume (vph)	19	482	217	84	443	60	110	341	197	235	688	23
Future Volume (vph)	19	482	217	84	443	60	110	341	197	235	688	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.7	3.7	3.7	3.7	3.7
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1750	3500	1566	1750	3500	1566	1789	1883	1601	1789	1874	
Flt Permitted	0.50	1.00	1.00	0.48	1.00	1.00	0.23	1.00	1.00	0.55	1.00	
Satd. Flow (perm)	912	3500	1566	876	3500	1566	436	1883	1601	1037	1874	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	19	482	217	84	443	60	110	341	197	235	688	23
RTOR Reduction (vph)	0	0	38	0	0	44	0	0	97	0	1	0
Lane Group Flow (vph)	19	482	179	84	443	16	110	341	100	235	710	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	15.6	15.6	15.6	15.6	15.6	15.6	30.4	30.4	30.4	30.4	30.4	
Effective Green, g (s)	15.6	15.6	15.6	15.6	15.6	15.6	30.4	30.4	30.4	30.4	30.4	
Actuated g/C Ratio	0.26	0.26	0.26	0.26	0.26	0.26	0.51	0.51	0.51	0.51	0.51	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	237	913	408	228	913	408	221	957	813	527	952	
v/s Ratio Prot		c0.14			0.13			0.18			c0.38	
v/s Ratio Perm	0.02		0.11	0.10		0.01	0.25		0.06	0.23		
v/c Ratio	0.08	0.53	0.44	0.37	0.49	0.04	0.50	0.36	0.12	0.45	0.75	
Uniform Delay, d1	16.7	18.9	18.4	18.1	18.7	16.5	9.7	8.8	7.7	9.3	11.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.6	0.8	1.0	0.4	0.0	7.8	1.0	0.3	2.7	5.3	
Delay (s)	16.8	19.5	19.2	19.1	19.1	16.5	17.5	9.9	8.0	12.1	16.9	
Level of Service	В	В	В	В	В	В	В	Α	Α	В	В	
Approach Delay (s)		19.3			18.8			10.6			15.7	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			16.1	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	/ ratio		0.67									
Actuated Cycle Length (s)			59.8	Sı	um of lost	time (s)			13.8			
Intersection Capacity Utilization	n		96.4%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Paradigm Transportation Solutions Limited Synchro 10 Report Paradigm Transportation Solutions Limited Synchro 10 Report Paradigm Transportation Solutions Limited Synchro 10 Report

	*	-	•	•	$^{\wedge}$	†	1	~	ţ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	192	2723	234	1604	89	155	161	650	629	147	
v/c Ratio	0.89	1.29	1.42	0.81	0.75	0.32	0.32	1.33	0.98	0.25	
Control Delay	78.6	170.6	251.7	46.9	67.4	49.3	11.0	194.9	80.1	17.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	78.6	170.6	251.7	46.9	67.4	49.3	11.0	194.9	80.1	17.2	
Queue Length 50th (m)	46.9	~427.0	~89.6	176.5	17.5	41.8	4.8	~279.5	206.0	14.6	
Queue Length 95th (m)	#92.7	#451.2	#148.6	196.9	#41.8	64.0	24.6	#358.5	#287.8	32.9	
Internal Link Dist (m)		97.9		281.6		369.2			219.0		
Turn Bay Length (m)	35.0		60.0				30.0	90.0		35.0	
Base Capacity (vph)	226	2117	165	1973	118	494	513	490	662	610	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.85	1.29	1.42	0.81	0.75	0.31	0.31	1.33	0.95	0.24	

5: Heart Lake Roa	d & San	dalwoo	od Par	kway								200333
	1	-	•	•	-	4	\land	†	1	\	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ļ	44%		ļ	44%		j	- 1	7	ļ	- 1	7
Traffic Volume (vph)	192	2643	80	234	1490	114	89	155	161	650	629	147
Future Volume (vph)	192	2643	80	234	1490	114	89	155	161	650	629	147
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.99	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	5004		1700	4964		1767	1824	1514	1607	1842	1551
Flt Permitted	0.06	1.00		0.06	1.00		0.10	1.00	1.00	0.55	1.00	1.00
Satd. Flow (perm)	113	5004		114	4964		179	1824	1514	938	1842	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	192	2643	80	234	1490	114	89	155	161	650	629	147
RTOR Reduction (vph)	0	2	0	0	5	0	0	0	105	0	0	53
Lane Group Flow (vph)	192	2721	0	234	1599	0	89	155	56	650	629	94
Confl. Peds. (#/hr)	1					1			2	2		
Heavy Vehicles (%)	1%	2%	4%	5%	1%	16%	1%	3%	4%	11%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6			4		4	8		8
Actuated Green, G (s)	81.0	67.0		73.9	62.9		47.6	41.6	41.6	64.6	55.6	55.6
Effective Green, g (s)	81.0	67.0		73.9	62.9		47.6	41.6	41.6	64.6	55.6	55.6
Actuated g/C Ratio	0.51	0.42		0.47	0.40		0.30	0.26	0.26	0.41	0.35	0.35
Clearance Time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	215	2113		163	1968		113	478	397	466	645	543
v/s Ratio Prot	c0.08	0.54		c0.10	0.32		0.03	0.08		c0.18	0.34	
v/s Ratio Perm	0.37			c0.57			0.21		0.04	c0.39		0.06
v/c Ratio	0.89	1.29		1.44	0.81		0.79	0.32	0.14	1.39	0.98	0.17
Uniform Delay, d1	47.4	45.8		48.3	42.6		45.0	47.2	44.8	44.9	50.8	35.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	33.8	133.2		227.4	3.8		29.4	0.4	0.2	190.4	29.0	0.2
Delay (s)	81.2	179.0		275.7	46.4		74.4	47.6	45.0	235.3	79.8	35.8
Level of Service	F	F		F	D		Е	D	D	F	Е	D
Approach Delay (s)		172.6			75.6			52.4			146.2	
Approach LOS		F			Е			D			F	
Intersection Summary												
HCM 2000 Control Delay			132.4	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.43									
Actuated Cycle Length (s)	,		158.6	S	um of lost	time (s)			19.0			
Intersection Capacity Utiliza	ation		129.3%		CU Level)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

1: Heart Lake Road & Mayfield Road

	•	-	•	*	•	•	1	t	· /*		ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	36	1244	321	106	1530	44	505	30	62	58	28	36
v/c Ratio	0.36	0.57	0.36	0.43	0.57	0.05	0.78	0.04	0.10	0.51	0.18	0.17
Control Delay	39.2	30.5	3.6	20.2	23.2	2.5	43.5	27.3	7.1	73.6	58.3	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.2	30.5	3.6	20.2	23.2	2.5	43.5	27.3	7.1	73.6	58.3	1.8
Queue Length 50th (m)	7.1	100.4	0.0	14.7	110.9	0.0	109.9	5.0	0.0	15.9	7.5	0.0
Queue Length 95th (m)	17.9	106.8	17.1	21.6	109.7	4.2	#206.0	13.1	10.3	30.3	17.2	0.0
Internal Link Dist (m)		638.5			401.6			1215.6			450.1	
Turn Bay Length (m)	115.0		180.0	80.0		70.0	110.0		45.0	30.0		25.0
Base Capacity (vph)	119	2613	994	245	2982	942	645	711	643	333	451	461
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.48	0.32	0.43	0.51	0.05	0.78	0.04	0.10	0.17	0.06	0.08

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	1	→	•	•	+	4	1	1	<i>/</i> *	7	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	444	7	7	444	7	7	- 4	75	T)	- 4	75
Traffic Volume (vph)	36	1244	321	106	1530	44	505	30	62	58	28	36
Future Volume (vph)	36	1244	321	106	1530	44	505	30	62	58	28	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.7	3.7	3.7	3.7	3.7	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1755	5092	1633	1825	5142	1585	1785	1879	1597	1700	1789	1597
Flt Permitted	0.13	1.00	1.00	0.13	1.00	1.00	0.57	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	234	5092	1633	252	5142	1585	1070	1879	1597	1320	1789	1597
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	36	1244	321	106	1530	44	505	30	62	58	28	36
RTOR Reduction (vph)	0	0	186	0	0	22	0	0	38	0	0	33
Lane Group Flow (vph)	36	1244	135	106	1530	22	505	30	24	58	28	3
Heavy Vehicles (%)	4%	3%	0%	0%	2%	3%	0%	0%	0%	5%	5%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	56.6	56.6	56.6	68.8	68.8	68.8	52.6	52.6	52.6	10.1	10.1	10.1
Effective Green, q (s)	56.6	56.6	56.6	68.8	68.8	68.8	52.6	52.6	52.6	10.1	10.1	10.1
Actuated g/C Ratio	0.42	0.42	0.42	0.51	0.51	0.51	0.39	0.39	0.39	0.07	0.07	0.07
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	98	2134	684	235	2620	807	626	732	622	98	133	119
v/s Ratio Prot		0.24		0.03	c0.30		c0.24	0.02			0.02	
v/s Ratio Perm	0.15		0.08	0.20		0.01	c0.08		0.02	0.04		0.00
v/c Ratio	0.37	0.58	0.20	0.45	0.58	0.03	0.81	0.04	0.04	0.59	0.21	0.02
Uniform Delay, d1	26.9	30.1	24.8	19.8	23.1	16.5	35.1	25.6	25.5	60.5	58.7	57.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	10.3	1.2	0.6	1.4	1.0	0.1	7.5	0.0	0.0	9.2	0.8	0.1
Delay (s)	37.2	31.3	25.5	21.2	24.1	16.5	42.6	25.6	25.6	69.7	59.5	58.0
Level of Service	D	С	С	С	С	В	D	С	С	Е	Е	Е
Approach Delay (s)		30.3			23.7			40.0			63.9	
Approach LOS		С			С			D			Е	
Intersection Summary												
HCM 2000 Control Delay			30.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.71		000	_3.0.01	23.1.00					
Actuated Cycle Length (s)	,		135.0	Si	um of los	time (s)			19.6			
Intersection Capacity Utilizat	tion		91.1%		U Level		9		13.0 F			
Analysis Period (min)	uoi i		15	ic	O LOVEI I	J. OC: VICE			'			

Analysis Period (min) c Critical Lane Group

3: Dixie Road & Countryside Drive

•	-	•	•	-	•	1	†	1	•	ţ	
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
56	485	39	306	971	189	42	437	290	173	372	
0.33	0.31	0.05	0.82	0.62	0.25	0.13	0.62	0.37	0.66	0.53	
19.1	14.3	3.7	37.8	18.3	3.6	22.9	28.2	4.6	40.4	25.5	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
19.1	14.3	3.7	37.8	18.3	3.6	22.9	28.2	4.6	40.4	25.5	
5.6	25.1	0.0	40.8	59.6	2.3	4.3	55.5	0.0	22.5	44.3	
14.2	34.4	4.6	75.0	76.0	12.2	15.2	#127.3	18.7	#72.4	97.4	
	1354.0			266.3			317.4			333.2	
85.0		80.0	25.0		80.0	110.0			50.0		
273	2470	1121	594	2519	1133	317	710	791	261	707	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0.21	0.20	0.03	0.52	0.39	0.17	0.13	0.62	0.37	0.66	0.53	
	56 0.33 19.1 0.0 19.1 5.6 14.2 85.0 273 0 0	56 485 0.33 0.31 19.1 14.3 0.0 0.0 19.1 14.3 5.6 25.1 14.2 34.4 1354.0 85.0 273 2470 0 0 0 0	56 485 39 0.33 0.31 0.05 19.1 14.3 3.7 0.0 0.0 0.0 19.1 14.3 3.7 5.6 25.1 0.0 14.2 34.4 4.6 1354.0 85.0 80.0 273 2470 1121 0 0 0 0 0 0	56 485 39 306 0.33 0.31 0.05 0.82 19.1 14.3 3.7 37.8 0.0 0.0 0.0 0.0 19.1 14.3 3.7 37.8 5.6 25.1 0.0 40.8 14.2 34.4 4.6 75.0 85.0 80.0 25.0 273 2470 1121 594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 485 39 306 971 0.33 0.31 0.05 0.82 0.62 19.1 14.3 3.7 37.8 18.3 0.0 0.0 0.0 0.0 0.0 19.1 14.3 3.7 37.8 18.3 5.6 25.1 0.0 40.8 59.6 14.2 34.4 4.6 75.0 76.0 85.0 80.0 25.0 273 2470 1121 594 2519 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 485 39 306 971 189 0.33 0.31 0.05 0.82 0.62 0.25 19.1 14.3 3.7 37.8 18.3 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.1 14.3 3.7 37.8 18.3 3.6 5.6 25.1 0.0 40.8 59.6 2.3 14.2 34.4 4.6 75.0 76.0 12.2 354.0 80.0 25.0 80.0 273 2470 1121 594 2519 1133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 485 39 306 971 189 42 0.33 0.31 0.05 0.82 0.62 0.25 0.13 19.1 14.3 3.7 37.8 18.3 3.6 22.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.1 14.3 3.7 37.8 18.3 3.6 22.9 5.6 25.1 0.0 40.8 59.6 2.3 4.3 14.2 34.4 4.6 75.0 76.0 12.2 15.2 1354.0 25.0 80.0 10.0 10.0 110.0 273 2470 1121 594 2519 1133 317 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 485 39 306 971 189 42 437 0.33 0.31 0.05 0.82 0.62 0.25 0.13 0.62 19.1 14.3 3.7 37.8 18.3 3.6 22.9 28.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.1 14.3 3.7 37.8 18.3 3.6 22.9 28.2 5.6 25.1 0.0 40.8 59.6 2.3 4.3 55.5 14.2 34.4 4.6 75.0 76.0 12.2 15.2 #127.3 354.0 80.0 25.0 80.0 110.0 273 2470 1121 594 2519 1133 317 710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56 485 39 306 971 189 42 437 290 0.33 0.31 0.05 0.82 0.62 0.25 0.13 0.62 0.37 19.1 14.3 3.7 37.8 18.3 3.6 22.9 28.2 4.6 0.0 18.2 18.2 18.2 18.2 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	56 485 39 306 971 189 42 437 290 173 0.33 0.31 0.05 0.82 0.62 0.25 0.13 0.62 0.37 0.66 19.1 14.3 3.7 37.8 18.3 3.6 22.9 28.2 4.6 40.4 0.0 <td< td=""><td>56 485 39 306 971 189 42 437 290 173 372 0.33 0.31 0.05 0.82 0.62 0.25 0.13 0.62 0.37 0.66 0.53 19.1 14.3 3.7 37.8 18.3 3.6 22.9 28.2 4.6 40.4 25.5 0.0 <</td></td<>	56 485 39 306 971 189 42 437 290 173 372 0.33 0.31 0.05 0.82 0.62 0.25 0.13 0.62 0.37 0.66 0.53 19.1 14.3 3.7 37.8 18.3 3.6 22.9 28.2 4.6 40.4 25.5 0.0 <

	•	4	1	*	•	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	T T	7	- 4	7		4
Traffic Volume (veh/h)	593	463	141	430	356	221
Future Volume (Veh/h)	593	463	141	430	356	221
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	593	463	141	430	356	221
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1074	141			571	
vC1, stage 1 conf vol					0	
vC2, stage 2 conf vol						
vCu, unblocked vol	1074	141			571	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.1	0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	0.0	49			64	
cM capacity (veh/h)	158	910			1002	
Direction. Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	
Volume Total		463	141		577	
	593			430		
Volume Left	593	0	0	0	356	
Volume Right	0	463	0	430	0	
cSH	158	910	1700	1700	1002	
Volume to Capacity	3.76	0.51	0.08	0.25	0.36	
Queue Length 95th (m)	Err	23.6	0.0	0.0	13.0	
Control Delay (s)	Err	13.0	0.0	0.0	8.2	
Lane LOS	F	В			Α	
Approach Delay (s)	5620.7		0.0		8.2	
Approach LOS	F					
Intersection Summary						
Average Delay			2695.2			
Intersection Capacity Utiliz	zation		81.6%	IC	U Level of	Service
Analysis Period (min)			15			
,						

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	1	-	\rightarrow	•	•	•	4	1	^		ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	7	ħ	44	7	7	- 4	7	T)	ţ,	
Traffic Volume (vph)	56	485	39	306	971	189	42	437	290	173	327	45
Future Volume (vph)	56	485	39	306	971	189	42	437	290	173	327	45
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.7	3.7	3.7	3.7	3.7
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util, Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.99	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1783	3500	1574	1698	3570	1541	1821	1847	1595	1806	1828	
Flt Permitted	0.21	1.00	1.00	0.47	1.00	1.00	0.43	1.00	1.00	0.36	1.00	
Satd. Flow (perm)	389	3500	1574	844	3570	1541	826	1847	1595	680	1828	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	56	485	39	306	971	189	42	437	290	173	327	45
RTOR Reduction (vph)	0	0	22	0	0	90	0	0	178	0	4	0
Lane Group Flow (vph)	56	485	17	306	971	99	42	437	112	173	368	0
Confl. Peds. (#/hr)	4		3	3		4	5		2	2		5
Heavy Vehicles (%)	0%	2%	0%	5%	0%	1%	0%	4%	1%	1%	3%	3%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	35.7	35.7	35.7	35.7	35.7	35.7	31.2	31.2	31.2	31.2	31.2	
Effective Green, g (s)	35.7	35.7	35.7	35.7	35.7	35.7	31.2	31.2	31.2	31.2	31.2	
Actuated g/C Ratio	0.44	0.44	0.44	0.44	0.44	0.44	0.39	0.39	0.39	0.39	0.39	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	172	1548	696	373	1579	681	319	714	616	262	706	
v/s Ratio Prot		0.14			0.27			0.24			0.20	
v/s Ratio Perm	0.14		0.01	c0.36		0.06	0.05		0.07	c0.25		
v/c Ratio	0.33	0.31	0.02	0.82	0.61	0.14	0.13	0.61	0.18	0.66	0.52	
Uniform Delay, d1	14.7	14.6	12.7	19.7	17.2	13.4	16.0	19.9	16.3	20.4	19.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.1	0.1	0.0	13.5	0.7	0.1	0.9	3.9	0.6	12.4	2.7	
Delay (s)	15.8	14.7	12.7	33.1	18.0	13.5	16.8	23.8	17.0	32.7	21.7	
Level of Service	В	В	В	С	В	В	В	С	В	С	С	
Approach Delay (s)		14.7			20.6			20.8			25.2	
Approach LOS		В			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			20.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.74			,						
Actuated Cycle Length (s)	,		80.7	S	um of lost	time (s)			13.8			
Intersection Capacity Utiliza	ation		97.3%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	†	1	V	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	4			- 4
Traffic Volume (veh/h)	96	4	631	0	0	812
Future Volume (Veh/h)	96	4	631	0	0	812
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	96	4	631	0	0	812
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)		4				
Median type			None			None
Median storage veh)						
Upstream signal (m)			243			
pX, platoon unblocked	0.88	0.88			0.88	
vC, conflicting volume	1443	631			631	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1435	513			513	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	25	99			100	
cM capacity (veh/h)	128	498			936	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	100	631	812			
Volume Left	96	0	0			
Volume Right	4	0	0			
cSH	133	1700	1700			
Volume to Capacity	0.75	0.37	0.48			
Queue Length 95th (m)	35.2	0.0	0.0			
Control Delay (s)	86.8	0.0	0.0			
Lane LOS	00.0 F	0.0	0.0			
Approach Delay (s)	86.8	0.0	0.0			
Approach LOS	00.0 F	0.0	0.0			
• • • • • • • • • • • • • • • • • • • •	'					
Intersection Summary						
Average Delay			5.6			
Intersection Capacity Utiliz	ation		54.7%	IC	U Level of	Service
Analysis Period (min)			15			

Synchro 10 Report Page 5

Synchro 10 Report Page 6 2031 PM Peak Hour 200333

5: Heart Lake Road & Sandalwood Parkway

	•	-	•	•	1	†	1		ţ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	198	1817	184	2707	131	195	152	368	194	329	
v/c Ratio	1.18	0.73	1.05	1.08	0.36	0.40	0.31	0.99	0.39	0.61	
Control Delay	163.6	33.9	118.4	82.7	39.6	51.3	15.6	92.1	51.0	30.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	163.6	33.9	118.4	82.7	39.6	51.3	15.6	92.1	51.0	30.7	
Queue Length 50th (m)	~62.4	173.0	~47.7	~371.1	30.6	54.3	10.0	100.2	53.8	49.8	
Queue Length 95th (m)	#117.6	191.3	#102.1	#395.4	48.3	80.2	30.3	#178.0	79.2	85.9	
Internal Link Dist (m)		97.9		281.6		369.2			219.0		
Turn Bay Length (m)	35.0		60.0				30.0	90.0		35.0	
Base Capacity (vph)	168	2494	176	2504	363	491	494	373	501	539	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.18	0.73	1.05	1.08	0.36	0.40	0.31	0.99	0.39	0.61	

HCM Signalized Intersection Capacity Analysis 5: Heart Lake Road & Sandalwood Parkway

2031 PM Peak Hour 200333

	1	-	•	•	•	*	\wedge	†	1	\	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ļ	44%		j	ተተኩ		j	- 1	7	ļ	- 1	7
Traffic Volume (vph)	198	1699	118	184	2387	320	131	195	152	368	194	329
Future Volume (vph)	198	1699	118	184	2387	320	131	195	152	368	194	329
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	5011		1785	5021		1716	1842	1542	1765	1879	1576
Flt Permitted	0.05	1.00		0.06	1.00		0.53	1.00	1.00	0.53	1.00	1.00
Satd. Flow (perm)	93	5011		104	5021		954	1842	1542	979	1879	1576
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	198	1699	118	184	2387	320	131	195	152	368	194	329
RTOR Reduction (vph)	0	5	0	0	11	0	0	0	83	0	0	119
Lane Group Flow (vph)	198	1812	0	184	2696	0	131	195	69	368	194	210
Confl. Peds. (#/hr)	4		3	3		4	1		3	3		1
Heavy Vehicles (%)	1%	1%	5%	0%	0%	0%	4%	2%	2%	1%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6			4		4	8		8
Actuated Green, G (s)	91.0	80.0		91.0	80.0		51.0	43.0	43.0	51.0	43.0	43.0
Effective Green, g (s)	91.0	80.0		91.0	80.0		51.0	43.0	43.0	51.0	43.0	43.0
Actuated g/C Ratio	0.57	0.50		0.57	0.50		0.32	0.27	0.27	0.32	0.27	0.27
Clearance Time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	166	2489		173	2494		340	491	411	349	501	420
v/s Ratio Prot	c0.08	0.36		0.07	0.54		0.02	0.11		c0.05	0.10	
v/s Ratio Perm	c0.59			0.52			0.10		0.04	c0.28		0.13
v/c Ratio	1.19	0.73		1.06	1.08		0.39	0.40	0.17	1.05	0.39	0.50
Uniform Delay, d1	53.4	31.9		46.6	40.5		41.6	48.4	45.3	55.3	48.2	49.9
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	131.1	1.9		86.3	44.4		0.7	2.4	0.9	63.2	2.3	4.2
Delay (s)	184.5	33.8		132.9	84.9		42.3	50.8	46.2	118.5	50.5	54.1
Level of Service	F	С		F	F		D	D	D	F	D	D
Approach Delay (s)		48.6			88.0			47.0			79.9	
Approach LOS		D			F			D			Е	
Intersection Summary												
HCM 2000 Control Delay			71.1	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Cap	acity ratio		1.14									
Actuated Cycle Length (s)			161.0		um of los				19.0			
Intersection Capacity Utiliz	ation		138.0%	IC	U Level	of Service	•		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Appendix F

2041 Synchro Analysis Outputs

1: Heart Lake Road & Mayfield Road

	•	-	•	•	-	•	1	†	1		ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	34	1812	565	145	1180	23	187	18	112	58	99	64
v/c Ratio	0.14	0.63	0.50	0.54	0.34	0.02	0.58	0.04	0.27	0.46	0.59	0.30
Control Delay	17.8	22.9	2.7	25.8	9.6	0.0	52.9	43.3	14.5	70.9	74.1	12.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.8	22.9	2.7	25.8	9.6	0.0	52.9	43.3	14.5	70.9	74.1	12.0
Queue Length 50th (m)	5.1	141.8	0.0	17.1	55.2	0.0	43.5	3.9	4.6	16.3	28.2	0.0
Queue Length 95th (m)	10.9	138.0	15.9	37.3	50.0	0.3	#79.6	11.7	22.5	30.9	46.5	11.2
Internal Link Dist (m)		638.5			401.6			1215.6			450.1	
Turn Bay Length (m)	115.0		180.0	80.0		70.0	110.0		45.0	30.0		25.0
Base Capacity (vph)	239	2882	1145	268	3515	1111	325	567	545	334	448	438
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.14	0.63	0.49	0.54	0.34	0.02	0.58	0.03	0.21	0.17	0.22	0.15

1. Heart Lake Roa	u u iviay	ilicia i	loau									
	•	→	•	•	+	4	4	Ť	1	•	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ļ	444	7	j	444	7	ļ	- 4	7	ļ	- 4	7
Traffic Volume (vph)	34	1812	565	145	1180	23	187	18	112	58	99	64
Future Volume (vph)	34	1812	565	145	1180	23	187	18	112	58	99	64
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.7	3.7	3.7	3.7	3.7	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1789	5142	1601	1789	5142	1601	1750	1842	1566	1750	1842	1566
Flt Permitted	0.23	1.00	1.00	0.07	1.00	1.00	0.54	1.00	1.00	0.75	1.00	1.00
Satd. Flow (perm)	428	5142	1601	131	5142	1601	996	1842	1566	1374	1842	1566
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	34	1812	565	145	1180	23	187	18	112	58	99	64
RTOR Reduction (vph)	0	0	251	0	0	7	0	0	71	0	0	58
Lane Group Flow (vph)	34	1812	314	145	1180	16	187	18	41	58	99	6
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	77.9	77.9	77.9	95.7	95.7	95.7	30.7	30.7	30.7	12.9	12.9	12.9
Effective Green, g (s)	77.9	77.9	77.9	95.7	95.7	95.7	30.7	30.7	30.7	12.9	12.9	12.9
Actuated g/C Ratio	0.56	0.56	0.56	0.68	0.68	0.68	0.22	0.22	0.22	0.09	0.09	0.09
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	238	2861	890	264	3514	1094	298	403	343	126	169	144
v/s Ratio Prot		c0.35		c0.06	0.23		c0.07	0.01			0.05	
v/s Ratio Perm	0.08		0.20	0.32		0.01	c0.07		0.03	0.04		0.00
v/c Ratio	0.14	0.63	0.35	0.55	0.34	0.01	0.63	0.04	0.12	0.46	0.59	0.04
Uniform Delay, d1	15.0	21.3	17.1	21.2	9.1	7.1	47.8	43.1	43.8	60.2	61.0	57.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.3	1.1	1.1	2.3	0.3	0.0	4.1	0.0	0.2	2.7	5.1	0.1
Delay (s)	16.2	22.3	18.2	23.5	9.4	7.1	51.9	43.1	44.0	62.9	66.1	58.0
Level of Service	В	C	В	С	Α	Α	D	D	D	E	Е	E
Approach Delay (s)		21.3			10.8			48.6			62.9	
Approach LOS		С			В			D			E	
Intersection Summary												
HCM 2000 Control Delay			22.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.64									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			19.6			
Intersection Capacity Utiliza	ation		74.7%	IC	U Level	of Servic	е		D			
Analysis Period (min)			15									
c Critical Lane Group												

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

200333

	•	•	†	1		ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	- 1	7		4	-
Traffic Volume (veh/h)	468	232	87	237	522	284	
Future Volume (Veh/h)	468	232	87	237	522	284	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	468	232	87	237	522	284	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1415	87			324		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1415	87			324		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	0	76			58		
cM capacity (veh/h)	89	974			1247		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1		
Volume Total	468	232	87	237	806		
Volume Left	468	0	0	0	522		
Volume Right	0	232	0	237	0		
cSH	89	974	1700	1700	1247		
Volume to Capacity	5.26	0.24	0.05	0.14	0.42		
Queue Length 95th (m)	Err	7.4	0.0	0.0	16.9		
Control Delay (s)	Err	9.8	0.0	0.0	8.2		
Lane LOS	F	Α			Α		
Approach Delay (s)	6688.3		0.0		8.2		
Approach LOS	F						
Intersection Summary							
Average Delay			2562.0				
Intersection Capacity Utiliz	zation		83.1%	IC	U Level o	of Service	
Analysis Period (min)			15				
,							

Queues	
3: Dixie Road & Countryside Drive	

	•	-	\rightarrow	•	•	•	\land	1	^	~	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	20	511	230	89	470	64	117	362	209	250	755	
v/c Ratio	0.09	0.55	0.52	0.41	0.51	0.14	0.64	0.38	0.23	0.50	0.80	
Control Delay	17.4	21.5	19.8	24.7	20.9	6.0	32.6	10.9	2.3	14.5	21.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.4	21.5	19.8	24.7	20.9	6.0	32.6	10.9	2.3	14.5	21.2	
Queue Length 50th (m)	1.7	26.7	18.0	8.5	24.2	0.0	8.8	22.7	0.0	16.9	63.9	
Queue Length 95th (m)	6.3	39.9	36.4	20.3	36.6	7.5	#36.6	45.0	9.2	40.2	#141.9	
Internal Link Dist (m)		1354.0			266.3			317.4			333.2	
Turn Bay Length (m)	85.0		80.0	25.0		80.0	110.0			50.0		
Base Capacity (vph)	825	3247	1456	763	3247	1457	183	951	912	503	948	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.16	0.16	0.12	0.14	0.04	0.64	0.38	0.23	0.50	0.80	

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Actuated Cycle Length (s)

Analysis Period (min)

c Critical Lane Group

Intersection Capacity Utilization

13.8

2041 AM Peak Hour 200333

Movement Lane Configurations Traffic Volume (vph) 250 Future Volume (vph) 20 511 230 89 470 64 117 362 209 250 731 24 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Width 3.5 3.7 3.5 3.5 3.5 3.5 3.5 3.7 3.7 3.7 3.7 3.7 Total Lost time (s) 7.2 7.2 7.2 7.2 7.2 7.2 6.6 Lane Util. Factor 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.85 1.00 1.00 0.85 1.00 1.00 Flt Protected 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.95 Satd. Flow (prot) 1750 3500 1566 1750 3500 1566 1789 1883 1601 1789 1874 Flt Permitted 0.48 1.00 1.00 0.45 1.00 1.00 0.19 1.00 1.00 0.53 1.00 Satd. Flow (perm) 889 3500 824 3500 1566 1883 1601 996 1874 1566 363 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 20 511 230 89 470 64 362 209 250 731 24 117 RTOR Reduction (vph) 0 0 32 0 0 47 0 0 103 0 0 Lane Group Flow (vph) 511 198 89 470 17 117 106 250 Turn Type Perm NA NA Perm Perm NA NA Perm Perm Perm Perm Protected Phases Permitted Phases 2 2 6 4 4 8 Actuated Green, G (s) 16.0 30.4 16.0 30.4 30.4 30.4 Effective Green, g (s) 16.0 16.0 16.0 16.0 16.0 16.0 30.4 30.4 30.4 30.4 30.4 Actuated g/C Ratio 0.27 0.27 0.27 0.27 0.27 0.27 0.50 0.50 0.50 0.50 0.50 Clearance Time (s) 7.2 7.2 7.2 7.2 7.2 7.2 6.6 6.6 6.6 6.6 6.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 236 930 416 219 930 416 183 950 808 502 946 v/s Ratio Prot c0.15 0.13 0.19 c0.40 v/s Ratio Perm 0.02 0.13 0.11 0.01 0.32 0.07 0.25 v/c Ratio 0.08 0.48 0.41 0.04 0.64 0.38 0.13 0.50 0.80 Uniform Delay, d1 16.6 19.0 18.6 18.2 18.7 16.4 10.9 9.9 12.3 9.1 7.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 0.7 0.9 1.2 0.4 0.0 15.9 1.2 0.3 3.5 6.9 Delay (s) 16.8 19.7 19.4 19.4 19.2 16.4 26.8 10.3 8.2 13.4 19.3 Level of Service В В В В В В С В В В Α Approach Delay (s) 19.5 18.9 12.5 17.8 Approach LOS В В В В Intersection Summary HCM 2000 Control Delay HCM 2000 Level of Service 17.3 В HCM 2000 Volume to Capacity ratio 0.71

Sum of lost time (s)

ICU Level of Service

60.2

99.6%

15

	•	4	1	*	V	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	- 4			4
Traffic Volume (veh/h)	573	16	488	0	0	862
Future Volume (Veh/h)	573	16	488	0	0	862
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	573	16	488	0	0	862
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)		4				
Median type		•	None			None
Median storage veh)						
Upstream signal (m)			243			
pX, platoon unblocked	0.87	0.87			0.87	
vC, conflicting volume	1350	488			488	
vC1, stage 1 conf vol	1000	100			100	
vC2, stage 2 conf vol						
vCu, unblocked vol	1327	330			330	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.4	0.2			7.1	
tF (s)	3.5	3.3			2.2	
p0 queue free %	0.0	97			100	
cM capacity (veh/h)	148	615			1063	
					1003	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	589	488	862			
Volume Left	573	0	0			
Volume Right	16	0	0			
cSH	151	1700	1700			
Volume to Capacity	3.89	0.29	0.51			
Queue Length 95th (m)	Err	0.0	0.0			
Control Delay (s)	Err	0.0	0.0			
Lane LOS	F					
Approach Delay (s)	Err	0.0	0.0			
Approach LOS	F					
Intersection Summary						
Average Delay			3037.3			
Intersection Capacity Utiliz	zation		83.8%	IC	U Level	of Service
Analysis Period (min)	Lation		15		O LOVOI (0011100
mayolo i cilou (iliill)			13			

HCM Unsignalized Intersection Capacity Analysis

4: Highway 410 Off-Ramp & Heart Lake Road

2041 AM Peak Hour

/ + 1	r cak i loui
	200333

	*	-	•	•	1	†	1	•	ţ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	204	2892	249	1702	95	164	171	687	667	156	
v/c Ratio	0.90	1.38	1.42	0.87	0.81	0.33	0.33	1.44	1.04	0.26	
Control Delay	80.9	209.7	255.1	50.8	76.8	49.4	10.9	242.3	94.8	18.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	80.9	209.7	255.1	50.8	76.8	49.4	10.9	242.3	94.8	18.5	
Queue Length 50th (m)	50.9	~470.5	~96.3	192.8	19.0	44.5	5.0	~310.8	~239.0	16.9	
Queue Length 95th (m)	#98.6	#493.4	#156.7	214.3	#47.8	67.5	25.6	#391.2	#318.8	36.0	
Internal Link Dist (m)		97.9		281.6		369.2			219.0		
Turn Bay Length (m)	35.0		60.0				30.0	90.0		35.0	
Base Capacity (vph)	235	2098	175	1952	117	490	517	477	644	596	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.87	1.38	1.42	0.87	0.81	0.33	0.33	1.44	1.04	0.26	

HCM Signalized Intersection Capacity Analysis 5: Heart Lake Road & Sandalwood Parkway

2041 AM Peak Hour

	•	→	•	•	+	•	4	†	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	'n	111		ļ	ተተኩ		j	- 1	7	j	1	7
Traffic Volume (vph)	204	2807	85	249	1582	120	95	164	171	687	667	156
Future Volume (vph)	204	2807	85	249	1582	120	95	164	171	687	667	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.99	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	5004		1700	4965		1767	1824	1514	1607	1842	1551
Flt Permitted	0.06	1.00		0.06	1.00		0.09	1.00	1.00	0.54	1.00	1.00
Satd. Flow (perm)	113	5004		114	4965		173	1824	1514	919	1842	1551
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	204	2807	85	249	1582	120	95	164	171	687	667	156
RTOR Reduction (vph)	0	2	0	0	5	0	0	0	110	0	0	53
Lane Group Flow (vph)	204	2890	0	249	1697	0	95	164	61	687	667	103
Confl. Peds. (#/hr)	1					1			2	2		
Heavy Vehicles (%)	1%	2%	4%	5%	1%	16%	1%	3%	4%	11%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6			4		4	8		8
Actuated Green, G (s)	82.0	67.0		74.8	62.8		49.0	43.0	43.0	65.0	56.0	56.0
Effective Green, g (s)	82.0	67.0		74.8	62.8		49.0	43.0	43.0	65.0	56.0	56.0
Actuated g/C Ratio	0.51	0.42		0.47	0.39		0.31	0.27	0.27	0.41	0.35	0.35
Clearance Time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	225	2095		172	1948		112	490	406	455	644	542
v/s Ratio Prot	c0.09	0.58		c0.11	0.34		0.03	0.09		c0.18	0.36	
v/s Ratio Perm	0.37			c0.57			0.23		0.04	c0.43		0.07
v/c Ratio	0.91	1.38		1.45	0.87		0.85	0.33	0.15	1.51	1.04	0.19
Uniform Delay, d1	49.6	46.5		49.8	44.9		47.1	47.0	44.6	45.6	52.0	36.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	35.4	173.9		231.0	5.7		41.5	0.4	0.2	240.6	45.0	0.2
Delay (s)	85.0	220.4		280.7	50.5		88.6	47.4	44.7	286.2	97.0	36.4
Level of Service	F	F		F	D		F	D	D	F	F	D
Approach Delay (s)		211.5			79.9			55.5			176.8	
Approach LOS		F			Е			Е			F	
Intersection Summary												
HCM 2000 Control Delay			157.6	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.48									
Actuated Cycle Length (s)			160.0	S	um of lost	time (s)			19.0			
Intersection Capacity Utiliz	ation		135.9%		CU Level)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	157.6	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.48			
Actuated Cycle Length (s)	160.0	Sum of lost time (s)	19.0	
Intersection Capacity Utilization	135.9%	ICU Level of Service	Н	
Analysis Period (min)	15			
c Critical Lane Group				

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

1: Heart Lake Road & Mayfield Road

	•	-	•	•	•	*	1	1	1		ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	38	1321	341	108	1625	47	536	32	64	62	30	38
v/c Ratio	0.39	0.56	0.36	0.44	0.58	0.05	0.91	0.05	0.11	0.53	0.19	0.18
Control Delay	38.8	27.8	3.1	18.6	21.0	2.4	58.5	30.3	7.9	74.1	58.0	2.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.8	27.8	3.1	18.6	21.0	2.4	58.5	30.3	7.9	74.1	58.0	2.1
Queue Length 50th (m)	7.3	102.0	0.0	13.9	112.3	0.0	127.1	5.7	0.0	17.0	8.0	0.0
Queue Length 95th (m)	18.2	104.5	15.9	19.4	106.4	4.3	#248.9	14.7	11.2	31.7	17.9	0.8
Internal Link Dist (m)		638.5			401.6			1215.6			450.1	
Turn Bay Length (m)	115.0		180.0	80.0		70.0	110.0		45.0	30.0		25.0
Base Capacity (vph)	108	2613	1004	243	2999	947	592	663	605	332	451	461
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.35	0.51	0.34	0.44	0.54	0.05	0.91	0.05	0.11	0.19	0.07	0.08

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

					_	-		-			-	
	•	-	•	•	•	•	1	Ī	~		Ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	444	7	7	444	- 7	7	- 1	7	7	- 1	7
Traffic Volume (vph)	38	1321	341	108	1625	47	536	32	64	62	30	38
Future Volume (vph)	38	1321	341	108	1625	47	536	32	64	62	30	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.7	3.7	3.7	3.7	3.7	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Lane Util. Factor	1.00	0.91	1.00	1.00	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1755	5092	1633	1825	5142	1585	1785	1879	1597	1700	1789	1597
Flt Permitted	0.11	1.00	1.00	0.12	1.00	1.00	0.57	1.00	1.00	0.74	1.00	1.00
Satd. Flow (perm)	210	5092	1633	237	5142	1585	1076	1879	1597	1318	1789	1597
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	38	1321	341	108	1625	47	536	32	64	62	30	38
RTOR Reduction (vph)	0	0	187	0	0	22	0	0	41	0	0	35
Lane Group Flow (vph)	38	1321	154	108	1625	25	536	32	23	62	30	3
Heavy Vehicles (%)	4%	3%	0%	0%	2%	3%	0%	0%	0%	5%	5%	0%
Turn Type	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases		2		1	6		7	4			8	
Permitted Phases	2		2	6		6	4		4	8		8
Actuated Green, G (s)	60.8	60.8	60.8	72.8	72.8	72.8	48.6	48.6	48.6	10.4	10.4	10.4
Effective Green, q (s)	60.8	60.8	60.8	72.8	72.8	72.8	48.6	48.6	48.6	10.4	10.4	10.4
Actuated g/C Ratio	0.45	0.45	0.45	0.54	0.54	0.54	0.36	0.36	0.36	0.08	0.08	0.08
Clearance Time (s)	6.7	6.7	6.7	3.0	6.7	6.7	3.0	6.9	6.9	6.9	6.9	6.9
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	94	2293	735	233	2772	854	572	676	574	101	137	123
v/s Ratio Prot	* *	0.26		0.03	c0.32		c0.24	0.02	•••		0.02	
v/s Ratio Perm	0.18		0.09	0.22		0.02	c0.09		0.01	0.05		0.00
v/c Ratio	0.40	0.58	0.21	0.46	0.59	0.03	0.94	0.05	0.04	0.61	0.22	0.02
Uniform Delay, d1	24.9	27.5	22.5	18.1	21.0	14.6	39.7	28.1	28.1	60.4	58.5	57.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	12.4	1.1	0.6	1.5	0.9	0.1	23.0	0.0	0.0	10.6	0.8	0.1
Delay (s)	37.3	28.6	23.2	19.6	21.9	14.6	62.7	28.2	28.1	70.9	59.3	57.7
Level of Service	D	С	C	В	С	В	Е	С	С	Е	Е	Е
Approach Delay (s)	=	27.7	-	=	21.5	=		57.5	-	_	64.4	=
Approach LOS		С			C			Е			Е	
•••								_			_	
Intersection Summary					0110000		0 1					
HCM 2000 Control Delay			30.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.76	_		()			10.5			
Actuated Cycle Length (s)			135.0		um of los				19.6			
Intersection Capacity Utiliza	tion		94.7%	IC	CU Level	of Service	Э		F			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

	•	4	†	1	\	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	, i	7	- 1	7		4
Traffic Volume (veh/h)	629	490	149	456	375	233
Future Volume (Veh/h)	629	490	149	456	375	233
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	629	490	149	456	375	233
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	1132	149			605	
vC1, stage 1 conf vol					000	
vC2, stage 2 conf vol						
vCu, unblocked vol	1132	149			605	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	0.0	46			61	
cM capacity (veh/h)	139	900			973	
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	SB 1	
Volume Total	629	490	149	456	608	
TOTALLIO TOTAL	629		149	450	375	
Volume Left		0 490	0	456		
Volume Right	0				0	
cSH	139 4.53	900	1700	1700	973	
Volume to Capacity		0.54	0.09	0.27	0.39	
Queue Length 95th (m)	Err	26.9	0.0	0.0	14.7	
Control Delay (s)	Err	13.7	0.0	0.0	8.7	
Lane LOS	F	В	2.5		A	
Approach Delay (s)	5626.5		0.0		8.7	
Approach LOS	F					
Intersection Summary						
Average Delay			2702.1			
Intersection Capacity Utiliza	ation		85.7%	IC	U Level	of Service
Analysis Period (min)			15			
) 2.0 . 0.100 (11)			.5			

Paradigm Transportation Solutions Limited

	*	-	$\mathbf{\hat{z}}$	•	•	4		†	1	~	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	59	514	41	325	1030	201	45	464	308	184	395	
v/c Ratio	0.35	0.32	0.05	0.86	0.62	0.25	0.17	0.68	0.39	0.86	0.59	
Control Delay	19.6	13.8	3.5	42.0	17.9	4.6	25.3	32.5	4.8	67.2	28.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.6	13.8	3.5	42.0	17.9	4.6	25.3	32.5	4.8	67.2	28.7	
Queue Length 50th (m)	6.0	26.9	0.0	46.0	64.7	5.1	5.2	67.0	0.0	29.1	53.4	
Queue Length 95th (m)	15.6	36.6	4.7	#87.4	82.1	15.6	16.4	#140.1	19.2	#84.3	104.6	
Internal Link Dist (m)		1354.0			266.3			317.4			333.2	
Turn Bay Length (m)	85.0		80.0	25.0		80.0	110.0			50.0		
Base Capacity (vph)	243	2360	1073	546	2407	1084	271	678	780	213	675	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.22	0.04	0.60	0.43	0.19	0.17	0.68	0.39	0.86	0.59	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions Limited

Paradigm Transportation Solutions Limited

	•	4	†	*	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7	7	- 4			- 1
Traffic Volume (veh/h)	102	4	665	0	0	860
Future Volume (Veh/h)	102	4	665	0	0	860
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	102	4	665	0	0	860
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)		4				
Median type			None			None
Median storage veh)						
Upstream signal (m)			243			
pX, platoon unblocked	0.86	0.86			0.86	
vC, conflicting volume	1525	665			665	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1529	533			533	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	7	99			100	
cM capacity (veh/h)	110	476			902	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	106	665	860			
Volume Left	102	0	0			
Volume Right	4	0	0			
cSH	114	1700	1700			
Volume to Capacity	0.93	0.39	0.51			
Queue Length 95th (m)	46.7	0.0	0.0			
Control Delay (s)	137.6	0.0	0.0			
Lane LOS	F					
Approach Delay (s)	137.6	0.0	0.0			
Approach LOS	F					
Intersection Summary						
Average Delay			8.9			
Intersection Capacity Utiliz	ation		57.6%	IC	U Level o	of Service
Analysis Period (min)			15	10	2 20.510	. 50. 1.50
may sis i cilou (iiiii)			13			

	_	-	•	•	•	•	^	T	~	*	+	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	11	7	7	11	- 7	٦,	- 1	- 7	7	. ₽	
Traffic Volume (vph)	59	514	41	325	1030	201	45	464	308	184	347	48
Future Volume (vph)	59	514	41	325	1030	201	45	464	308	184	347	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.7	3.7	3.7	3.7	3.7	3.7
Total Lost time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.99	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1783	3500	1574	1698	3570	1540	1821	1847	1595	1806	1828	
Flt Permitted	0.19	1.00	1.00	0.45	1.00	1.00	0.39	1.00	1.00	0.31	1.00	
Satd. Flow (perm)	361	3500	1574	811	3570	1540	740	1847	1595	582	1828	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	59	514	41	325	1030	201	45	464	308	184	347	48
RTOR Reduction (vph)	0	0	22	0	0	76	0	0	195	0	4	0
Lane Group Flow (vph)	59	514	19	325	1030	125	45	464	113	184	391	0
Confl. Peds. (#/hr)	4		3	3		4	5		2	2		5
Heavy Vehicles (%)	0%	2%	0%	5%	0%	1%	0%	4%	1%	1%	3%	3%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2		2	6		6	4		4	8		
Actuated Green, G (s)	39.5	39.5	39.5	39.5	39.5	39.5	31.1	31.1	31.1	31.1	31.1	
Effective Green, g (s)	39.5	39.5	39.5	39.5	39.5	39.5	31.1	31.1	31.1	31.1	31.1	
Actuated g/C Ratio	0.47	0.47	0.47	0.47	0.47	0.47	0.37	0.37	0.37	0.37	0.37	
Clearance Time (s)	7.2	7.2	7.2	7.2	7.2	7.2	6.6	6.6	6.6	6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	168	1638	736	379	1670	720	272	680	587	214	673	
v/s Ratio Prot		0.15			0.29			0.25			0.21	
v/s Ratio Perm	0.16		0.01	c0.40		0.08	0.06		0.07	c0.32		
v/c Ratio	0.35	0.31	0.03	0.86	0.62	0.17	0.17	0.68	0.19	0.86	0.58	
Uniform Delay, d1	14.3	14.0	12.1	19.9	16.8	13.0	17.9	22.5	18.1	24.6	21.4	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.3	0.1	0.0	17.1	0.7	0.1	1.3	5.5	0.7	33.6	3.6	
Delay (s)	15.6	14.1	12.1	37.1	17.5	13.1	19.2	28.0	18.9	58.3	25.0	
Level of Service	В	В	В	D	В	В	В	С	В	E	С	
Approach Delay (s)		14.1			21.0			24.0			35.6	
Approach LOS		В			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			22.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.86									
Actuated Cycle Length (s)			84.4		um of lost				13.8			
Intersection Capacity Utiliza	ation		99.2%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 10 Report

Synchro 10 Report Page 6

2041 PM Peak Hour

200333

Paradigm Transportation Solutions Limited

2041 PM Peak Hour

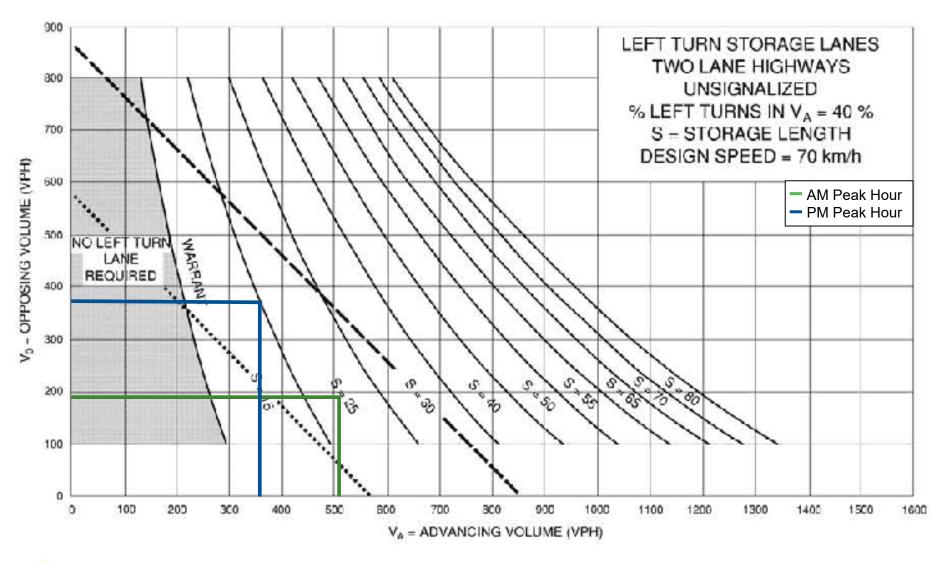
5: Heart Lake Road & Sandalwood Parkway

	•	-	•	-	1	1	1		ţ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	210	1929	195	2871	139	206	161	389	205	349	
v/c Ratio	1.24	0.84	0.88	1.18	0.37	0.42	0.33	1.01	0.40	0.63	
Control Delay	187.2	43.3	78.6	121.1	38.5	51.9	17.2	95.7	50.6	30.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	187.2	43.3	78.6	121.1	38.5	51.9	17.2	95.7	50.6	30.8	
Queue Length 50th (m)	~71.3	210.9	48.1	~421.7	32.0	57.8	12.3	~107.3	56.8	53.1	
Queue Length 95th (m)	#128.5	232.1	#92.3	#444.5	50.0	84.3	33.8	#190.4	82.5	90.7	
Internal Link Dist (m)		97.9		281.6		369.2			219.0		
Turn Bay Length (m)	35.0		60.0				30.0	90.0		35.0	
Base Capacity (vph)	169	2284	235	2442	373	491	494	384	513	555	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.24	0.84	0.83	1.18	0.37	0.42	0.33	1.01	0.40	0.63	

HCM Signalized Intersection Capacity Analysis 5: Heart Lake Road & Sandalwood Parkway

2041 PM Peak Hour 200333

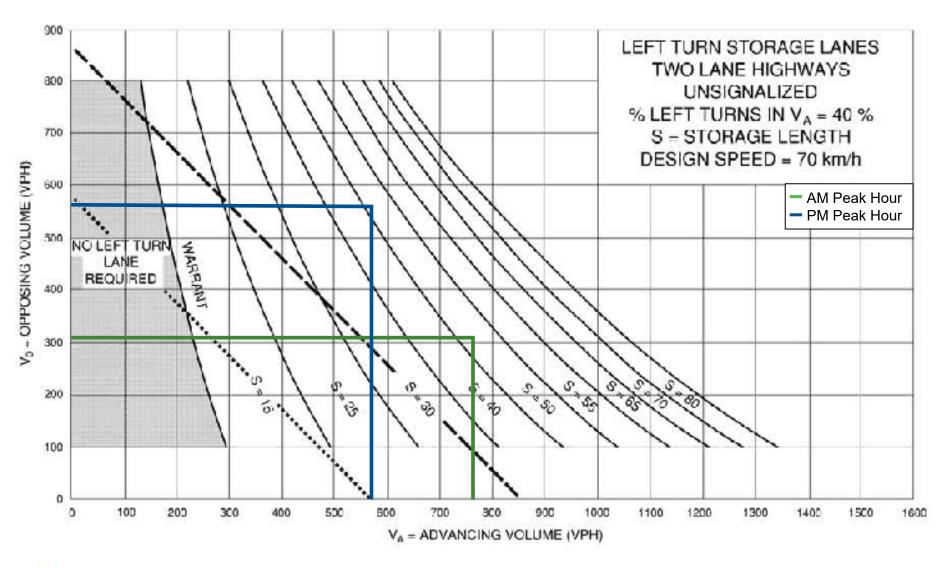
	•	→	•	•	+	•	4	†	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	44%		,	44%		,	- 1	7	,	- 1	7
Traffic Volume (vph)	210	1804	125	195	2535	336	139	206	161	389	205	349
Future Volume (vph)	210	1804	125	195	2535	336	139	206	161	389	205	349
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Total Lost time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Lane Util. Factor	1.00	0.91		1.00	0.91		1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.99
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	5011		1785	5022		1716	1842	1542	1765	1879	1576
Flt Permitted	0.05	1.00		0.05	1.00		0.53	1.00	1.00	0.50	1.00	1.00
Satd. Flow (perm)	102	5011		99	5022		950	1842	1542	923	1879	1576
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	210	1804	125	195	2535	336	139	206	161	389	205	349
RTOR Reduction (vph)	0	5	0	0	11	0	0	0	83	0	0	125
Lane Group Flow (vph)	210	1924	0	195	2860	0	139	206	78	389	205	224
Confl. Peds. (#/hr)	4		3	3		4	1		3	3		1
Heavy Vehicles (%)	1%	1%	5%	0%	0%	0%	4%	2%	2%	1%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2			6			4		4	8		8
Actuated Green, G (s)	84.2	73.2		92.0	78.0		52.0	43.0	43.0	54.0	44.0	44.0
Effective Green, g (s)	84.2	73.2		92.0	78.0		52.0	43.0	43.0	54.0	44.0	44.0
Actuated g/C Ratio	0.52	0.45		0.57	0.48		0.32	0.27	0.27	0.34	0.27	0.27
Clearance Time (s)	3.0	6.0		3.0	6.0		3.0	7.0	7.0	3.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	167	2278		222	2433		349	491	411	361	513	430
v/s Ratio Prot	c0.09	0.38		c0.09	0.57		0.02	0.11		c0.07	0.11	
v/s Ratio Perm	c0.57			0.42			0.11		0.05	c0.29		0.14
v/c Ratio	1.26	0.84		0.88	1.18		0.40	0.42	0.19	1.08	0.40	0.52
Uniform Delay, d1	51.7	38.9		50.6	41.5		40.7	48.7	45.6	53.5	47.7	49.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	155.2	4.1		30.0	83.7		0.7	2.6	1.0	69.6	2.3	4.5
Delay (s)	206.8	42.9		80.6	125.2		41.4	51.3	46.6	123.1	50.0	54.0
Level of Service	F	D		F	F		D	D	D	F	D	D
Approach Delay (s)		59.0			122.3			47.1			81.7	
Approach LOS		Е			F			D			F	
Intersection Summary												
HCM 2000 Control Delay			90.5	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Cap	acity ratio		1.18									
Actuated Cycle Length (s)			161.0		um of los				19.0			
Intersection Capacity Utiliz	ation		143.0%	IC	CU Level	of Service)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

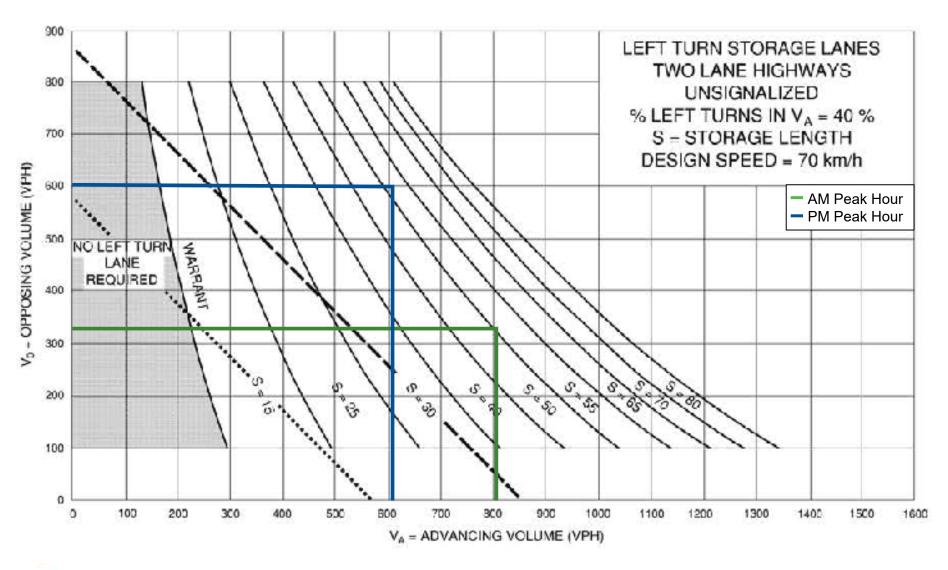

Intersection Summary				
HCM 2000 Control Delay	90.5	HCM 2000 Level of Service	F	
HCM 2000 Volume to Capacity ratio	1.18			
Actuated Cycle Length (s)	161.0	Sum of lost time (s)	19.0	
Intersection Capacity Utilization	143.0%	ICU Level of Service	Н	
Analysis Period (min)	15			
c Critical Lane Group				

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Appendix G


Left-Turn Lane Nomographs


Location:
Direction:
Horizon Year:

Heart Lake Road & Countryside Drive Southbound Left-Turn Lane Existing Traffic Volumes

Location: Direction: Horizon Year: Heart Lake Road & Countryside Drive Southbound Left-Turn Lane 2031 Horizon Traffic Volumes

Location: Direction: Horizon Year: Heart Lake Road & Countryside Drive Southbound Left-Turn Lane 2041 Horizon Traffic Volumes

Appendix H

Signal Warrant Analysis Sheets

Results Sheet
Input Sheet
Analysis Sheet
Proposed Collision
G0 T0 Justification:

Count Date: Base Year

Summary Results

	Justification	Compliance	Signal Ju	Signal Justified?			
`	Justilication	Compliance	YES	NO			
1. Minimum Vehicular	A Total Volume	91 %					
Volume B Cro	B Crossing Volume	100 %		~			
2. Delay to Cross	A Main Road	62 %					
Traffic	B Crossing Road	100 %		w			
3. Combination	A Justificaton 1	91 %					
	B Justification 2	62 %		w			
4. 4-Hr Volume		75 %		₩			

Results Sheet

Input Sheet

Analysis Sheet

Proposed Collision

G0 T0 Justification:

Intersection: Heart Lake Road/Country Side Drive

Count Date: 2031

Summary Results

	Justification	Compliance	Signal Ju	stified?
`	rustilication	Compliance	YES	NO
1. Minimum Vehicular	A Total Volume	100 %		
Volume B Cro	B Crossing Volume	100 %		
2. Delay to Cross	A Main Road	83 %		
Traffic	B Crossing Road	100 %		No.
3. Combination	A Justificaton 1	100 %		
	B Justification 2	83 %	F	
4. 4-Hr Volume		100 %	F	

Results Sheet Input Sheet Analysis Sheet Proposed Collision G0 T0 Justification:

Intersection: Heart Lake Road/Country Side Drive

Count Date: 2041

Summary Results

	Justification	Compliance	Signal Ju	Signal Justified?			
`	Justilication	Compliance	YES	NO			
1. Minimum Vehicular	A Total Volume	100 %					
Volume	B Crossing Volume	100 %	7				
2. Delay to Cross	A Main Road	86 %					
Traffic	B Crossing Road	100 %	Ī	¥			
3. Combination	A Justificaton 1	100 %					
	B Justification 2	86 %	₹				
4. 4-Hr Volume		100 %	¥.	0			

Appendix I

Traffic Signal Control Synchro Analysis Outputs

2031 AM Peak Hour - Signal 200333

2: Heart Lake Road & Countryside Drive

	•	•	Ť	1	-	ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	443	222	83	223	492	268
v/c Ratio	0.67	0.31	0.21	0.44	0.62	0.28
Control Delay	32.5	4.2	34.4	7.6	18.7	15.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.5	4.2	34.4	7.6	18.7	15.0
Queue Length 50th (m)	74.6	0.0	14.1	0.0	60.4	29.9
Queue Length 95th (m)	110.5	15.0	27.6	19.2	88.8	46.7
Internal Link Dist (m)	1354.0		1063.6			1215.6
Turn Bay Length (m)				10.0	50.0	
Base Capacity (vph)	660	724	394	511	794	958
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.67	0.31	0.21	0.44	0.62	0.28
l-t						

HCM Signalized Intersection Capacity Analysis 2: Heart Lake Road & Countryside Drive

2031 AM Peak Hour - Signal __200333

	•	•	†	1	•	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	, i	7	- 1	7	٦	4			
Traffic Volume (vph)	443	222	83	223	492	268			
Future Volume (vph)	443	222	83	223	492	268			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5			
Total Lost time (s)	6.0	6.0	6.0	6.0	3.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	1785	1581	1879	1597	1785	1879			
Flt Permitted	0.95	1.00	1.00	1.00	0.62	1.00			
Satd. Flow (perm)	1785	1581	1879	1597	1156	1879			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	443	222	83	223	492	268			
RTOR Reduction (vph)	0	140	0	176	0	0			
Lane Group Flow (vph)	443	82	83	47	492	268			
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%			
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA			
Protected Phases	8	1 Cilli	2	1 Cilli	1	6			
Permitted Phases		8		2	6				
Actuated Green, G (s)	37.0	37.0	21.0	21.0	51.0	51.0			
Effective Green, q (s)	37.0	37.0	21.0	21.0	51.0	51.0			
Actuated g/C Ratio	0.37	0.37	0.21	0.21	0.51	0.51			
Clearance Time (s)	6.0	6.0	6.0	6.0	3.0	6.0			
Lane Grp Cap (vph)	660	584	394	335	759	958			
v/s Ratio Prot	c0.25	001	0.04	000	c0.17	0.14			
v/s Ratio Perm	50.20	0.05	0.01	0.03	c0.16	· · · ·			
v/c Ratio	0.67	0.14	0.21	0.14	0.65	0.28			
Uniform Delay, d1	26.4	20.9	32.6	32.1	16.6	14.0			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	5.4	0.5	1.2	0.9	4.3	0.7			
Delay (s)	31.8	21.4	33.9	33.0	20.9	14.7			
Level of Service	C	C	C	C	C	В			
Approach Delay (s)	28.3		33.2			18.7			
Approach LOS	C		C			В			
Intersection Summary									
HCM 2000 Control Delay			25.0	H	ICM 2000	Level of Service	e	С	
HCM 2000 Volume to Capa	acity ratio		0.68						
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)		15.0	
Intersection Capacity Utiliza	ation		68.5%	10	CU Level	of Service		С	
Analysis Period (min)			15						
c Critical Lane Group									

2031 PM Peak Hour - Signal 200333

2: Heart Lake Road & Countryside Drive

	€	•	1	1		ŧ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	593	463	141	430	356	221
v/c Ratio	0.68	0.46	0.43	0.36	0.62	0.30
Control Delay	28.4	3.1	48.8	3.0	29.5	25.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.4	3.1	48.8	3.0	29.5	25.3
Queue Length 50th (m)	109.2	0.0	31.5	11.3	61.6	36.3
Queue Length 95th (m)	152.5	17.0	52.3	22.1	89.4	56.1
Internal Link Dist (m)	1354.0		1063.6			1215.6
Turn Bay Length (m)				10.0	50.0	
Base Capacity (vph)	868	1012	328	1208	578	744
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.68	0.46	0.43	0.36	0.62	0.30
Internaction Cummon						

HCM Signalized Intersection Capacity Analysis 2: Heart Lake Road & Countryside Drive

2031 PM Peak Hour - Signal _ 200333

	•	•	†	*	·	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	7	- 4	7	7	4		_
Traffic Volume (vph)	593	463	141	430	356	221		
Future Volume (vph)	593	463	141	430	356	221		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5		
Total Lost time (s)	6.0	6.0	6.0	6.0	3.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)	1767	1581	1879	1581	1750	1824		
Flt Permitted	0.95	1.00	1.00	1.00	0.52	1.00		
Satd. Flow (perm)	1767	1581	1879	1581	952	1824		
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00		
Adj. Flow (vph)	593	463	141	430	356	221		
RTOR Reduction (vph)	0	235	0	89	0	0		
Lane Group Flow (vph)	593	228	141	341	356	221		
Heavy Vehicles (%)	1%	1%	0%	1%	2%	3%		
Turn Type	Prot	Perm	NA	pm+ov	pm+pt	NA		
Protected Phases	8		2	8	1	6		
Permitted Phases		8		2	6			
Actuated Green, G (s)	59.0	59.0	21.0	80.0	49.0	49.0		
Effective Green, q (s)	59.0	59.0	21.0	80.0	49.0	49.0		
Actuated g/C Ratio	0.49	0.49	0.18	0.67	0.41	0.41		
Clearance Time (s)	6.0	6.0	6.0	6.0	3.0	6.0		
Lane Grp Cap (vph)	868	777	328	1133	554	744		
v/s Ratio Prot	c0.34		0.08	0.15	c0.13	0.12		
v/s Ratio Perm		0.14		0.07	c0.13			
v/c Ratio	0.68	0.29	0.43	0.30	0.64	0.30		
Uniform Delay, d1	23.3	18.1	44.2	8.3	26.5	23.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	4.3	1.0	4.1	0.7	5.6	1.0		
Delay (s)	27.7	19.1	48.2	9.0	32.2	24.9		
Level of Service	С	В	D	Α	С	С		
Approach Delay (s)	23.9		18.7			29.4		
Approach LOS	С		В			С		
Intersection Summary								
HCM 2000 Control Delay			24.0	— Н	CM 2000	Level of Serv	ce	С
HCM 2000 Volume to Capa	acity ratio		0.68					
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)	15	.0
Intersection Capacity Utiliza	ation		73.3%	IC	CU Level o	of Service		D
Analysis Period (min)			15					

Analysis Period (min) c Critical Lane Group

2041 AM Peak Hour - Signal 200333

2: Heart Lake Road & Countryside Drive

	•	•	Ť	~	*	+
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	468	232	87	237	522	284
v/c Ratio	0.71	0.32	0.24	0.48	0.65	0.30
Control Delay	34.0	4.2	36.6	8.2	19.5	15.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.0	4.2	36.6	8.2	19.5	15.2
Queue Length 50th (m)	80.4	0.0	15.2	0.0	65.6	32.0
Queue Length 95th (m)	118.7	15.3	29.3	20.3	96.1	49.4
Internal Link Dist (m)	1354.0		1063.6			1215.6
Turn Bay Length (m)				10.0	50.0	
Base Capacity (vph)	660	731	357	495	801	958
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.32	0.24	0.48	0.65	0.30
Intersection Cummen						

HCM Signalized Intersection Capacity Analysis 2: Heart Lake Road & Countryside Drive 2041 AM Peak Hour - Signal 200333

	•	•	†	<i>/</i> *	~	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	'n	7	- 1	7	'n	1			
Traffic Volume (vph)	468	232	87	237	522	284			
Future Volume (vph)	468	232	87	237	522	284			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5			
Total Lost time (s)	6.0	6.0	6.0	6.0	3.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	1785	1581	1879	1597	1785	1879			
Flt Permitted	0.95	1.00	1.00	1.00	0.61	1.00			
Satd. Flow (perm)	1785	1581	1879	1597	1137	1879			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	468	232	87	237	522	284			
RTOR Reduction (vph)	0	146	0	192	0	0			
Lane Group Flow (vph)	468	86	87	45	522	284			
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%			
Turn Type	Prot	Perm	NA	Perm	pm+pt	NA			
Protected Phases	8		2		1	6			
Permitted Phases		8		2	6				
Actuated Green, G (s)	37.0	37.0	19.0	19.0	51.0	51.0			
Effective Green, g (s)	37.0	37.0	19.0	19.0	51.0	51.0			
Actuated g/C Ratio	0.37	0.37	0.19	0.19	0.51	0.51			
Clearance Time (s)	6.0	6.0	6.0	6.0	3.0	6.0			
Lane Grp Cap (vph)	660	584	357	303	767	958			
v/s Ratio Prot	c0.26		0.05		c0.20	0.15			
v/s Ratio Perm		0.05		0.03	c0.15				
v/c Ratio	0.71	0.15	0.24	0.15	0.68	0.30			
Uniform Delay, d1	26.9	21.0	34.4	33.8	17.0	14.1			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	6.3	0.5	1.6	1.0	4.8	0.8			
Delay (s)	33.2	21.5	36.0	34.8	21.9	14.9			
Level of Service	С	С	D	С	С	В			
Approach Delay (s)	29.4		35.1			19.4			
Approach LOS	С		D			В			
Intersection Summary									
HCM 2000 Control Delay			26.0	H	ICM 2000	Level of Servi	се	С	
HCM 2000 Volume to Capa	city ratio		0.71						
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)		15.0	
Intersection Capacity Utiliza	ition		71.5%	10	CU Level	of Service		С	
Analysis Period (min)			15						
c Critical Lane Group									

2041 PM Peak Hour - Signal 200333

2: Heart Lake Road & Countryside Drive

	•	•	Ť	1		ţ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	629	490	149	456	375	233
v/c Ratio	0.74	0.48	0.48	0.39	0.64	0.31
Control Delay	31.3	3.3	51.0	3.9	29.5	24.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.3	3.3	51.0	3.9	29.5	24.8
Queue Length 50th (m)	121.6	0.0	33.8	15.4	64.7	38.0
Queue Length 95th (m)	169.8	17.7	55.6	29.3	93.4	58.2
Internal Link Dist (m)	1354.0		1063.6			1215.6
Turn Bay Length (m)				10.0	50.0	
Base Capacity (vph)	854	1017	313	1183	588	760
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.74	0.48	0.48	0.39	0.64	0.31
Interesetion Cummen						

HCM Signalized Intersection Capacity Analysis 2: Heart Lake Road & Countryside Drive

2041 PM Peak Hour - Signal 200333

	€	•	†	1	1	ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	T)	7	- 4	7	7	4			
Traffic Volume (vph)	629	490	149	456	375	233			
Future Volume (vph)	629	490	149	456	375	233			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.5	3.5	3.5	3.5			
Total Lost time (s)	6.0	6.0	6.0	6.0	3.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	1767	1581	1879	1581	1750	1824			
Flt Permitted	0.95	1.00	1.00	1.00	0.49	1.00			
Satd. Flow (perm)	1767	1581	1879	1581	900	1824			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00			
Adj. Flow (vph)	629	490	149	456	375	233			
RTOR Reduction (vph)	023	253	0	89	0	0			
Lane Group Flow (vph)	629	237	149	367	375	233			
Heavy Vehicles (%)	1%	1%	0%	1%	2%	3%			
Turn Type	Prot	Perm	NA	pm+ov	pm+pt	NA			
Protected Phases	8	Pellii	NA 2	piii+0v 8	рпі+рі 1	6 6			
Permitted Phases	0	8		2	6	U			
Actuated Green, G (s)	58.0	58.0	20.0	78.0	50.0	50.0			
Effective Green, g (s)	58.0	58.0	20.0	78.0	50.0	50.0			
Actuated g/C Ratio	0.48	0.48	0.17	0.65	0.42	0.42			
Clearance Time (s)	6.0	6.0	6.0	6.0	3.0	6.0			
	854	764	313	1106	566	760			
Lane Grp Cap (vph)		764							
v/s Ratio Prot	c0.36	0.15	0.08	0.16	c0.15	0.13			
v/s Ratio Perm	0.74		0.40	0.07	c0.13	0.04			
v/c Ratio	0.74	0.31	0.48	0.33	0.66	0.31			
Uniform Delay, d1	24.9	18.8	45.3	9.4	26.2	23.4			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	5.6	1.1	5.1	0.8	6.0	1.0			
Delay (s)	30.5	19.9	50.4	10.2	32.2	24.5			
Level of Service	C	В	D	В	С	C			
Approach Delay (s)	25.9		20.1			29.2			
Approach LOS	С		С			С			
Intersection Summary									
HCM 2000 Control Delay			25.2	H	ICM 2000	Level of Service	e	С	
HCM 2000 Volume to Capa	acity ratio		0.72						
Actuated Cycle Length (s)			120.0	S	Sum of los	t time (s)		15.0	
Intersection Capacity Utiliz	ation		76.8%	10	CU Level	of Service		D	
Analysis Period (min)			15						

25.2	HCM 2000 Level of Service	С	
0.72			
120.0	Sum of lost time (s)	15.0	
76.8%	ICU Level of Service	D	
15			
	0.72 120.0 76.8%	0.72 120.0 Sum of lost time (s) 76.8% ICU Level of Service	0.72 120.0 Sum of lost time (s) 15.0 76.8% ICU Level of Service D

Appendix J

Roundabout Screening

							2041 Future Traffic Volumes							
Intersection					AM				PM					
Intersection	Movement	Volume	Approach	E	С	E+C	Result	Movement	Volume	Approach	E	С	E + C Result	
Heart Lake Road at Countryside Drive	EBL		EB	0	1274	1274		EBL		EB	0	1237	1237	
	EBT				1274			EBT				1237		
	EBR				1274			EBR				1237		
	WBL	468	WB	700	87	787	Single-lane entry likely sufficient	WBL	629	WB	1119	149	1268 Single-lane entry likely sufficient	
	WBT				87			WBT				149		
	WBR	232			87			WBR	490			149		
	NBL		NB	324	522	846	Single-lane entry likely sufficient	NBL		NB	605	375	980 Single-lane entry likely sufficient	
	NBT	87			522			NBT	149			375		
	NBR	237			522			NBR	456			375		
	SBL	522	SB	806	468	1274	Single-lane entry likely sufficient	SBL	375	SB	608	629	1237 Single-lane entry likely sufficient	
	SBT	284			468			SBT	233			629		
	SBR				468			SBR				629		
	Total	1830	Total	1830	-			Total	2332	Total	2332	-		

E - Entry Flow

C - Circulating Flow

From the MTO Roundabout Feasibility Initial Screening Tool Version 1.0 It identifies the capacity guidelines for multi-lane entries as follows: Entry flow + circulating flow < 1400 vph, use single lane entry 1400 vph < entry flow + circulating flow < 2200 vph, use two-lane entry Entry flow + circulating flow > 2200 vph, use three-lane entry

 $This is generally consistent with NCHRP\ Report\ 675\ Roundabouts:\ An Informational\ Guide, Second\ Edition$

Volume Range (sum of entering and conflicting volumes)

0 to 1,000 vph 1,000 to 1,300 vph

1,000 to 1,300 vph 1,300 to 1,800 vph

1,800 vph

Number of Lanes Required

Single-lane entry likely to be sufficient Two-lane entry may be needed

Two-lane entry likely to be sufficient

More than two entering lanes may be required

Appendix K

Roundabout ARCADY Analysis Outputs

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Heart Lake and Country Side.arc8

Path: C:\Users\AdamMorrison\OneDrive - Paradigm\Desktop\Projects\200333 Report generation date: 2021-04-14 11:21:40 AM

Summary of intersection performance

			Α	М			
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS
			A1 -	2031			
Intersection 1 - Leg North	3.45	10.20	15.29	0.78	С		
Intersection 1 - Leg South	0.48	1.02	5.19	0.32	Α	10.10	В
Intersection 1 - Leg East	1.29	1.02	6.41	0.56	Α		
Intersection 2 - Leg North	3.45	10.20	15.30	0.78	С		
Intersection 2 - Leg South	0.48	1.02	5.19	0.32	Α	9.36	A
Intersection 2 - Leg East	0.61	1.02	4.49	0.37	Α		
Intersection 3 - Leg North	3.45	10.20	15.30	0.78	С		
Intersection 3 - Leg South	0.48	1.02	5.19	0.32	Α	8.79	A
Intersection 3 - Leg East	0.61	1.02	3.01	0.37	Α		

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages.

"D1 - 2031, AM " model duration: 8:00 AM - 9:30 AM "D2 - 2031, PM" model duration: 4:00 PM - 5:30 PM "D3 - 2041, AM" model duration: 8:00 AM - 9:30 AM "D4 - 2041, PM" model duration: 4:00 PM - 5:30 PM

Run using Junctions 8.0.6.541 at 2021-04-14 11:21:39 AM

File summary

Title	(untitled)
Location	
Site Number	
Date	2021-04-14
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.50	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - 2031, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship	
2031, AM	2031	AM		ONE HOUR	08:00	09:30	90	15				✓			

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	Single-Lanes	Roundabout	North,South,East				10.10	В
2	2	Single-Lane + WB Bypass	Roundabout	North,South,East				9.36	А
3	3	Patial Dual Lane	Roundabout	North,South,East				8.79	Α

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	North	North	Heart Lake Road	
1	South	South	Heart Lake Road	
1	East	East	Countryside Drive	
2	North	North	Heart Lake Road	
2	South	South	Heart Lake Road	
2	East	East	Countryside Drive	
3	North	North	Heart Lake Road	
3	South	South	Heart Lake Road	
3	East	East	Countryside Drive	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00
2	South	0.00	99999.00		0.00
2	East	0.00	99999.00		0.00
3	North	0.00	99999.00		0.00
3	South	0.00	99999.00		0.00
3	East	0.00	99999.00		0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half-width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	40.00	25.00	
2	South	3.50	4.50	30.00	20.00	40.00	25.00	
2	East	3.50	4.50	30.00	20.00	40.00	25.00	
3	North	3.50	4.50	30.00	20.00	40.00	25.00	
3	South	3.50	4.50	30.00	20.00	40.00	25.00	
3	East	3.50	8.00	30.00	20.00	45.00	25.00	

Bypass

Intersection	Leg	Leg Has Bypass	Bypass Utilisation (%)
1	North		
1	South		
1	East		
2	North		
2	South		
2	East	✓	100
3	North		
3	South		
3	East		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1357.445
1	South		(calculated)	(calculated)	0.579	1357.445
1	East		(calculated)	(calculated)	0.579	1357.445
2	North		(calculated)	(calculated)	0.579	1357.445
2	South		(calculated)	(calculated)	0.579	1357.445
2	East		(calculated)	(calculated)	0.579	1357.445
3	North		(calculated)	(calculated)	0.579	1357.445
3	South		(calculated)	(calculated)	0.579	1357.445
3	East		(calculated)	(calculated)	0.695	2016.168

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)
1	North	ONE HOUR	✓	760.00	100.000
1	South	ONE HOUR	✓	306.00	100.000
1	East	ONE HOUR	✓	665.00	100.000
2	North	ONE HOUR	✓	760.00	100.000
2	South	ONE HOUR	✓	306.00	100.000
2	East	ONE HOUR	✓	665.00	100.000
3	North	ONE HOUR	✓	760.00	100.000
3	South	ONE HOUR	✓	306.00	100.000
3	East	ONE HOUR	✓	665.00	100.000

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То				
		North	South	East	
F	North	0.000	268.000	492.000	
From	South	83.000	0.000	223.000	
	East	222.000	443.000	0.000	

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То					
		North	South	East		
From	North	0.00	0.35	0.65		
110111	South	0.27	0.00	0.73		

	East	0.33	0.67	0.00
--	------	------	------	------

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То				
		North	South	East	
Fram	North	0.000	268.000	492.000	
From	South	83.000	0.000	223.000	
	East	222.000	443.000	0.000	

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То					
		North	South	East		
Fram	North	0.00	0.35	0.65		
From	South	0.27	0.00	0.73		
	East	0.33	0.67	0.00		

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

	То					
		North	South	East		
F	North	0.000	268.000	492.000		
From	South	83.000	0.000	223.000		
	East	222.000	443.000	0.000		

Turning Proportions (PCE) - Intersection 3 (for whole period)

	То					
From		North	South	East		
	North	0.00	0.35	0.65		
	South	0.27	0.00	0.73		
	East	0.33	0.67	0.00		

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

	То					
		North	South	East		
From	North	1.020	1.020	1.020		
From	South	1.020	1.020	1.020		
	East	1.020	1.020	1.020		

Truck Percentages - Intersection 1 (for whole period)

		To)	
		North	South	East
From	North	2.0	2.0	2.0
	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Average PCE Per Vehicle - Intersection 2 (for whole period)

		To)	
		North	South	East
From	North	1.020	1.020	1.020
	South	1.020	1.020	1.020
	East	1.020	1.020	1.020

Truck Percentages - Intersection 2 (for whole period)

		Т		
		North	South	East
From	North	2.0	2.0	2.0
	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Average PCE Per Vehicle - Intersection 3 (for whole period)

		To	.	
		North	South	East
From	North	1.020	1.020	1.020
	South	1.020	1.020	1.020
	East	1.020	1.020	1.020

Truck Percentages - Intersection 3 (for whole period)

		To)	
		North	South	East
From	North	2.0	2.0	2.0
	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE-min)	Inclusive Average Queueing Delay (s)
1	North	0.78	15.29	3.45	10.20	С	697.39	1046.08	173.44	9.95	1.93	173.46	9.95
1	South	0.32	5.19	0.48	1.02	Α	280.79	421.19	32.19	4.59	0.36	32.20	4.59
1	East	0.56	6.41	1.29	1.02	Α	610.22	915.32	82.16	5.39	0.91	82.17	5.39
2	North	0.78	15.30	3.45	10.20	С	697.39	1046.08	173.50	9.95	1.93	173.52	9.95
2	South	0.32	5.19	0.48	1.02	Α	280.79	421.19	32.19	4.59	0.36	32.20	4.59
2	East	0.37	4.49	0.61	1.02	Α	610.22	609.76	41.59	4.09	0.46	41.59	4.09
3	North	0.78	15.30	3.45	10.20	С	697.39	1046.08	173.53	9.95	1.93	173.56	9.95
3	South	0.32	5.19	0.48	1.02	Α	280.79	421.19	32.19	4.59	0.36	32.20	4.59
3	East	0.37	3.01	0.61	1.02	Α	610.22	915.32	41.91	2.75	0.47	41.92	2.75

Main Results for each time segment

Main results: (08:00-08:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	572.17		143.04			568.28	228.52	331.87	0.00	1165.37	895.93	0.491	0.00	0.97	6.112	Α
1	South	230.37		57.59			229.35	532.26	367.89	0.00	1144.53	1021.77	0.201	0.00	0.26	4.008	Α
1	East	500.65		125.16			498.18	535.03	62.21	0.00	1321.44	1197.04	0.379	0.00	0.62	4.447	Α
2	North	572.17	572.17	143.04	0.00	167.13	568.28	62.21	332.14	0.00	1165.21	672.26	0.491	0.00	0.97	6.113	Α
2	South	230.37	230.37	57.59	0.00	0.00	229.35	532.54	367.89	0.00	1144.53	1105.57	0.201	0.00	0.26	4.008	Α
2	East	500.65	333.51	83.38	167.13	0.00	332.14	535.03	62.21	0.00	1321.44	1183.89	0.252	0.00	0.34	3.707	Α
3	North	572.17		143.04			568.28	228.88	332.59	0.00	1164.95	660.74	0.491	0.00	0.97	6.116	Α
3	South	230.37		57.59			229.35	532.99	367.89	0.00	1144.53	1109.89	0.201	0.00	0.26	4.008	Α
3	East	500.65		125.16			499.26	535.03	62.21	0.00	1972.95	1807.03	0.254	0.00	0.35	2.489	Α

Main results: (08:15-08:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	683.22		170.81			680.97	273.80	397.65	0.00	1127.30	895.93	0.606	0.97	1.53	8.184	Α
1	South	275.09		68.77			274.76	637.78	440.84	0.00	1102.31	1021.77	0.250	0.26	0.34	4.434	Α
1	East	597.82		149.46			596.92	641.07	74.53	0.00	1314.31	1197.04	0.455	0.62	0.84	5.112	Α
2	North	683.22	683.22	170.81	0.00	199.57	680.97	74.53	397.86	0.00	1127.18	672.26	0.606	0.97	1.54	8.186	Α
2	South	275.09	275.09	68.77	0.00	0.00	274.76	637.99	440.84	0.00	1102.31	1105.57	0.250	0.26	0.34	4.434	Α
2	East	597.82	398.25	99.56	199.57	0.00	397.86	641.07	74.53	0.00	1314.31	1183.89	0.303	0.34	0.44	4.005	Α
3	North	683.22		170.81			680.97	273.97	397.98	0.00	1127.11	660.74	0.606	0.97	1.54	8.188	Α
3	South	275.09		68.77			274.76	638.12	440.84	0.00	1102.31	1109.89	0.250	0.26	0.34	4.434	Α
3	East	597.82		149.46			597.43	641.07	74.53	0.00	1964.39	1807.03	0.304	0.35	0.44	2.686	Α

Main results: (08:30-08:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1 1	North	836.78		209.19			829.58	335.07	486.57	0.00	1075.84	895.93	0.778	1.53	3.33	14.498	В
1 8	South	336.91		84.23			336.34	779.11	537.04	0.00	1046.63	1021.77	0.322	0.34	0.48	5.165	Α
1	East	732.18		183.04			730.41	782.15	91.23	0.00	1304.65	1197.04	0.561	0.84	1.28	6.376	Α
2 1	North	836.78	836.78	209.19	0.00	244.43	829.56	91.23	487.10	0.00	1075.53	672.26	0.778	1.54	3.34	14.514	В
2 8	South	336.91	336.91	84.23	0.00	0.00	336.34	779.63	537.03	0.00	1046.63	1105.57	0.322	0.34	0.48	5.165	Α
2	East	732.18	487.75	121.94	244.43	0.00	487.10	782.14	91.23	0.00	1304.65	1183.89	0.374	0.44	0.60	4.487	Α
3 1	North	836.78		209.19			829.56	335.44	487.31	0.00	1075.41	660.74	0.778	1.54	3.34	14.520	В
3 8	South	336.91		84.23			336.34	779.84	537.03	0.00	1046.63	1109.89	0.322	0.34	0.48	5.165	Α

I	3	East	732.18	183.04		731.52	782.14	91.23	0.00	1952.79	1807.03	0.375	0.44	0.61	3.005	A	

Main results: (08:45-09:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	836.78		209.19			836.31	335.79	487.73	0.00	1075.17	895.93	0.778	3.33	3.45	15.294	С
1	South	336.91		84.23			336.90	782.64	541.40	0.00	1044.10	1021.77	0.323	0.48	0.48	5.191	Α
1	East	732.18		183.04			732.14	786.92	91.38	0.00	1304.56	1197.04	0.561	1.28	1.29	6.414	Α
2	North	836.78	836.78	209.19	0.00	244.43	836.32	91.38	487.74	0.00	1075.16	672.26	0.778	3.34	3.45	15.296	С
2	South	336.91	336.91	84.23	0.00	0.00	336.90	782.66	541.41	0.00	1044.10	1105.57	0.323	0.48	0.48	5.191	Α
2	East	732.18	487.75	121.94	244.43	0.00	487.74	786.93	91.38	0.00	1304.56	1183.89	0.374	0.60	0.61	4.495	Α
3	North	836.78		209.19			836.33	335.81	487.75	0.00	1075.16	660.74	0.778	3.34	3.45	15.296	С
3	South	336.91		84.23			336.90	782.66	541.41	0.00	1044.10	1109.89	0.323	0.48	0.48	5.191	Α
3	East	732.18		183.04			732.17	786.93	91.38	0.00	1952.69	1807.03	0.375	0.61	0.61	3.007	Α

Main results: (09:00-09:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	683.22		170.81			690.59	274.92	399.41	0.00	1126.29	895.93	0.607	3.45	1.61	8.566	Α
1	South	275.09		68.77			275.65	642.93	447.07	0.00	1098.70	1021.77	0.250	0.48	0.34	4.464	Α
1	East	597.82		149.46			599.56	647.95	74.77	0.00	1314.17	1197.04	0.455	1.29	0.86	5.152	Α
2	North	683.22	683.22	170.81	0.00	199.57	690.60	74.77	398.89	0.00	1126.58	672.26	0.606	3.45	1.61	8.558	Α
2	South	275.09	275.09	68.77	0.00	0.00	275.65	642.42	447.07	0.00	1098.70	1105.57	0.250	0.48	0.34	4.465	Α
2	East	597.82	398.25	99.56	199.57	0.00	398.89	647.96	74.77	0.00	1314.17	1183.89	0.303	0.61	0.45	4.016	Α
3	North	683.22		170.81			690.60	274.56	398.68	0.00	1126.71	660.74	0.606	3.45	1.61	8.556	Α
3	South	275.09		68.77			275.65	642.21	447.08	0.00	1098.70	1109.89	0.250	0.48	0.34	4.465	Α
3	East	597.82		149.46			598.47	647.96	74.77	0.00	1964.23	1807.03	0.304	0.61	0.45	2.691	Α

Main results: (09:15-09:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	572.17		143.04			574.61	230.02	334.13	0.00	1164.06	895.93	0.492	1.61	1.00	6.256	Α
1	South	230.37		57.59			230.71	536.76	371.98	0.00	1142.16	1021.77	0.202	0.34	0.26	4.029	Α
1	East	500.65		125.16			501.58	540.11	62.58	0.00	1321.23	1197.04	0.379	0.86	0.63	4.484	Α
2	North	572.17	572.17	143.04	0.00	167.13	574.60	62.58	333.91	0.00	1164.19	672.26	0.491	1.61	1.00	6.255	Α
2	South	230.37	230.37	57.59	0.00	0.00	230.71	536.54	371.98	0.00	1142.16	1105.57	0.202	0.34	0.26	4.031	Α
2	East	500.65	333.51	83.38	167.13	0.00	333.91	540.11	62.58	0.00	1321.23	1183.89	0.252	0.45	0.35	3.719	Α
3	North	572.17		143.04			574.60	229.84	333.78	0.00	1164.27	660.74	0.491	1.61	1.00	6.254	Α
3	South	230.37		57.59			230.71	536.40	371.98	0.00	1142.16	1109.89	0.202	0.34	0.26	4.029	Α
3	East	500.65		125.16			501.05	540.11	62.58	0.00	1972.70	1807.03	0.254	0.45	0.35	2.497	Α

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	13.94	0.93	6.112	А	A
1	South	3.75	0.25	4.008	А	A
1	East	8.99	0.60	4.447	Α	A
2	North	13.95	0.93	6.113	А	A
2	South	3.75	0.25	4.008	A	A
2	East	5.02	0.33	3.707	A	A
3	North	13.95	0.93	6.116	А	A
3	South	3.75	0.25	4.008	A	A
3	East	5.10	0.34	2.489	A	A

Queueing Delay results: (08:15-08:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	21.99	1.47	8.184	Α	A
1	South	4.97	0.33	4.434	A	A
1	East	12.33	0.82	5.112	Α	A
2	North	22.00	1.47	8.186	А	A
2	South	4.97	0.33	4.434	A	A
2	East	6.50	0.43	4.005	Α	A
3	North	22.00	1.47	8.188	А	A
3	South	4.97	0.33	4.434	A	A
3	East	6.58	0.44	2.686	Α	A

Queueing Delay results: (08:30-08:45)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	45.19	3.01	14.498	В	В
1	South	7.04	0.47	5.165	А	A
1	East	18.58	1.24	6.376	Α	A
2	North	45.24	3.02	14.514	В	В
2	South	7.04	0.47	5.165	Α	A
2	East	8.88	0.59	4.487	Α	A
3	North	45.26	3.02	14.520	В	В
3	South	7.04	0.47	5.165	A	A
3	East	8.98	0.60	3.005	Α	A

Queueing Delay results: (08:45-09:00)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service					
1	North	51.07	3.40	15.294	С	В					
1	South	7.24	0.48	5.191	А	A					
1	East	19.36	1.29	6.414	Α	A					
2	North	51.10	3.41	15.296	С	В					
2	South	7.24	0.48	5.191	А	A					
2	East	9.09	0.61	4.495	A	A					
3	North	51.11	3.41	15.296	С	В					
3	South	7.24	0.48	5.191	А	A					
3	East	9.14	0.61	3.007	A	Α					

Queueing Delay results: (09:00-09:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	25.69	1.71	8.566	А	Α
1	South	5.25	0.35	4.464	А	Α
1	East	13.28	0.89	5.152	А	A
2	North	25.67	1.71	8.558	A	Α
2	South	5.25	0.35	4.465	А	A
2	East	6.82	0.45	4.016	Α	A
3	North	25.66	1.71	8.556	Α	А
3	South	5.25	0.35	4.465	A	A
3	East	6.82	0.45	2.691	Α	A

Queueing Delay results: (09:15-09:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	15.55	1.04	6.256	А	A
1	South	3.95	0.26	4.029	А	Α
1	East	9.62	0.64	4.484	Α	A
2	North	15.54	1.04	6.255	А	A
2	South	3.95	0.26	4.031	А	Α
2	East	5.28	0.35	3.719	Α	A
3	North	15.54	1.04	6.254	А	A
3	South	3.95	0.26	4.029	A	Α
3	East	5.29	0.35	2.497	Α	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.97	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.62	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.97	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.97	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.53	0.00	0.00	3.06	4.08			N/A	N/A
1	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.84	0.00	0.00	0.00	1.02			N/A	N/A
2	North	1.54	0.00	0.00	3.06	4.08			N/A	N/A
2	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.44	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.54	0.00	0.00	3.06	4.08			N/A	N/A
3	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.44	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	3.33	0.00	0.00	2.04	10.20			N/A	N/A
1	South	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.28	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	3.34	0.00	0.00	2.04	10.20			N/A	N/A
2	South	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.60	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	3.34	0.00	0.00	2.04	10.20			N/A	N/A
3	South	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.61	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	3.45	0.00	0.00	0.00	6.12			N/A	N/A
1	South	0.48	0.00	0.00	0.00	1.02			N/A	N/A
1	East	1.29	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	3.45	0.00	0.00	0.00	6.12			N/A	N/A
2	South	0.48	0.00	0.00	0.00	1.02			N/A	N/A
2	East	0.61	0.00	0.00	0.00	1.02			N/A	N/A
3	North	3.45	0.00	0.00	0.00	6.12			N/A	N/A
3	South	0.48	0.00	0.00	0.00	1.02			N/A	N/A
3	East	0.61	0.00	0.00	0.00	1.02			N/A	N/A

Queue Variation results: (09:00-09:15)

			•		•					
Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.61	0.00	0.00	3.06	5.10			N/A	N/A
1	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.86	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	1.61	0.00	0.00	3.06	5.10			N/A	N/A
2	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.45	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.61	0.00	0.00	3.06	5.10			N/A	N/A
3	South	0.34	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.45	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (09:15-09:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.00	0.00	0.00	1.02	3.06			N/A	N/A
1	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.63	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	1.00	0.00	0.00	1.02	3.06			N/A	N/A
							Percentiles could not be calculated. This may be			

2	South	0.26	~1	~1	~1	~1	because the mean queue is very small or very big.	N/A	N/A
2	East	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	North	1.00	0.00	0.00	1.02	3.06		N/A	N/A
3	South	0.26	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.35	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Heart Lake and Country Side.arc8

Path: C:\Users\AdamMorrison\OneDrive - Paradigm\Desktop\Projects\200333 Report generation date: 2021-04-14 11:19:59 AM

Summary of intersection performance

			Р	М				
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	
		A1 - 2031						
Intersection 1 - Leg North	1.84	2.04	10.60	0.65	В			
Intersection 1 - Leg South	1.27	?	7.31	0.56	Α	19.63	С	
Intersection 1 - Leg East	9.45	36.72	31.23	0.92	D			
Intersection 2 - Leg North	1.85	2.04	10.65	0.65	В			
Intersection 2 - Leg South	1.27	?	7.31	0.56	Α	7.55	A	
Intersection 2 - Leg East	1.08	?	5.97	0.52	Α			
Intersection 3 - Leg North	1.85	2.04	10.65	0.65	В			
Intersection 3 - Leg South	1.27	?	7.31	0.56	Α	7.04	A	
Intersection 3 - Leg East	1.58	2.04	4.92	0.61	Α			

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages.

"D1 - 2031, AM" model duration: 8:00 AM - 9:30 AM
"D2 - 2031, PM " model duration: 4:00 PM - 5:30 PM
"D3 - 2041, AM" model duration: 8:00 AM - 9:30 AM
"D4 - 2041, PM" model duration: 4:00 PM - 5:30 PM

Run using Junctions 8.0.6.541 at 2021-04-14 11:19:58 AM

File summary

Title	(untitled)
Location	
Site Number	
Date	2021-04-14
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.50	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - 2031, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		✓				100.000	100.000	

Demand Set Details

N	ame	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
	031, PM	2031	PM		ONE HOUR	16:00	17:30	90	15				✓		

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	Single-Lanes	Roundabout	North,South,East				19.63	С
2	2	Single-Lane + WB Bypass	Roundabout	North,South,East				7.55	A
3	3	Patial Dual Lane	Roundabout	North,South,East				7.04	Α

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	1 North		Heart Lake Road	
1	1 South		Heart Lake Road	
1	East	East	Countryside Drive	
2	North	North	Heart Lake Road	
2	South	South	Heart Lake Road	
2	East	East	Countryside Drive	
3 North		North	Heart Lake Road	
3 South		South	Heart Lake Road	
3 East		East	Countryside Drive	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00
2	South	0.00	99999.00		0.00
2	East	0.00	99999.00		0.00
3	North	0.00	99999.00		0.00
3	South	0.00	99999.00		0.00
3	East	0.00	99999.00		0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half-width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	40.00	25.00	
2	South	3.50	4.50	30.00	20.00	40.00	25.00	
2	East	3.50	4.50	30.00	20.00	40.00	25.00	
3	North	3.50	4.50	30.00	20.00	40.00	25.00	
3	South	3.50	4.50	30.00	20.00	40.00	25.00	
3	East	3.50	8.00	30.00	20.00	45.00	25.00	

Bypass

Intersection	Leg	Leg Has Bypass	Bypass Utilisation (%)
1	North		
1	South		
1	East		
2	North		
2	South		
2	East	✓	100
3	North		
3	South		
3	East		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1357.445
1	South		(calculated)	(calculated)	0.579	1357.445
1	East		(calculated)	(calculated)	0.579	1357.445
2	North		(calculated)	(calculated)	0.579	1357.445
2	South		(calculated)	(calculated)	0.579	1357.445
2	East		(calculated)	(calculated)	0.579	1357.445
3	North		(calculated)	(calculated)	0.579	1357.445
3	South		(calculated)	(calculated)	0.579	1357.445
3	East		(calculated)	(calculated)	0.695	2016.168

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)
1	North	ONE HOUR	✓	577.00	100.000
1	South	ONE HOUR	✓	571.00	100.000
1	East	ONE HOUR	✓	1056.00	100.000
2	North	ONE HOUR	✓	577.00	100.000
2	South	ONE HOUR	✓	571.00	100.000
2	East	ONE HOUR	✓	1056.00	100.000
3	North	ONE HOUR	✓	577.00	100.000
3	South	ONE HOUR	✓	571.00	100.000
3	East	ONE HOUR	✓	1056.00	100.000

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То					
		North	South	East		
_	North	0.000	221.000	356.000		
From	South	141.000	0.000	430.000		
	East	463.000	593.000	0.000		

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То					
From		North	South	East		
	North	0.00	0.38	0.62		
	South	0.25	0.00	0.75		

East	0.44	0.56	0.00
------	------	------	------

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То				
		North	South	East	
Fram	North	0.000	221.000	356.000	
From	South	141.000	0.000	430.000	
	East	463.000	593.000	0.000	

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То					
		North	South	East		
Fram	North	0.00	0.38	0.62		
From	South	0.25	0.00	0.75		
	East	0.44	0.56	0.00		

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

	То				
		North	South	East	
	North	0.000	221.000	356.000	
From	South	141.000	0.000	430.000	
	East	463.000	593.000	0.000	

Turning Proportions (PCE) - Intersection 3 (for whole period)

	То					
		North	South	East		
F	North	0.00	0.38	0.62		
From	South	0.25	0.00	0.75		
	East	0.44	0.56	0.00		

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

		To)			
		North	South	East		
From	North	1.020	1.020	1.020		
From	South	1.020	1.020	1.020		
	East	1.020	1.020	1.020		

Truck Percentages - Intersection 1 (for whole period)

		To)	
		North	South	East
From	North	2.0	2.0	2.0
From	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Average PCE Per Vehicle - Intersection 2 (for whole period)

		To)			
		North	South	East		
From	North	1.020	1.020	1.020		
FIOIII	South	1.020	1.020	1.020		
	East	1.020	1.020	1.020		

Truck Percentages - Intersection 2 (for whole period)

		To)	
		North	South	East
	North	2.0	2.0	2.0
From	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Average PCE Per Vehicle - Intersection 3 (for whole period)

		Т	.	
		North	South	East
F	North	1.020	1.020	1.020
From	South	1.020	1.020	1.020
	East	1.020	1.020	1.020

Truck Percentages - Intersection 3 (for whole period)

		To)			
		North	South	East		
From	North	2.0	2.0	2.0		
From	South	2.0	2.0	2.0		
	East	2.0	2.0	2.0		

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE-min)	Inclusive Average Queueing Delay (s)
1	North	0.65	10.60	1.84	2.04	В	529.47	794.20	102.82	7.77	1.14	102.84	7.77
1	South	0.56	7.31	1.27	?	Α	523.96	785.94	77.87	5.95	0.87	77.88	5.95
1	East	0.92	31.23	9.45	36.72	D	969.00	1453.51	377.83	15.60	4.20	377.89	15.60
2	North	0.65	10.65	1.85	2.04	В	529.47	794.20	103.29	7.80	1.15	103.30	7.80
2	South	0.56	7.31	1.27	?	Α	523.96	785.94	77.87	5.94	0.87	77.88	5.95
2	East	0.52	5.97	1.08	?	Α	969.00	816.22	69.44	5.10	0.77	69.44	5.10
3	North	0.65	10.65	1.85	2.04	В	529.47	794.20	103.30	7.80	1.15	103.31	7.80
3	South	0.56	7.31	1.27	?	Α	523.96	785.94	77.87	5.94	0.87	77.88	5.95
3	East	0.61	4.92	1.58	2.04	Α	969.00	1453.51	97.29	4.02	1.08	97.29	4.02

Main Results for each time segment

Main results: (16:00-16:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	434.40		108.60			431.76	451.39	442.88	0.00	1101.12	963.34	0.395	0.00	0.66	5.466	Α
1	South	429.88		107.47			427.63	608.25	266.39	0.00	1203.27	1013.45	0.357	0.00	0.56	4.721	Α
1	East	795.01		198.75			788.67	588.42	105.60	0.00	1296.33	1212.61	0.613	0.00	1.58	7.149	Α
2	North	434.40	434.40	108.60	0.00	348.57	431.76	105.60	444.31	0.00	1100.29	664.47	0.395	0.00	0.66	5.472	Α
2	South	429.88	429.88	107.47	0.00	0.00	427.63	609.68	266.39	0.00	1203.27	1120.17	0.357	0.00	0.56	4.721	Α
2	East	795.01	446.44	111.61	348.57	0.00	444.31	588.42	105.60	0.00	1296.33	1197.35	0.344	0.00	0.53	4.299	Α
3	North	434.40		108.60			431.76	452.94	444.86	0.00	1099.98	762.68	0.395	0.00	0.66	5.475	Α
3	South	429.88		107.47			427.63	610.23	266.39	0.00	1203.27	1085.10	0.357	0.00	0.56	4.721	Α
3	East	795.01		198.75			792.20	588.42	105.60	0.00	1942.81	1830.03	0.409	0.00	0.70	3.183	Α

Main results: (16:15-16:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	518.71		129.68			517.42	540.68	530.43	0.00	1050.45	963.34	0.494	0.66	0.98	6.872	Α
1	South	513.32		128.33			512.42	728.61	319.24	0.00	1172.68	1013.45	0.438	0.56	0.79	5.553	Α
1	East	949.32		237.33			944.58	705.13	126.54	0.00	1284.21	1212.61	0.739	1.58	2.77	10.660	В
2	North	518.71	518.71	129.68	0.00	416.23	517.42	126.54	532.35	0.00	1049.34	664.46	0.494	0.66	0.98	6.886	Α
2	South	513.32	513.32	128.33	0.00	0.00	512.42	730.53	319.24	0.00	1172.68	1120.18	0.438	0.56	0.79	5.553	Α
2	East	949.32	533.09	133.27	416.23	0.00	532.35	705.13	126.54	0.00	1284.21	1197.35	0.415	0.53	0.72	4.878	Α
3	North	518.71		129.68			517.42	542.27	532.47	0.00	1049.27	762.67	0.494	0.66	0.98	6.887	Α
3	South	513.32		128.33			512.42	730.65	319.24	0.00	1172.68	1085.11	0.438	0.56	0.79	5.553	Α
3	East	949.32		237.33			948.21	705.13	126.54	0.00	1928.26	1830.03	0.492	0.70	0.98	3.744	Α

Main results: (16:30-16:45)

	•																
Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	635.29		158.82			632.06	654.68	640.26	0.00	986.89	963.34	0.644	0.98	1.79	10.255	В
1	South	628.68		157.17			626.82	882.35	389.97	0.00	1131.74	1013.45	0.556	0.79	1.25	7.244	Α
1	East	1162.68		290.67			1140.16	862.00	154.78	0.00	1267.86	1212.61	0.917	2.77	8.40	25.183	D
2	North	635.29	635.29	158.82	0.00	509.77	631.94	154.78	651.50	0.00	980.38	664.46	0.648	0.98	1.82	10.438	В
2	South	628.68	628.68	157.17	0.00	0.00	626.82	893.54	389.90	0.00	1131.79	1120.18	0.555	0.79	1.25	7.243	Α
2	East	1162.68	652.91	163.23	509.77	0.00	651.50	861.93	154.78	0.00	1267.86	1197.35	0.515	0.72	1.07	5.944	Α
3	North	635.29		158.82			631.94	663.53	651.59	0.00	980.33	762.67	0.648	0.98	1.82	10.439	В
3	South	628.68		157.17			626.82	893.63	389.90	0.00	1131.79	1085.11	0.555	0.79	1.25	7.243	Α

ı	3	East	1162.68	290.67		1160.33	861.93	154.78	0.00	1908.64	1830.03	0.609	0.98	1.57	4.891	A	

Main results: (16:45-17:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	635.29		158.82			635.09	663.16	650.54	0.00	980.94	963.34	0.648	1.79	1.84	10.604	В
1	South	628.68		157.17			628.63	893.79	391.84	0.00	1130.67	1013.45	0.556	1.25	1.27	7.314	Α
1	East	1162.68		290.67			1158.47	865.24	155.23	0.00	1267.60	1212.61	0.917	8.40	9.45	31.230	D
2	North	635.29	635.29	158.82	0.00	509.77	635.16	155.23	652.88	0.00	979.59	664.46	0.649	1.82	1.85	10.652	В
2	South	628.68	628.68	157.17	0.00	0.00	628.63	896.15	391.89	0.00	1130.64	1120.18	0.556	1.25	1.27	7.314	Α
2	East	1162.68	652.91	163.23	509.77	0.00	652.88	865.29	155.23	0.00	1267.60	1197.35	0.515	1.07	1.08	5.972	Α
3	North	635.29		158.82			635.16	664.98	652.88	0.00	979.58	762.67	0.649	1.82	1.85	10.652	В
3	South	628.68		157.17			628.63	896.16	391.89	0.00	1130.64	1085.11	0.556	1.25	1.27	7.314	Α
3	East	1162.68		290.67			1162.63	865.29	155.23	0.00	1908.33	1830.03	0.609	1.57	1.58	4.924	Α

Main results: (17:00-17:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	518.71		129.68			521.95	554.70	547.52	0.00	1040.56	963.34	0.498	1.84	1.03	7.125	Α
1	South	513.32		128.33			515.16	747.44	322.03	0.00	1171.07	1013.45	0.438	1.27	0.80	5.613	Α
1	East	949.32		237.33			975.02	709.98	127.21	0.00	1283.82	1212.61	0.739	9.45	3.03	12.784	В
2	North	518.71	518.71	129.68	0.00	416.23	522.06	127.21	534.48	0.00	1048.11	664.46	0.495	1.85	1.01	7.022	Α
2	South	513.32	513.32	128.33	0.00	0.00	515.16	734.43	322.10	0.00	1171.03	1120.18	0.438	1.27	0.80	5.613	Α
2	East	949.32	533.09	133.27	416.23	0.00	534.48	710.05	127.21	0.00	1283.82	1197.35	0.415	1.08	0.73	4.910	Α
3	North	518.71		129.68			522.06	544.46	534.40	0.00	1048.15	762.67	0.495	1.85	1.01	7.025	Α
3	South	513.32		128.33			515.16	734.36	322.10	0.00	1171.03	1085.11	0.438	1.27	0.80	5.613	Α
3	East	949.32		237.33			951.65	710.05	127.21	0.00	1927.80	1830.03	0.492	1.58	1.00	3.769	Α

Main results: (17:15-17:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	434.40		108.60			435.81	457.37	449.53	0.00	1097.27	963.34	0.396	1.03	0.68	5.564	Α
1	South	429.88		107.47			430.81	616.46	268.89	0.00	1201.82	1013.45	0.358	0.80	0.57	4.769	Α
1	East	795.01		198.75			800.52	593.32	106.38	0.00	1295.88	1212.61	0.613	3.03	1.65	7.492	Α
2	North	434.40	434.40	108.60	0.00	348.57	435.76	106.38	447.21	0.00	1098.62	664.47	0.395	1.01	0.67	5.550	Α
2	South	429.88	429.88	107.47	0.00	0.00	430.81	614.11	268.86	0.00	1201.84	1120.17	0.358	0.80	0.57	4.769	Α
2	East	795.01	446.44	111.61	348.57	0.00	447.21	593.28	106.38	0.00	1295.88	1197.35	0.345	0.73	0.54	4.332	Α
3	North	434.40		108.60			435.76	455.45	447.09	0.00	1098.69	762.68	0.395	1.01	0.67	5.552	Α
3	South	429.88		107.47			430.81	613.99	268.86	0.00	1201.84	1085.10	0.358	0.80	0.57	4.767	Α
3	East	795.01		198.75			796.16	593.28	106.38	0.00	1942.27	1830.03	0.409	1.00	0.71	3.206	Α

Queueing Delay Results for each time segment

Queueing Delay results: (16:00-16:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	9.52	0.63	5.466	Α	A
1	South	8.18	0.55	4.721	А	A
1	East	22.43	1.50	7.149	Α	A
2	North	9.54	0.64	5.472	Α	A
2	South	8.18	0.55	4.721	А	A
2	East	7.76	0.52	4.299	А	A
3	North	9.54	0.64	5.475	А	A
3	South	8.18	0.55	4.721	Α	A
3	East	10.28	0.69	3.183	A	A

Queueing Delay results: (16:15-16:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	14.22	0.95	6.872	А	A
1	South	11.48	0.77	5.553	А	A
1	East	38.70	2.58	10.660	В	В
2	North	14.25	0.95	6.886	Α	A
2	South	11.48	0.77	5.553	А	A
2	East	10.52	0.70	4.878	Α	A
3	North	14.25	0.95	6.887	Α	A
3	South	11.48	0.77	5.553	A	A
3	East	14.40	0.96	3.744	A	A

Queueing Delay results: (16:30-16:45)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	25.24	1.68	10.255	В	В
1	South	18.05	1.20	7.244	Α	A
1	East	101.62	6.77	25.183	D	С
2	North	25.65	1.71	10.438	В	В
2	South	18.05	1.20	7.243	Α	A
2	East	15.53	1.04	5.944	Α	A
3	North	25.66	1.71	10.439	В	В
3	South	18.05	1.20	7.243	А	A
3	East	22.74	1.52	4.891	Α	A

Queueing Delay results: (16:45-17:00)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	27.30	1.82	10.604	В	В
1	South	18.91	1.26	7.314	А	A
1	East	135.12	9.01	31.230	D	С
2	North	27.58	1.84	10.652	В	В
2	South	18.91	1.26	7.314	Α	A
2	East	16.10	1.07	5.972	Α	A
3	North	27.58	1.84	10.652	В	В
3	South	18.91	1.26	7.314	A	A
3	East	23.63	1.58	4.924	Α	A

Queueing Delay results: (17:00-17:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	16.11	1.07	7.125	Α	A
1	South	12.46	0.83	5.613	Α	A
1	East	53.87	3.59	12.784	В	В
2	North	15.88	1.06	7.022	Α	A
2	South	12.46	0.83	5.613	А	A
2	East	11.26	0.75	4.910	Α	A
3	North	15.87	1.06	7.025	Α	A
3	South	12.46	0.83	5.613	A	A
3	East	15.36	1.02	3.769	Α	A

Queueing Delay results: (17:15-17:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	10.43	0.70	5.564	Α	A
1	South	8.79	0.59	4.769	Α	A
1	East	26.09	1.74	7.492	А	A
2	North	10.40	0.69	5.550	А	A
2	South	8.79	0.59	4.769	А	A
2	East	8.27	0.55	4.332	А	A
3	North	10.40	0.69	5.552	А	A
3	South	8.79	0.59	4.767	A	A
3	East	10.87	0.72	3.206	Α	A

Queue Variation Results for each time segment

Queue Variation results: (16:00-16:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.56	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.58	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.56	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.53	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.56	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.70	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:15-16:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.98	0.00	0.00	1.02	1.02			N/A	N/A
1	South	0.79	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	2.77	0.00	0.00	6.12	9.18			N/A	N/A
2	North	0.98	0.00	0.00	1.02	1.02			N/A	N/A
2	South	0.79	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.72	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.98	0.00	0.00	1.02	1.02			N/A	N/A
3	South	0.79	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.98	0.00	0.00	1.02	2.04			N/A	N/A

Queue Variation results: (16:30-16:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.79	0.00	0.00	0.00	2.04			N/A	N/A
1	South	1.25	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	8.40	0.00	0.00	20.40	32.64			N/A	N/A
2	North	1.82	0.00	0.00	0.00	2.04			N/A	N/A
2	South	1.25	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.07	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.82	0.00	0.00	0.00	2.04			N/A	N/A
3	South	1.25	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.57	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:45-17:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.84	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	1.27	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	9.45	0.00	0.00	17.34	36.72			N/A	N/A
2	North	1.85	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	1.27	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.08	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.85	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	1.27	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.58	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (17:00-17:15)

			•		•					
Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.03	0.00	0.00	1.02	2.04			N/A	N/A
1	South	0.80	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	3.03	0.00	0.00	6.12	11.22			N/A	N/A
2	North	1.01	0.00	0.00	1.02	2.04			N/A	N/A
2	South	0.80	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.73	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.01	0.00	0.00	1.02	2.04			N/A	N/A
3	South	0.80	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.00	0.00	0.00	1.02	1.02			N/A	N/A

Queue Variation results: (17:15-17:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.68	0.00	0.00	1.02	1.02			N/A	N/A
1	South	0.57	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.65	0.00	0.00	1.02	5.10			N/A	N/A

2	North	0.67	0.00	0.00	1.02	1.02		N/A	N/A
2	South	0.57	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
2	East	0.54	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	North	0.67	0.00	0.00	1.02	1.02		N/A	N/A
3	South	0.57	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.71	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Heart Lake and Country Side.arc8

Path: C:\Users\AdamMorrison\OneDrive - Paradigm\Desktop\Projects\200333 Report generation date: 2021-04-14 11:18:48 AM

Summary of intersection performance

		AM								
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS			
			A1 -	2041						
Intersection 1 - Leg North	4.93	17.34	20.91	0.84	С					
Intersection 1 - Leg South	0.54	1.02	5.49	0.35	Α	12.82	В			
Intersection 1 - Leg East	1.47	1.02	6.91	0.59	Α					
Intersection 2 - Leg North	4.93	17.34	20.91	0.84	С					
Intersection 2 - Leg South	0.54	1.02	5.49	0.35	Α	11.97	В			
Intersection 2 - Leg East	0.67	1.02	4.67	0.40	Α					
Intersection 3 - Leg North	4.93	17.34	20.92	0.84	С					
Intersection 3 - Leg South	0.54	1.02	5.49	0.35	Α	11.38	В			
Intersection 3 - Leg East	0.66	1.02	3.11	0.40	Α					

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages.

"D1 - 2031, AM" model duration: 8:00 AM - 9:30 AM "D2 - 2031, PM" model duration: 4:00 PM - 5:30 PM "D3 - 2041, AM " model duration: 8:00 AM - 9:30 AM "D4 - 2041, PM" model duration: 4:00 PM - 5:30 PM

Run using Junctions 8.0.6.541 at 2021-04-14 11:18:47 AM

File summary

Title	(untitled)
Location	
Site Number	
Date	2021-04-14
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length (m	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.50	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - 2041, AM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship	
2041, AM	2041	AM		ONE HOUR	08:00	09:30	90	15				✓			

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	Single-Lanes	Roundabout	North,South,East				12.82	В
2	2	Single-Lane + WB Bypass	Roundabout	North,South,East				11.97	В
3	3	Patial Dual Lane	Roundabout	North,South,East				11.38	В

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg	Name	Description
1	North	North	Heart Lake Road	
1	South	South	Heart Lake Road	
1	East	East	Countryside Drive	
2	North	North	Heart Lake Road	
2	South	South	Heart Lake Road	
2	East	East	Countryside Drive	
3	North	North	Heart Lake Road	
3	South	South	Heart Lake Road	
3	East	East	Countryside Drive	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00
2	South	0.00	99999.00		0.00
2	East	0.00	99999.00		0.00
3	North	0.00	99999.00		0.00
3	South	0.00	99999.00		0.00
3	East	0.00	99999.00		0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half-width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	40.00	25.00	
2	South	3.50	4.50	30.00	20.00	40.00	25.00	
2	East	3.50	4.50	30.00	20.00	40.00	25.00	
3	North	3.50	4.50	30.00	20.00	40.00	25.00	
3	South	3.50	4.50	30.00	20.00	40.00	25.00	
3	East	3.50	8.00	30.00	20.00	45.00	25.00	

Bypass

Intersection	Leg	Leg Has Bypass	Bypass Utilisation (%)
1	North		
1	South		
1	East		
2	North		
2	South		
2	East	✓	100
3	North		
3	South		
3	East		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1357.445
1	South		(calculated)	(calculated)	0.579	1357.445
1	East		(calculated)	(calculated)	0.579	1357.445
2	North		(calculated)	(calculated)	0.579	1357.445
2	South		(calculated)	(calculated)	0.579	1357.445
2	East		(calculated)	(calculated)	0.579	1357.445
3	North		(calculated)	(calculated)	0.579	1357.445
3	South		(calculated)	(calculated)	0.579	1357.445
3	East		(calculated)	(calculated)	0.695	2016.168

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)
1	North	ONE HOUR	✓	806.00	100.000
1	South	ONE HOUR	✓	324.00	100.000
1	East	ONE HOUR	✓	700.00	100.000
2	North	ONE HOUR	✓	806.00	100.000
2	South	ONE HOUR	✓	324.00	100.000
2	East	ONE HOUR	✓	700.00	100.000
3	North	ONE HOUR	✓	806.00	100.000
3	South	ONE HOUR	✓	324.00	100.000
3	East	ONE HOUR	✓	700.00	100.000

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

	То					
		North	South	East		
_	North	0.000	284.000	522.000		
From	South	87.000	0.000	237.000		
	East	232.000	468.000	0.000		

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То					
From		North	South	East		
	North	0.00	0.35	0.65		
	South	0.27	0.00	0.73		

East	0.33	0.67	0.00
------	------	------	------

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То							
		North	South	East				
From	North	0.000	284.000	522.000				
FIOIII	South	87.000	0.000	237.000				
	East	232.000	468.000	0.000				

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То						
		North	South	East			
-	North	0.00	0.35	0.65			
From	South	0.27	0.00	0.73			
	East	0.33	0.67	0.00			

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

	То							
		North	South	East				
_	North	0.000	284.000	522.000				
From	South	87.000	0.000	237.000				
	East	232.000	468.000	0.000				

Turning Proportions (PCE) - Intersection 3 (for whole period)

	То						
		North	South	East			
_	North	0.00	0.35	0.65			
From	South	0.27	0.00	0.73			
	East	0.33	0.67	0.00			

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

	То						
		North	South	East			
From	North	1.020	1.020	1.020			
FIOIII	South	1.020	1.020	1.020			
	East	1.020	1.020	1.020			

Truck Percentages - Intersection 1 (for whole period)

	То					
		North	South	East		
F	North	2.0	2.0	2.0		
From	South	2.0	2.0	2.0		
	East	2.0	2.0	2.0		

Average PCE Per Vehicle - Intersection 2 (for whole period)

	То						
		North	South	East			
From	North	1.020	1.020	1.020			
FIOIII	South	1.020	1.020	1.020			
	East	1.020	1.020	1.020			

Truck Percentages - Intersection 2 (for whole period)

	То					
		North	South	East		
_	North	2.0	2.0	2.0		
From	South	2.0	2.0	2.0		
	East	2.0	2.0	2.0		

Average PCE Per Vehicle - Intersection 3 (for whole period)

	То						
		North	South	East			
From	North	1.020	1.020	1.020			
	South	1.020	1.020	1.020			
	East	1.020	1.020	1.020			

Truck Percentages - Intersection 3 (for whole period)

	То						
		North	South	East			
	North	2.0	2.0	2.0			
From	South	2.0	2.0	2.0			
	East	2.0	2.0	2.0			

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE-min)	Inclusive Average Queueing Delay (s)
1	North	0.84	20.91	4.93	17.34	С	739.60	1109.40	225.08	12.17	2.50	225.12	12.18
1	South	0.35	5.49	0.54	1.02	Α	297.31	445.96	35.61	4.79	0.40	35.61	4.79
1	East	0.59	6.91	1.47	1.02	Α	642.33	963.50	91.43	5.69	1.02	91.44	5.69
2	North	0.84	20.91	4.93	17.34	С	739.60	1109.40	225.22	12.18	2.50	225.26	12.18
2	South	0.35	5.49	0.54	1.02	Α	297.31	445.96	35.61	4.79	0.40	35.61	4.79
2	East	0.40	4.67	0.67	1.02	Α	642.33	644.17	45.26	4.22	0.50	45.26	4.22
3	North	0.84	20.92	4.93	17.34	С	739.60	1109.40	225.28	12.18	2.50	225.32	12.19
3	South	0.35	5.49	0.54	1.02	Α	297.31	445.96	35.61	4.79	0.40	35.61	4.79
3	East	0.40	3.11	0.66	1.02	Α	642.33	963.50	45.35	2.82	0.50	45.36	2.82

Main Results for each time segment

Main results: (08:00-08:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	606.80		151.70			602.35	238.97	350.54	0.00	1154.57	893.68	0.526	0.00	1.11	6.598	Α
1	South	243.92		60.98			242.81	562.78	390.11	0.00	1131.67	1022.47	0.216	0.00	0.28	4.126	Α
1	East	527.00		131.75			524.31	567.72	65.20	0.00	1319.71	1198.55	0.399	0.00	0.67	4.601	Α
2	North	606.80	606.80	151.70	0.00	174.66	602.35	65.20	350.86	0.00	1154.38	671.27	0.526	0.00	1.11	6.600	Α
2	South	243.92	243.92	60.98	0.00	0.00	242.81	563.10	390.11	0.00	1131.67	1105.83	0.216	0.00	0.28	4.126	Α
2	East	527.00	352.33	88.08	174.66	0.00	350.86	567.72	65.20	0.00	1319.71	1185.59	0.267	0.00	0.37	3.785	Α
3	North	606.80		151.70			602.34	239.37	351.34	0.00	1154.10	657.49	0.526	0.00	1.11	6.603	Α
3	South	243.92		60.98			242.81	563.58	390.10	0.00	1131.67	1111.00	0.216	0.00	0.28	4.126	Α
3	East	527.00		131.75			525.51	567.72	65.20	0.00	1970.87	1808.93	0.267	0.00	0.37	2.538	Α

Main results: (08:15-08:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	724.58		181.14			721.65	286.33	420.03	0.00	1114.35	893.68	0.650	1.11	1.84	9.280	Α
1	South	291.27		72.82			290.90	674.31	467.37	0.00	1086.95	1022.47	0.268	0.28	0.37	4.610	Α
1	East	629.29		157.32			628.26	680.16	78.11	0.00	1312.24	1198.55	0.480	0.67	0.93	5.361	Α
2	North	724.58	724.58	181.14	0.00	208.56	721.65	78.11	420.29	0.00	1114.20	671.27	0.650	1.11	1.84	9.284	Α
2	South	291.27	291.27	72.82	0.00	0.00	290.90	674.57	467.37	0.00	1086.95	1105.83	0.268	0.28	0.37	4.610	Α
2	East	629.29	420.72	105.18	208.56	0.00	420.29	680.16	78.11	0.00	1312.24	1185.59	0.321	0.37	0.48	4.115	Α
3	North	724.58		181.14			721.65	286.53	420.43	0.00	1114.12	657.49	0.650	1.11	1.84	9.286	Α
3	South	291.27		72.82			290.90	674.71	467.37	0.00	1086.95	1111.00	0.268	0.28	0.37	4.610	Α
3	East	629.29		157.32			628.85	680.16	78.11	0.00	1961.90	1808.93	0.321	0.37	0.48	2.754	Α

Main results: (08:30-08:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	887.42		221.86			876.18	350.35	513.88	0.00	1060.03	893.68	0.837	1.84	4.65	18.901	С
1	South	356.73		89.18			356.07	822.61	567.45	0.00	1029.03	1022.47	0.347	0.37	0.54	5.450	Α
1	East	770.71		192.68			768.62	827.91	95.61	0.00	1302.11	1198.55	0.592	0.93	1.45	6.855	Α
2	North	887.42	887.42	221.86	0.00	255.44	876.15	95.61	514.54	0.00	1059.65	671.27	0.837	1.84	4.66	18.938	С
2	South	356.73	356.73	89.18	0.00	0.00	356.07	823.26	567.43	0.00	1029.04	1105.83	0.347	0.37	0.54	5.450	Α
2	East	770.71	515.28	128.82	255.44	0.00	514.54	827.89	95.61	0.00	1302.11	1185.59	0.396	0.48	0.66	4.659	Α
3	North	887.42		221.86			876.14	350.80	514.79	0.00	1059.51	657.49	0.838	1.84	4.66	18.949	С
3	South	356.73		89.18			356.07	823.50	567.43	0.00	1029.04	1111.00	0.347	0.37	0.54	5.450	Α

3	East	770.71	192.68		769.98	827.88	95.61	0.00	1949.75	1808.93	0.395	0.48	0.66	3.111	A	

Main results: (08:45-09:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	887.42		221.86			886.33	351.20	515.24	0.00	1059.24	893.68	0.838	4.65	4.93	20.907	С
1	South	356.73		89.18			356.71	827.55	574.02	0.00	1025.22	1022.47	0.348	0.54	0.54	5.492	Α
1	East	770.71		192.68			770.66	834.95	95.78	0.00	1302.01	1198.55	0.592	1.45	1.47	6.910	Α
2	North	887.42	887.42	221.86	0.00	255.44	886.35	95.78	515.27	0.00	1059.23	671.27	0.838	4.66	4.93	20.909	С
2	South	356.73	356.73	89.18	0.00	0.00	356.71	827.58	574.04	0.00	1025.21	1105.83	0.348	0.54	0.54	5.492	Α
2	East	770.71	515.28	128.82	255.44	0.00	515.27	834.97	95.78	0.00	1302.01	1185.59	0.396	0.66	0.67	4.667	Α
3	North	887.42		221.86			886.36	351.22	515.27	0.00	1059.23	657.49	0.838	4.66	4.93	20.917	С
3	South	356.73		89.18			356.71	827.59	574.04	0.00	1025.21	1111.00	0.348	0.54	0.54	5.492	Α
3	East	770.71		192.68			770.71	834.97	95.78	0.00	1949.63	1808.93	0.395	0.66	0.66	3.114	Α

Main results: (09:00-09:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	724.58		181.14			736.45	287.63	422.10	0.00	1113.15	893.68	0.651	4.93	1.96	10.037	В
1	South	291.27		72.82			291.92	681.60	476.96	0.00	1081.40	1022.47	0.269	0.54	0.38	4.656	Α
1	East	629.29		157.32			631.35	690.49	78.39	0.00	1312.08	1198.55	0.480	1.47	0.95	5.409	Α
2	North	724.58	724.58	181.14	0.00	208.56	736.47	78.39	421.44	0.00	1113.53	671.27	0.651	4.93	1.96	10.029	В
2	South	291.27	291.27	72.82	0.00	0.00	291.92	680.95	476.97	0.00	1081.39	1105.83	0.269	0.54	0.38	4.656	Α
2	East	629.29	420.72	105.18	208.56	0.00	421.44	690.51	78.39	0.00	1312.08	1185.59	0.321	0.67	0.48	4.127	Α
3	North	724.58		181.14			736.48	287.19	421.21	0.00	1113.67	657.49	0.651	4.93	1.96	10.026	В
3	South	291.27		72.82			291.92	680.71	476.98	0.00	1081.39	1111.00	0.269	0.54	0.38	4.656	Α
3	East	629.29		157.32			630.01	690.51	78.39	0.00	1961.71	1808.93	0.321	0.66	0.48	2.758	Α

Main results: (09:15-09:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	606.80		151.70			610.03	240.62	353.05	0.00	1153.12	893.68	0.526	1.96	1.15	6.800	Α
1	South	243.92		60.98			244.31	568.00	395.08	0.00	1128.79	1022.47	0.216	0.38	0.28	4.154	Α
1	East	527.00		131.75			528.06	573.79	65.60	0.00	1319.48	1198.55	0.399	0.95	0.68	4.645	Α
2	North	606.80	606.80	151.70	0.00	174.66	610.02	65.60	352.78	0.00	1153.27	671.27	0.526	1.96	1.15	6.800	Α
2	South	243.92	243.92	60.98	0.00	0.00	244.31	567.72	395.08	0.00	1128.79	1105.83	0.216	0.38	0.28	4.154	Α
2	East	527.00	352.33	88.08	174.66	0.00	352.78	573.78	65.60	0.00	1319.48	1185.59	0.267	0.48	0.37	3.802	Α
3	North	606.80		151.70			610.02	240.41	352.63	0.00	1153.36	657.49	0.526	1.96	1.15	6.796	Α
3	South	243.92		60.98			244.31	567.57	395.08	0.00	1128.79	1111.00	0.216	0.38	0.28	4.153	Α
3	East	527.00		131.75			527.44	573.78	65.60	0.00	1970.60	1808.93	0.267	0.48	0.37	2.546	Α

Queueing Delay Results for each time segment

Queueing Delay results: (08:00-08:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	15.91	1.06	6.598	Α	A
1	South	4.08	0.27	4.126	А	A
1	East	9.77	0.65	4.601	Α	A
2	North	15.91	1.06	6.600	Α	A
2	South	4.08	0.27	4.126	А	A
2	East	5.41	0.36	3.785	А	A
3	North	15.92	1.06	6.603	А	A
3	South	4.08	0.27	4.126	Α	A
3	East	5.47	0.36	2.538	Α	A

Queueing Delay results: (08:15-08:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	26.19	1.75	9.280	A	A
1	South	5.46	0.36	4.610	A	A
1	East	13.57	0.90	5.361	A	A
2	North	26.20	1.75	9.284	A	A
2	South	5.46	0.36	4.610	A	A
2	East	7.05	0.47	4.115	A	A
3	North	26.20	1.75	9.286	A	A
3	South	5.46	0.36	4.610	A	A
3	East	7.10	0.47	2.754	A	A

Queueing Delay results: (08:30-08:45)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	60.62	4.04	18.901	С	В
1	South	7.85	0.52	5.450	А	A
1	East	20.94	1.40	6.855	Α	A
2	North	60.71	4.05	18.938	С	В
2	South	7.85	0.52	5.450	А	A
2	East	9.72	0.65	4.659	Α	A
3	North	60.75	4.05	18.949	С	В
3	South	7.85	0.52	5.450	A	A
3	East	9.78	0.65	3.111	Α	A

Queueing Delay results: (08:45-09:00)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	72.25	4.82	20.907	С	С
1	South	8.09	0.54	5.492	Α	A
1	East	21.91	1.46	6.910	Α	A
2	North	72.33	4.82	20.909	С	С
2	South	8.09	0.54	5.492	Α	A
2	East	9.96	0.66	4.667	Α	A
3	North	72.35	4.82	20.917	С	С
3	South	8.09	0.54	5.492	A	A
3	East	9.96	0.66	3.114	Α	A

Queueing Delay results: (09:00-09:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	32.12	2.14	10.037	В	В
1	South	5.80	0.39	4.656	А	A
1	East	14.72	0.98	5.409	A	A
2	North	32.09	2.14	10.029	В	В
2	South	5.80	0.39	4.656	A	A
2	East	7.42	0.49	4.127	A	A
3	North	32.08	2.14	10.026	В	В
3	South	5.80	0.39	4.656	A	A
3	East	7.37	0.49	2.758	А	A

Queueing Delay results: (09:15-09:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	17.99	1.20	6.800	А	A
1	South	4.32	0.29	4.154	A	A
1	East	10.51	0.70	4.645	A	A
2	North	17.98	1.20	6.800	A	A
2	South	4.32	0.29	4.154	A	A
2	East	5.70	0.38	3.802	А	A
3	North	17.98	1.20	6.796	А	A
3	South	4.32	0.29	4.153	A	A
3	East	5.68	0.38	2.546	Α	A

Queue Variation Results for each time segment

Queue Variation results: (08:00-08:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.11	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.67	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	1.11	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.11	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:15-08:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.84	0.00	0.00	4.08	5.10			N/A	N/A
1	South	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.93	0.00	0.00	1.02	1.02			N/A	N/A
2	North	1.84	0.00	0.00	4.08	5.10			N/A	N/A
2	South	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.84	0.00	0.00	4.08	5.10			N/A	N/A
3	South	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:30-08:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	4.65	0.00	0.00	7.14	17.34			N/A	N/A
1	South	0.54	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.45	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	4.66	0.00	0.00	7.14	17.34			N/A	N/A
2	South	0.54	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	4.66	0.00	0.00	7.14	17.34			N/A	N/A
3	South	0.54	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.66	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (08:45-09:00)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	4.93	0.00	0.00	3.06	14.28			N/A	N/A
1	South	0.54	0.00	0.00	0.00	1.02			N/A	N/A
1	East	1.47	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	4.93	0.00	0.00	3.06	14.28			N/A	N/A
2	South	0.54	0.00	0.00	0.00	1.02			N/A	N/A
2	East	0.67	0.00	0.00	0.00	1.02			N/A	N/A
3	North	4.93	0.00	0.00	3.06	14.28			N/A	N/A
3	South	0.54	0.00	0.00	0.00	1.02			N/A	N/A
3	East	0.66	0.00	0.00	0.00	1.02			N/A	N/A

Queue Variation results: (09:00-09:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.96	0.00	0.00	4.08	6.12			N/A	N/A
1	South	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.95	0.00	0.00	1.02	1.02			N/A	N/A
2	North	1.96	0.00	0.00	4.08	6.12			N/A	N/A
2	South	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.96	0.00	0.00	4.08	6.12			N/A	N/A
3	South	0.38	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.48	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (09:15-09:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.15	0.00	0.00	1.02	3.06			N/A	N/A
1	South	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	0.68	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	North	1.15	0.00	0.00	1.02	3.06			N/A	N/A
2	South	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

2	East	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	North	1.15	0.00	0.00	1.02	3.06		N/A	N/A
3	South	0.28	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.37	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.6.541 [19821,26/11/2015] © Copyright TRL Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Heart Lake and Country Side.arc8

Path: C:\Users\AdamMorrison\OneDrive - Paradigm\Desktop\Projects\200333 Report generation date: 2021-04-14 11:13:32 AM

Summary of intersection performance

			Р	М				
	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	
		A1 - 2041						
Intersection 1 - Leg North	2.27	4.08	12.50	0.70	В			
Intersection 1 - Leg South	1.48	1.02	8.11	0.60	Α	32.20	D	
Intersection 1 - Leg East	18.39	72.42	55.92	0.98	F			
Intersection 2 - Leg North	2.32	5.10	12.75	0.70	В			
Intersection 2 - Leg South	1.48	1.02	8.11	0.60	Α	8.52	Α	
Intersection 2 - Leg East	1.23	1.02	6.44	0.55	Α			
Intersection 3 - Leg North	2.32	5.10	12.75	0.70	В			
Intersection 3 - Leg South	1.48	1.02	8.11	0.60	Α	8.06	A	
Intersection 3 - Leg East	1.86	2.04	5.48	0.65	Α	7		

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages.

"D1 - 2031, AM" model duration: 8:00 AM - 9:30 AM
"D2 - 2031, PM" model duration: 4:00 PM - 5:30 PM
"D3 - 2041, AM" model duration: 8:00 AM - 9:30 AM
"D4 - 2041, PM" model duration: 4:00 PM - 5:30 PM

Run using Junctions 8.0.6.541 at 2021-04-14 11:13:31 AM

File summary

Title	(untitled)
Location	
Site Number	
Date	2021-04-14
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	AdamMorrison
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	V/C Ratio Threshold	Average Delay Threshold (s)	Queue Threshold (PCE)
7.50	✓		N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCE	PCE	perHour	s	-Min	perMin

(Default Analysis Set) - 2041, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Include In Report	Use Specific Demand Set(s)	Specific Demand Set(s)	Locked	Network Flow Scaling Factor (%)	Network Capacity Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	ARCADY		✓				100.000	100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Results For Central Hour Only	Single Time Segment Only	Locked	Run Automatically	Use Relationship	Relationship
2041, PM	2041	PM		ONE HOUR	16:00	17:30	90	15				✓		

Intersection Network

Intersections

Junction	Intersection	Name	Intersection Type	Leg Order	Grade Separated	Large Roundabout	Do Geometric Delay	Intersection Delay (s)	Intersection LOS
1	1	Single-Lanes	Roundabout	North,South,East				32.20	D
2	2	Single-Lane + WB Bypass	Roundabout	North,South,East				8.52	A
3	3	Patial Dual Lane	Roundabout	North,South,East				8.06	A

Intersection Network Options

Driving Side	Lighting
Right	Normal/unknown

Legs

Legs

Intersection	Leg	Leg Name		Description
1	1 North Nor		Heart Lake Road	
1	South	South	Heart Lake Road	
1	East	East	Countryside Drive	
2	North	North	Heart Lake Road	
2	South	South	Heart Lake Road	
2	East	East	Countryside Drive	
3	3 North North Hear		Heart Lake Road	
3 South Sou		South	Heart Lake Road	
3	East	East	Countryside Drive	

Capacity Options

Intersection	Leg	Minimum Capacity (PCE/hr)	Maximum Capacity (PCE/hr)	Assume Flat Start Profile	Initial Queue (PCE)
1	North	0.00	99999.00		0.00
1	South	0.00	99999.00		0.00
1	East	0.00	99999.00		0.00
2	North	0.00	99999.00		0.00
2	South	0.00	99999.00		0.00
2	East	0.00	99999.00		0.00
3	North	0.00	99999.00		0.00
3	South	0.00	99999.00		0.00
3	East	0.00	99999.00		0.00

Roundabout Geometry

Intersection	Leg	V - Approach road half-width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	North	3.50	4.50	30.00	20.00	40.00	25.00	
1	South	3.50	4.50	30.00	20.00	40.00	25.00	
1	East	3.50	4.50	30.00	20.00	40.00	25.00	
2	North	3.50	4.50	30.00	20.00	40.00	25.00	
2	South	3.50	4.50	30.00	20.00	40.00	25.00	
2	East	3.50	4.50	30.00	20.00	40.00	25.00	
3	North	3.50	4.50	30.00	20.00	40.00	25.00	
3	South	3.50	4.50	30.00	20.00	40.00	25.00	
3	East	3.50	8.00	30.00	20.00	45.00	25.00	

Bypass

Intersection	Leg	Leg Has Bypass	Bypass Utilisation (%)
1	North		
1	South		
1	East		
2	North		
2	South		
2	East	✓	100
3	North		
3	South		
3	East		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Intersection	Leg	Enter slope and intercept directly	Entered slope	Entered intercept (PCE/hr)	Final Slope	Final Intercept (PCE/hr)
1	North		(calculated)	(calculated)	0.579	1357.445
1	South		(calculated)	(calculated)	0.579	1357.445
1	East		(calculated)	(calculated)	0.579	1357.445
2	North		(calculated)	(calculated)	0.579	1357.445
2	South		(calculated)	(calculated)	0.579	1357.445
2	East		(calculated)	(calculated)	0.579	1357.445
3	North		(calculated)	(calculated)	0.579	1357.445
3	South		(calculated)	(calculated)	0.579	1357.445
3	East		(calculated)	(calculated)	0.695	2016.168

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCE Factor for a Truck (PCE)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	Truck Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Intersection	Leg	Profile Type	Use Turning Counts	Average Demand Flow (PCE/hr)	Flow Scaling Factor (%)
1	North	ONE HOUR	✓	608.00	100.000
1	South	ONE HOUR	✓	605.00	100.000
1	East	ONE HOUR	✓	1119.00	100.000
2	North	ONE HOUR	✓	608.00	100.000
2	South	ONE HOUR	✓	605.00	100.000
2	East	ONE HOUR	✓	1119.00	100.000
3	North	ONE HOUR	✓	608.00	100.000
3	South	ONE HOUR	✓	605.00	100.000
3	East	ONE HOUR	✓	1119.00	100.000

Turning Proportions

Turning Counts / Proportions (PCE/hr) - Intersection 1 (for whole period)

		1	Го	
		North	South	East
F	North	0.000	233.000	375.000
From	South	149.000	0.000	456.000
	East	490.000	629.000	0.000

Turning Proportions (PCE) - Intersection 1 (for whole period)

	То			
From		North	South	East
	North	0.00	0.38	0.62
	South	0.25	0.00	0.75

East	0.44	0.56	0.00
------	------	------	------

Turning Counts / Proportions (PCE/hr) - Intersection 2 (for whole period)

	То			
From		North	South	East
	North	0.000	233.000	375.000
	South	149.000	0.000	456.000
	East	490.000	629.000	0.000

Turning Proportions (PCE) - Intersection 2 (for whole period)

	То			
		North	South	East
From	North	0.00	0.38	0.62
	South	0.25	0.00	0.75
	East	0.44	0.56	0.00

Turning Counts / Proportions (PCE/hr) - Intersection 3 (for whole period)

	То			
_		North	South	East
	North	0.000	233.000	375.000
From	South	149.000	0.000	456.000
	East	490.000	629.000	0.000

Turning Proportions (PCE) - Intersection 3 (for whole period)

	То			
		North	South	East
From	North	0.00	0.38	0.62
	South	0.25	0.00	0.75
	East	0.44	0.56	0.00

Vehicle Mix

Average PCE Per Vehicle - Intersection 1 (for whole period)

	То			
From		North	South	East
	North	1.020	1.020	1.020
	South	1.020	1.020	1.020
	East	1.020	1.020	1.020

Truck Percentages - Intersection 1 (for whole period)

	То			
		North	South	East
F	North	2.0	2.0	2.0
From	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Average PCE Per Vehicle - Intersection 2 (for whole period)

	То			
		North	South	East
From	North	1.020	1.020	1.020
	South	1.020	1.020	1.020
	East	1.020	1.020	1.020

Truck Percentages - Intersection 2 (for whole period)

	То			
		North	South	East
From	North	2.0	2.0	2.0
	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Average PCE Per Vehicle - Intersection 3 (for whole period)

	То			
		North	South	East
From	North	1.020	1.020	1.020
	South	1.020	1.020	1.020
	East	1.020	1.020	1.020

Truck Percentages - Intersection 3 (for whole period)

	То			
		North	South	East
From	North	2.0	2.0	2.0
	South	2.0	2.0	2.0
	East	2.0	2.0	2.0

Results

Results Summary for whole modelled period

Intersection	Leg	Max V/C Ratio	Max Delay (s)	Max Queue (PCE)	Max 95th percentile Queue (PCE)	Max LOS	Average Demand (PCE/hr)	Total Intersection Arrivals (PCE)	Total Queueing Delay (PCE- min)	Average Queueing Delay (s)	Rate Of Queueing Delay (PCE- min/min)	Inclusive Total Queueing Delay (PCE-min)	Inclusive Average Queueing Delay (s)
1	North	0.70	12.50	2.27	4.08	В	557.91	836.87	121.82	8.73	1.35	121.84	8.74
1	South	0.60	8.11	1.48	1.02	Α	555.16	832.74	89.02	6.41	0.99	89.03	6.41
1	East	0.98	55.92	18.39	72.42	F	1026.81	1540.22	601.06	23.41	6.68	601.15	23.42
2	North	0.70	12.75	2.32	5.10	В	557.91	836.87	123.20	8.83	1.37	123.21	8.83
2	South	0.60	8.11	1.48	1.02	Α	555.16	832.74	89.01	6.41	0.99	89.02	6.41
2	East	0.55	6.44	1.23	1.02	Α	1026.81	865.77	77.98	5.40	0.87	77.99	5.40
3	North	0.70	12.75	2.32	5.10	В	557.91	836.87	123.21	8.83	1.37	123.22	8.83
3	South	0.60	8.11	1.48	1.02	Α	555.16	832.74	89.01	6.41	0.99	89.02	6.41
3	East	0.65	5.48	1.86	2.04	Α	1026.81	1540.22	111.52	4.34	1.24	111.53	4.34

Main Results for each time segment

Main results: (16:00-16:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	457.73		114.43			454.79	477.20	469.36	0.00	1085.80	962.84	0.422	0.00	0.74	5.793	Α
1	South	455.48		113.87			452.99	643.65	280.51	0.00	1195.10	1013.74	0.381	0.00	0.62	4.933	Α
1	East	842.44		210.61			835.00	621.93	111.56	0.00	1292.88	1212.95	0.652	0.00	1.86	7.923	Α
2	North	457.73	457.73	114.43	0.00	368.90	454.79	111.56	471.20	0.00	1084.73	664.23	0.422	0.00	0.74	5.803	Α
2	South	455.48	455.48	113.87	0.00	0.00	452.99	645.49	280.50	0.00	1195.10	1120.34	0.381	0.00	0.62	4.933	Α
2	East	842.44	473.54	118.39	368.90	0.00	471.20	621.93	111.56	0.00	1292.88	1197.76	0.366	0.00	0.58	4.456	Α
3	North	457.73		114.43			454.79	479.10	471.79	0.00	1084.39	761.95	0.422	0.00	0.74	5.806	Α
3	South	455.48		113.87			452.99	646.08	280.50	0.00	1195.10	1085.46	0.381	0.00	0.62	4.933	Α
3	East	842.44		210.61			839.33	621.93	111.56	0.00	1938.67	1830.46	0.435	0.00	0.78	3.330	Α

Main results: (16:15-16:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	546.58		136.64			545.01	571.28	561.73	0.00	1032.34	962.84	0.529	0.74	1.13	7.511	Α
1	South	543.88		135.97			542.83	770.59	336.15	0.00	1162.90	1013.74	0.468	0.62	0.89	5.912	Α
1	East	1005.96		251.49			999.32	745.29	133.69	0.00	1280.07	1212.95	0.786	1.86	3.52	12.777	В
2	North	546.58	546.58	136.64	0.00	440.50	545.00	133.69	564.60	0.00	1030.68	664.23	0.530	0.74	1.13	7.536	Α
2	South	543.88	543.88	135.97	0.00	0.00	542.83	773.46	336.14	0.00	1162.90	1120.34	0.468	0.62	0.89	5.912	Α
2	East	1005.96	565.46	141.36	440.50	0.00	564.60	745.28	133.69	0.00	1280.07	1197.75	0.442	0.58	0.80	5.125	Α
3	North	546.58		136.64			545.00	573.61	564.72	0.00	1030.61	761.94	0.530	0.74	1.13	7.537	Α
3	South	543.88		135.97			542.83	773.57	336.14	0.00	1162.90	1085.46	0.468	0.62	0.89	5.912	Α
3	East	1005.96		251.49			1004.64	745.28	133.69	0.00	1923.30	1830.46	0.523	0.78	1.11	3.991	Α

Main results: (16:30-16:45)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	669.42		167.36			665.22	684.27	668.52	0.00	970.53	962.84	0.690	1.13	2.18	11.865	В
1	South	666.12		166.53			663.80	923.45	410.29	0.00	1119.98	1013.74	0.595	0.89	1.47	8.008	Α
1	East	1232.04		308.01			1189.30	910.61	163.48	0.00	1262.83	1212.95	0.976	3.52	14.20	37.173	Е
2	North	669.42	669.42	167.36	0.00	539.50	664.87	163.48	690.86	0.00	957.60	664.23	0.699	1.13	2.27	12.352	В
2	South	666.12	666.12	166.53	0.00	0.00	663.80	945.65	410.08	0.00	1120.11	1120.34	0.595	0.89	1.47	8.005	Α
2	East	1232.04	692.54	173.14	539.50	0.00	690.86	910.40	163.48	0.00	1262.83	1197.75	0.548	0.80	1.22	6.400	Α
3	North	669.42		167.36			664.87	701.69	690.89	0.00	957.59	761.95	0.699	1.13	2.27	12.353	В
3	South	666.12		166.53			663.80	945.69	410.08	0.00	1120.11	1085.46	0.595	0.89	1.47	8.005	Α

3	East 123	2.04	308.01		1229.10	910.40	163.48	0.00	1902.60	1830.46	0.648	1.11	1.84	5.428	A	

Main results: (16:45-17:00)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	669.42		167.36			669.05	696.20	683.13	0.00	962.07	962.84	0.696	2.18	2.27	12.499	В
1	South	666.12		166.53			666.04	939.53	412.66	0.00	1118.62	1013.74	0.595	1.47	1.48	8.109	Α
1	East	1232.04		308.01			1215.30	914.66	164.03	0.00	1262.51	1212.95	0.976	14.20	18.39	55.923	F
2	North	669.42	669.42	167.36	0.00	539.50	669.21	164.03	692.50	0.00	956.65	664.23	0.700	2.27	2.32	12.748	В
2	South	666.12	666.12	166.53	0.00	0.00	666.04	948.96	412.75	0.00	1118.56	1120.34	0.596	1.47	1.48	8.110	Α
2	East	1232.04	692.54	173.14	539.50	0.00	692.50	914.76	164.03	0.00	1262.51	1197.75	0.549	1.22	1.23	6.441	Α
3	North	669.42		167.36			669.21	703.51	692.51	0.00	956.65	761.95	0.700	2.27	2.32	12.748	В
3	South	666.12		166.53			666.04	948.96	412.75	0.00	1118.56	1085.46	0.596	1.47	1.48	8.110	Α
3	East	1232.04		308.01			1231.98	914.76	164.03	0.00	1902.22	1830.46	0.648	1.84	1.86	5.478	Α

Main results: (17:00-17:15)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	546.58		136.64			550.77	600.15	597.73	0.00	1011.51	962.84	0.540	2.27	1.22	8.041	Α
1	South	543.88		135.97			546.18	808.80	339.70	0.00	1160.84	1013.74	0.469	1.48	0.91	5.995	Α
1	East	1005.96		251.49			1063.36	751.37	134.51	0.00	1279.59	1212.95	0.786	18.39	4.04	20.713	С
2	North	546.58	546.58	136.64	0.00	440.50	551.17	134.51	567.11	0.00	1029.22	664.23	0.531	2.32	1.18	7.752	Α
2	South	543.88	543.88	135.97	0.00	0.00	546.18	778.33	339.95	0.00	1160.70	1120.34	0.469	1.48	0.91	5.996	Α
2	East	1005.96	565.46	141.36	440.50	0.00	567.11	751.61	134.51	0.00	1279.59	1197.75	0.442	1.23	0.82	5.167	Α
3	North	546.58		136.64			551.17	576.29	567.10	0.00	1029.23	761.94	0.531	2.32	1.18	7.753	Α
3	South	543.88		135.97			546.18	778.32	339.95	0.00	1160.70	1085.46	0.469	1.48	0.91	5.996	Α
3	East	1005.96		251.49			1008.88	751.61	134.51	0.00	1922.72	1830.46	0.523	1.86	1.13	4.030	Α

Main results: (17:15-17:30)

Intersection	Leg	Total Demand (PCE/hr)	Intersection Demand (PCE/hr)	Intersection Arrivals (PCE)	Bypass Demand (PCE/hr)	Bypass Exit Flow (PCE/hr)	Entry Flow (PCE/hr)	Exit Flow (PCE/hr)	Circulating Flow (PCE/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCE/hr)	Saturation Capacity (PCE/hr)	V/C Ratio	Start Queue (PCE)	End Queue (PCE)	Delay (s)	LOS
1	North	457.73		114.43			459.59	484.99	478.22	0.00	1080.67	962.84	0.424	1.22	0.76	5.929	Α
1	South	455.48		113.87			456.58	654.35	283.46	0.00	1193.39	1013.74	0.382	0.91	0.64	4.990	Α
1	East	842.44		210.61			850.76	627.59	112.45	0.00	1292.37	1212.95	0.652	4.04	1.96	8.466	Α
2	North	457.73	457.73	114.43	0.00	368.90	459.42	112.45	474.43	0.00	1082.86	664.23	0.423	1.18	0.76	5.907	Α
2	South	455.48	455.48	113.87	0.00	0.00	456.58	650.49	283.36	0.00	1193.45	1120.34	0.382	0.91	0.64	4.992	Α
2	East	842.44	473.54	118.39	368.90	0.00	474.43	627.49	112.45	0.00	1292.37	1197.76	0.366	0.82	0.59	4.495	Α
3	North	457.73		114.43			459.42	481.94	474.31	0.00	1082.93	761.95	0.423	1.18	0.76	5.904	Α
3	South	455.48		113.87			456.58	650.37	283.36	0.00	1193.45	1085.46	0.382	0.91	0.64	4.992	Α
3	East	842.44		210.61			843.80	627.49	112.45	0.00	1938.05	1830.46	0.435	1.13	0.79	3.361	Α

Queueing Delay Results for each time segment

Queueing Delay results: (16:00-16:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	10.61	0.71	5.793	А	A
1	South	9.04	0.60	4.933	A	A
1	East	26.11	1.74	7.923	Α	A
2	North	10.63	0.71	5.803	А	A
2	South	9.04	0.60	4.933	A	A
2	East	8.52	0.57	4.456	A	A
3	North	10.64	0.71	5.806	А	A
3	South	9.04	0.60	4.933	A	A
3	East	11.39	0.76	3.330	A	A

Queueing Delay results: (16:15-16:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	16.29	1.09	7.511	A	A
1	South	12.91	0.86	5.912	A	A
1	East	48.22	3.21	12.777	В	В
2	North	16.34	1.09	7.536	A	A
2	South	12.91	0.86	5.912	A	A
2	East	11.70	0.78	5.125	A	A
3	North	16.34	1.09	7.537	A	A
3	South	12.91	0.86	5.912	A	A
3	East	16.23	1.08	3.991	A	A

Queueing Delay results: (16:30-16:45)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	30.37	2.02	11.865	В	В
1	South	21.00	1.40	8.008	А	A
1	East	154.38	10.29	37.173	E	D
2	North	31.51	2.10	12.352	В	В
2	South	20.99	1.40	8.005	Α	A
2	East	17.66	1.18	6.400	Α	A
3	North	31.51	2.10	12.353	В	В
3	South	20.99	1.40	8.005	A	A
3	East	26.58	1.77	5.428	Α	A

Queueing Delay results: (16:45-17:00)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	33.56	2.24	12.499	В	В
1	South	22.16	1.48	8.109	Α	A
1	East	247.17	16.48	55.923	F	E
2	North	34.52	2.30	12.748	В	В
2	South	22.16	1.48	8.110	Α	A
2	East	18.39	1.23	6.441	A	A
3	North	34.52	2.30	12.748	В	В
3	South	22.16	1.48	8.110	A	A
3	East	27.79	1.85	5.478	A	A

Queueing Delay results: (17:00-17:15)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service	
1	1 North 19.24		1.28	8.041	Α	Α	
1	South	14.14	0.94	5.995	Α	A	
1	East	93.89	6.26	20.713	С	С	
2	North	18.51	1.23	7.752	Α	A	
2	South	14.14	0.94	5.996	Α	A	
2	East	12.60	0.84	5.167	Α	A	
3	North	18.51	1.23	7.753	А	A	
3	South	14.14	0.94	5.996	A	A	
3	East	17.44	1.16	4.030	Α	A	

Queueing Delay results: (17:15-17:30)

Intersection	Leg	Queueing Total Delay (PCE- min)	Queueing Rate Of Delay (PCE- min/min)	Average Delay Per Arriving Vehicle (s)	Unsignalised Level Of Service	Signalised Level Of Service
1	North	11.75	0.78	5.929	А	A
1	South	9.77	0.65	4.990	А	Α
1	East	31.29	2.09	8.466	Α	A
2	North	11.69	0.78	5.907	А	A
2	South	9.77	0.65	4.992	А	Α
2	East	9.12	0.61	4.495	A	A
3	North	11.69	0.78	5.904	А	A
3	South 9.77		0.65	4.992	A	A
3	East	12.09	0.81	3.361	А	A

Queue Variation Results for each time segment

Queue Variation results: (16:00-16:15)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.74	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	0.62	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.86	0.00	1.02	2.04	2.04			N/A	N/A
2	North	0.74	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	0.62	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.58	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	0.74	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	0.62	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	0.78	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:15-16:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.13	0.00	0.00	1.02	2.04			N/A	N/A
1	South	0.89	0.00	0.00	1.02	1.02			N/A	N/A
1	East	3.52	0.00	0.00	8.16	12.24			N/A	N/A
2	North	1.13	0.00	0.00	2.04	2.04			N/A	N/A
2	South	0.89	0.00	0.00	1.02	1.02			N/A	N/A
2	East	0.80	0.00	0.00	0.00	1.02			N/A	N/A
3	North	1.13	0.00	0.00	2.04	2.04			N/A	N/A
3	South	0.89	0.00	0.00	1.02	1.02			N/A	N/A
3	East	1.11	0.00	0.00	2.04	2.04		N/A		N/A

Queue Variation results: (16:30-16:45)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	2.18	0.00	0.00	0.00	4.08			N/A	N/A
1	South	1.47	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	14.20	0.00	5.10	36.72	51.00			N/A	N/A
2	North	2.27	0.00	0.00	0.00	5.10			N/A	N/A
2	South	1.47	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.22	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	2.27	0.00	0.00	0.00	5.10			N/A	N/A
3	South	1.47	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.84	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (16:45-17:00)

			•		•					
Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	2.27	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	South	1.48	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	18.39	0.00	4.08	48.96	72.42			N/A	N/A
2	North	2.32	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	South	1.48	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	1.23	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	2.32	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	South	1.48	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	East	1.86	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (17:00-17:15)

			•		,					
Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	1.22	0.00	0.00	2.04	3.06			N/A	N/A
1	South	0.91	0.00	0.00	1.02	1.02			N/A	N/A
1	East	4.04	0.00	0.00	8.16	15.30			N/A	N/A
2	North	1.18	0.00	0.00	2.04	3.06			N/A	N/A
2	South	0.91	0.00	0.00	1.02	1.02			N/A	N/A
2	East	0.82	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
3	North	1.18	0.00	0.00	2.04	3.06			N/A	N/A
3	South	0.91	0.00	0.00	1.02	1.02			N/A	N/A
3	East	1.13	?	?	?	?	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

Queue Variation results: (17:15-17:30)

Intersection	Leg	Mean (PCE)	Q05 (PCE)	Q50 (PCE)	Q90 (PCE)	Q95 (PCE)	Percentile Message	Marker Message	Probability Of Reaching Or Exceeding Marker	Probability Of Exactly Reaching Marker
1	North	0.76	0.00	0.00	1.02	1.02			N/A	N/A
1	South	0.64	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
1	East	1.96	0.00	0.00	1.02	6.12			N/A	N/A
2	North	0.76	0.00	0.00	1.02	2.04			N/A	N/A
2	South	0.64	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A
2	East	0.59	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.		N/A	N/A

3	North	0.76	0.00	0.00	1.02	2.04		N/A	N/A
3	South	0.64	~1	~1	~1	~1	Percentiles could not be calculated. This may be because the mean queue is very small or very big.	N/A	N/A
3	East	0.79	0.00	0.00	1.02	1.02		N/A	N/A

Appendix J

Public and Agency Consultation

NOTICE OF STUDY COMMENCEMENT

Intersection Improvements Heart Lake Road and Countryside Drive Class Environmental Assessment Study

The Study

The City of Brampton has initiated a Class Environmental Assessment for improvements to the intersection of Heart Lake Road and Countryside Drive. The City identified the need for intersection improvements as part of an overall operational and safety improvement for the Heart Lake Road Corridor.

The Process

The study is being undertaken in accordance with the planning and design process for Schedule "B" projects as outlined in the Municipal Class Environmental Assessment document (October 2000, as amended in 2007, 2011 and 2015), which is approved under the *Ontario Environmental Assessment Act*. This study will define the problem(s) with the intersection, identify and evaluate alternative solutions to the problem, evaluate alternative design concepts for the solution, recommend a preferred design concept and assess potential impacts and identify mitigation measures associated with the preferred design.

A key component of the study will be consultation with interested stakeholders, including public agencies and Aboriginal Communities. A Public Information Centre (PIC) will be held to present the project, review the study findings and discuss issues related to the project including alternative solutions, evaluation criteria, alternative design concepts, and environmental impacts and mitigation measures. Details regarding the forthcoming PIC will be advertised as the study progresses. At the conclusion of the study, the EA process will be documented in an Environmental Project Report which will be made available for 30 calendar days for public review and comment.

Comments Invited

If you have any questions or comments regarding the Study or wish to be added to the Study mailing list, please contact either of the project team members:

Soheil Nejatian, P. Eng. Project Engineer, Infrastructure Planning Public Works and Engineering, City f Brampton 1975 Williams Parkway Brampton ON L6S 6E5 T: 905-874-5909

F: 905-874-2599

Email: soheil.nejatian@brampton.ca KEY PLAN

Dave Hallman, P.Eng. Consultant Project Manager MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener ON N2B 3X9 T: 905-639-2552 x 1336

F: 905-639-7727

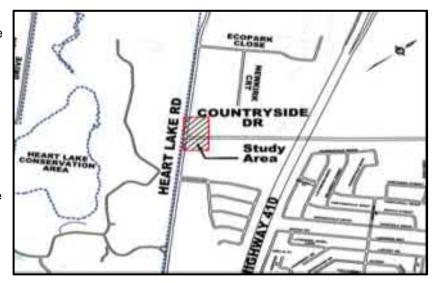
Email: dhallman@mte85.com

For more information please visit: www.brampton.ca

Information will be collected in accordance with the Freedom of Information and Protection of Privacy Act. With the exception of personal information, all comments will become part of the public record.

This notice first issued on September xx, 2020.

Public Notice


NOTICE OF ONLINE PUBLIC INFORMATION CENTRE #1

Municipal Class Environmental Assessment Study for Intersection Improvements at Heart Lake **Road and Countryside Drive**

The City of Brampton has initiated a Schedule 'B' Class Environmental Assessment (Class EA) for the following road intersection in accordance with the **Environmental Assessment Act:**

Intersection Improvements at Heart Lake Road and Countryside Drive

The EA study is assessing the need for intersection improvements as part of an overall operational and safety improvements for the Heart Lake Road corridor to accommodate current and future transportation and safety needs of pedestrians, cyclists, and motorists. You are invited to participate in the Online Public Information Centre to learn about the project findings to date and share your input.

The Process

The study is being carried out in accordance with the planning and design process for Schedule 'B' projects as outlined in the Municipal Class Environmental Assessment (October 2000, as amended in 2007, 2011, 2015), which is approved under the Ontario Environmental Assessment Act.

Online Public Information Centre

The City of Brampton is working hard to protect the health and wellbeing of our community. To help protect the health and safety of residents and staff during the COVID-19 pandemic, this Public Information Centre (PIC) is being held using a

The City is committed to informing and engaging the public on the Intersection Improvements at Heart Lake Rd. and Countryside Dr. Class EA and will be posting Public Information Centre content on the City's website starting April 14, 2022 to May 13, 2022.

How to Participate:

Step 1: Visit: www.brampton.ca/Heartlake-Countryside-EA by using your computer or scan the QR code using mobile phone.

Step 2: View the material and complete the comment form provided on the website.

If you are unable to participate online, please leave a voicemail with your name and phone number and a member of the project team will contact you for your input.

Comments Invited

If you have any questions or comments regarding the study, or wish to be added to the study mailing list, please contact either of the following project members:

Ghaz Mohammad, M.Eng., P.Eng, PMP

Sr. Project Engineer, Infrastructure Planning Public Works & Engineering, City of Brampton WPOC, 1975 Williams Parkway

Brampton, ON L6S 6E5

T: 905 874 2949 F: 905-875-2505

Email: Ghazanfar.mohammad@brampton.ca

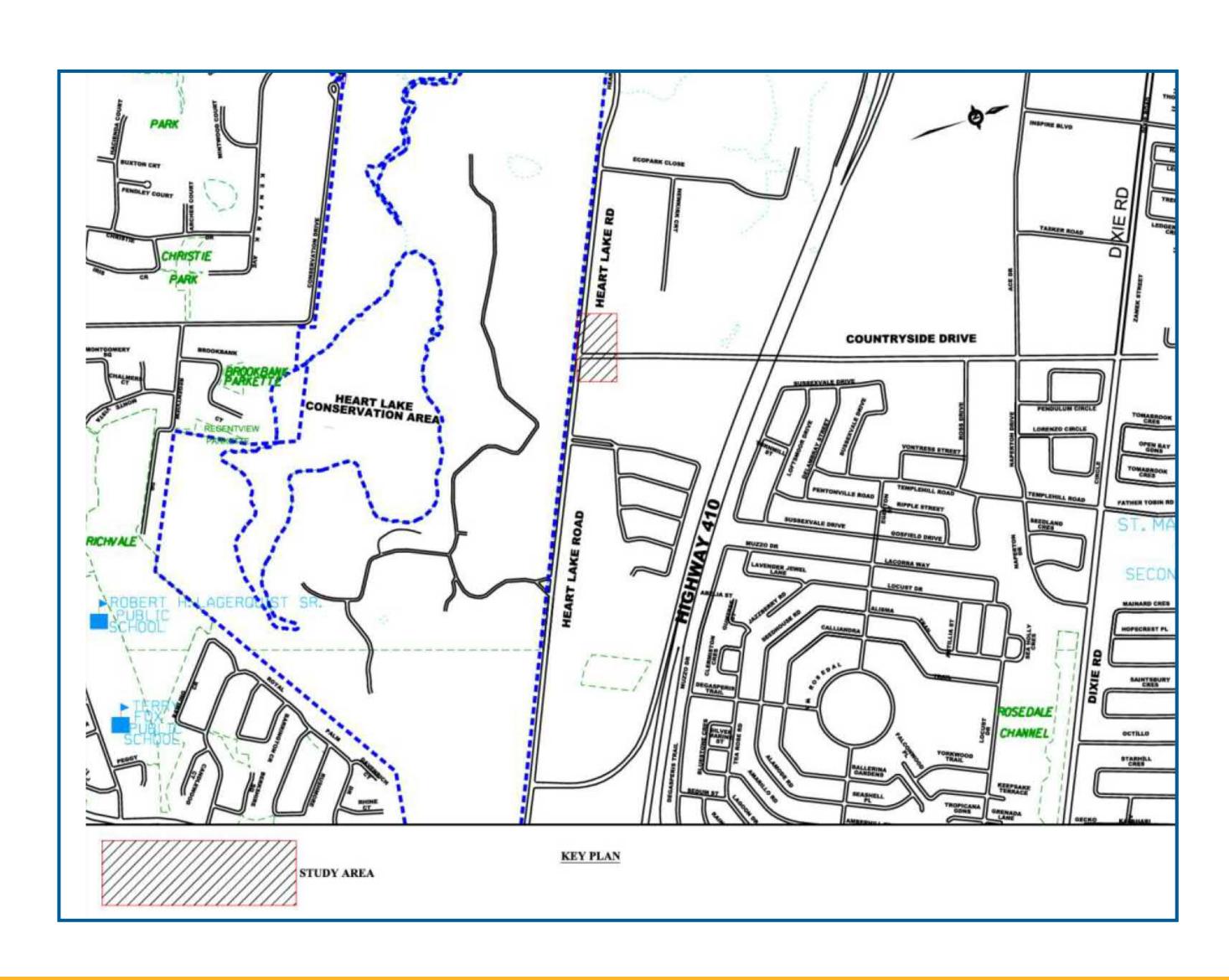
Dave Hallman, P. Eng

Consultant Project Manager MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

T: 905-639-2552 x1336

F: 905-639-7727

Email: dhallman@mte85.com


Information will be collected in accordance with the Freedom of Information and Protection of Privacy Act. With the exception of personal information, all comments will become part of the public record. **BRAMPTON**

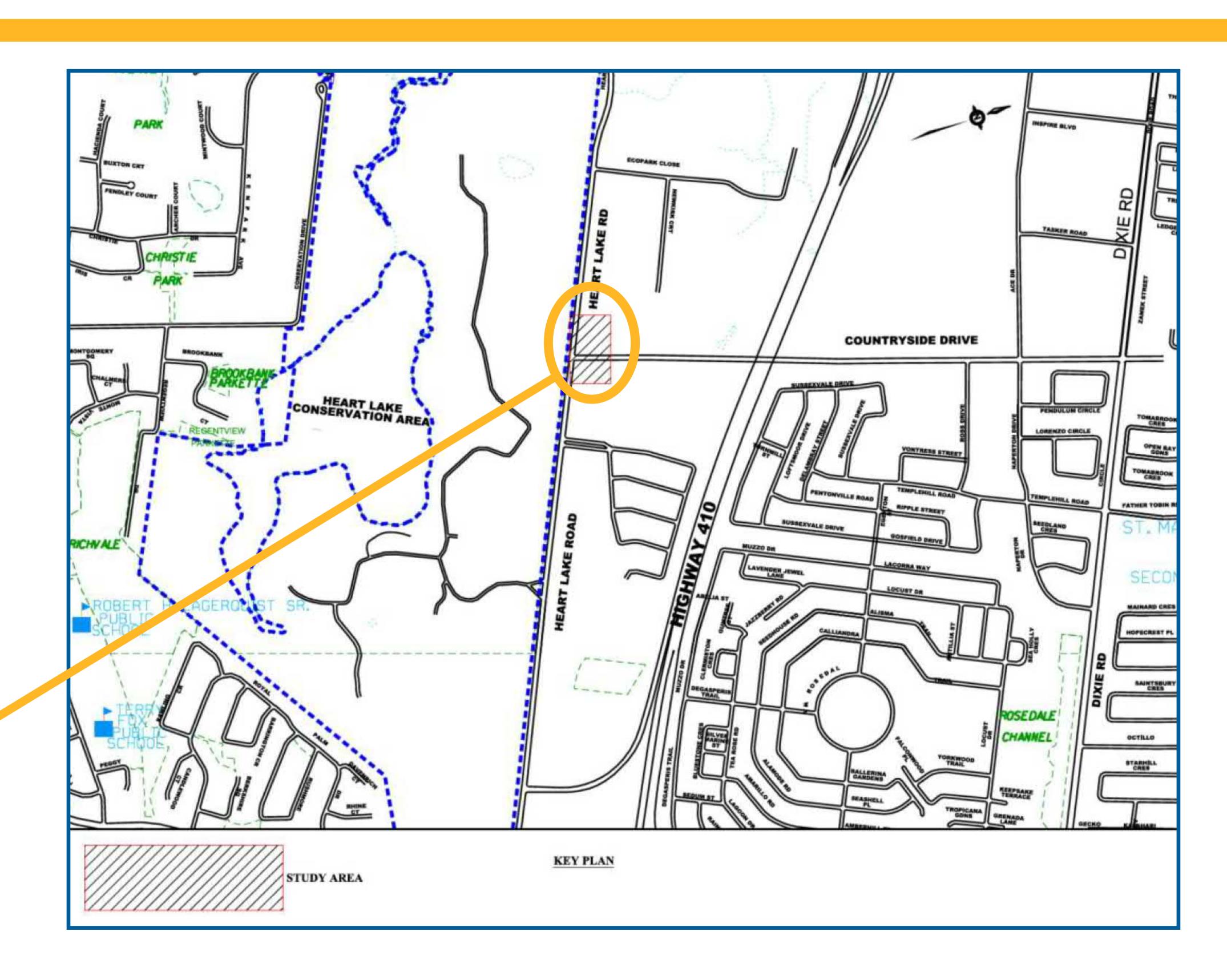
This notice was first issued on April 14, 2022.

Welcome to the

Heart Lake Road & Countryside Drive Class EA Public Information Centre

April 14 - May 13, 2022

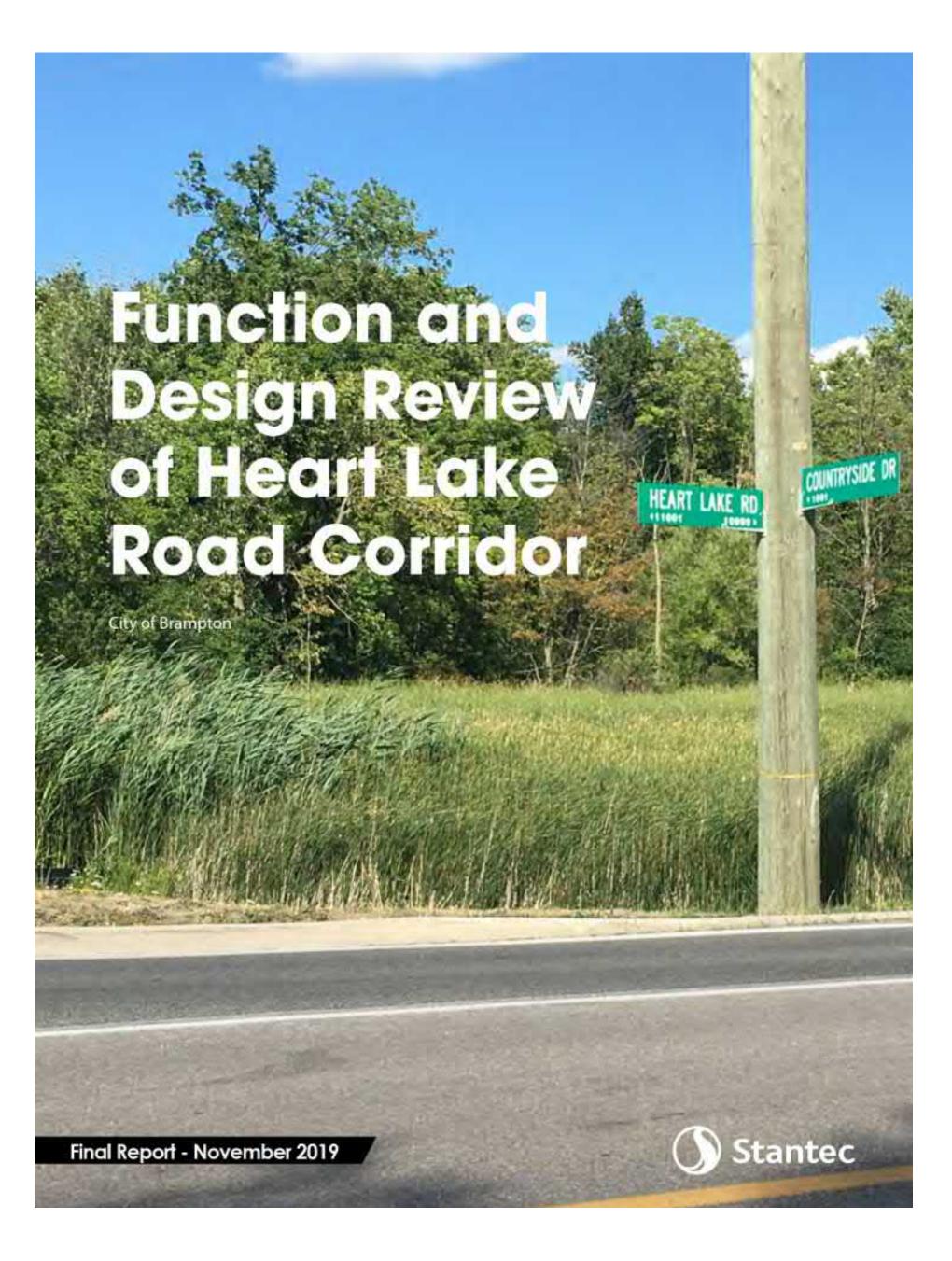
Introduction


The City of Brampton has initiated a Schedule B Class Environmental Assessment (EA) for improvements to the intersection of Heart Lake Road and Countryside Drive

Desired Outcomes of this Class EA Study:

- Safety and operations including traffic calming
- Minimize natural environment impacts and wildlife mortality
- Conservation of cultural heritage landscape
- Consider proposed land uses and meet travel demands
- Vision Zero initiative, active transportation, safety

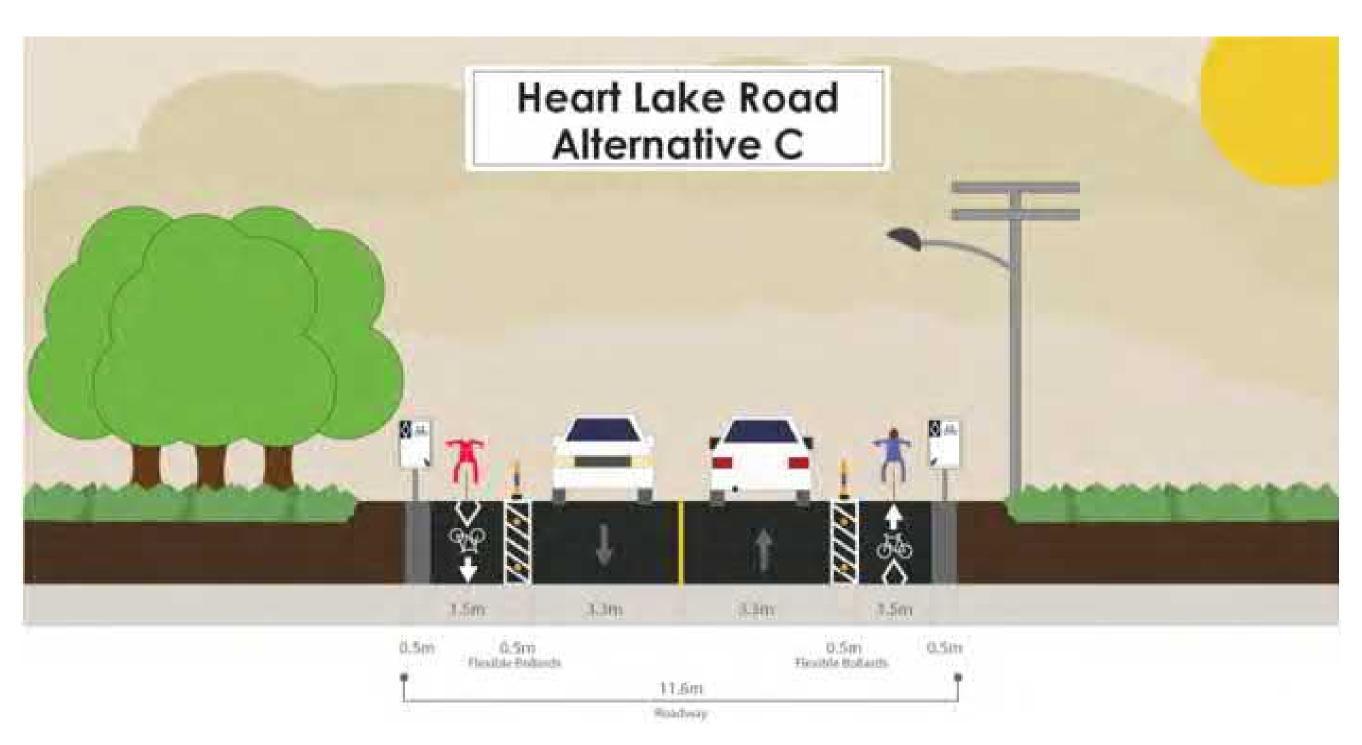
Study Limits



Study Area

2019 Function and Design Review Study

Short-Term Recommendations


- Narrower lanes, hybrid multiuse trails through Heart Lake
 Conservation Area
- Reclassify as Collector Road,
 50 km/h speed limit, speed cushions
- Wildlife mortality: Maintain flashers, maintain optical speed bars, additional eco-passages, wildlife directional fencing, turtle nesting mounds
- Maintain an enhance wildlife

2019 Function and Design Review Study

Long-Term Recommendations

 Separated bike lanes on Heart Lake Rd. & Roundabout at Countryside

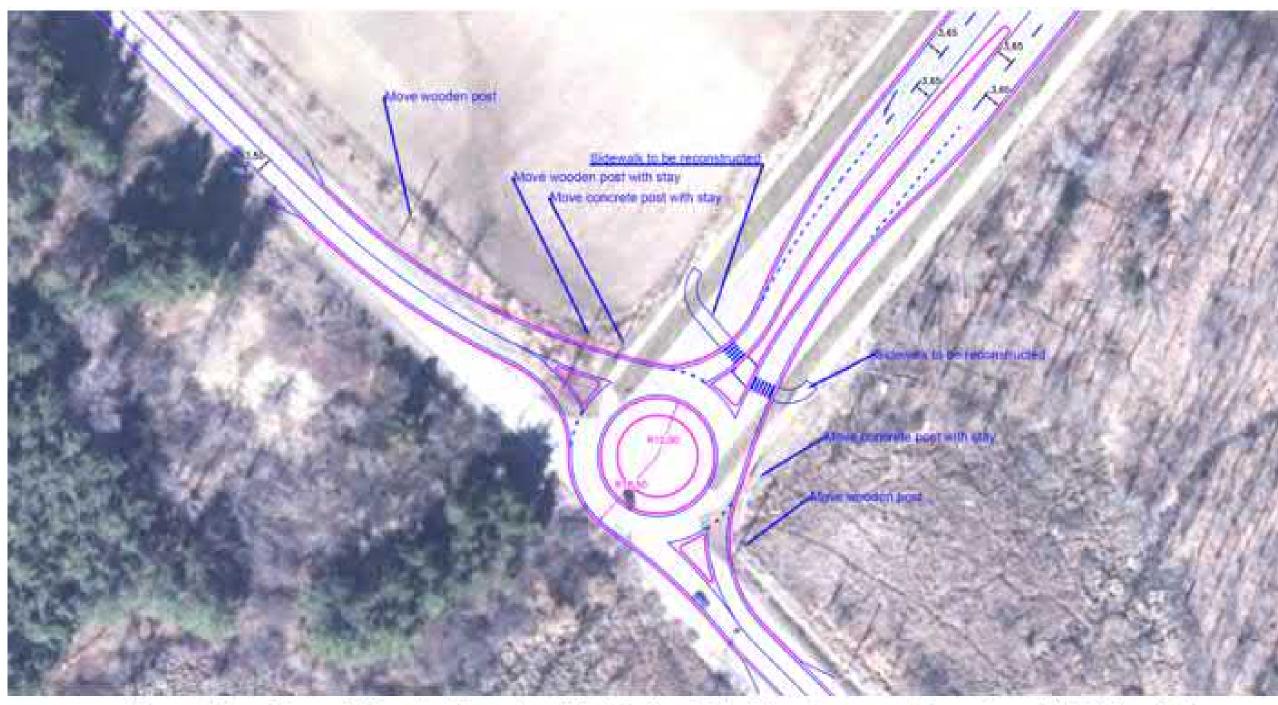
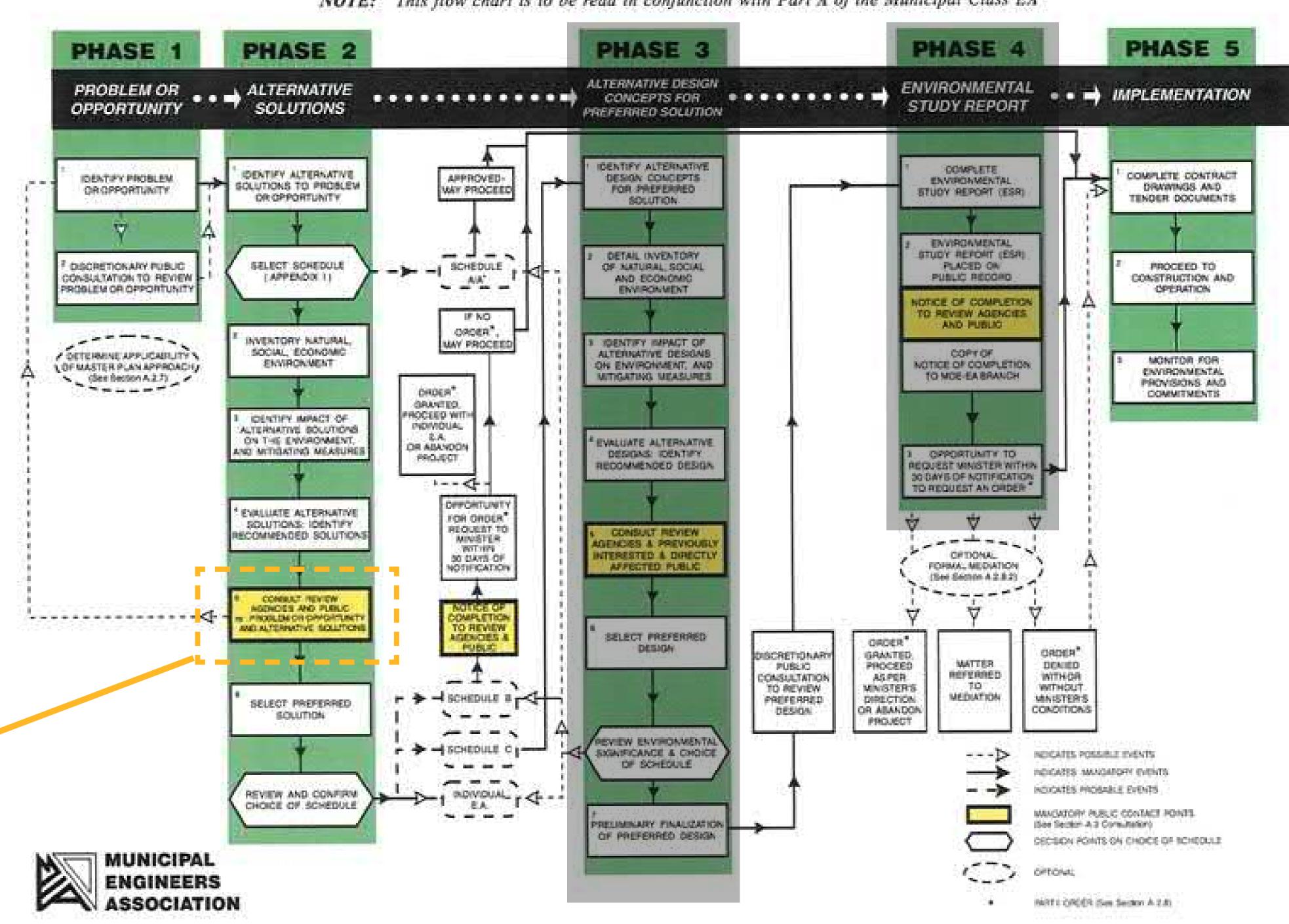


Figure 50: Roundabout at Countryside Option 2 (without encroachment on TRCA lands)


The Class EA Process

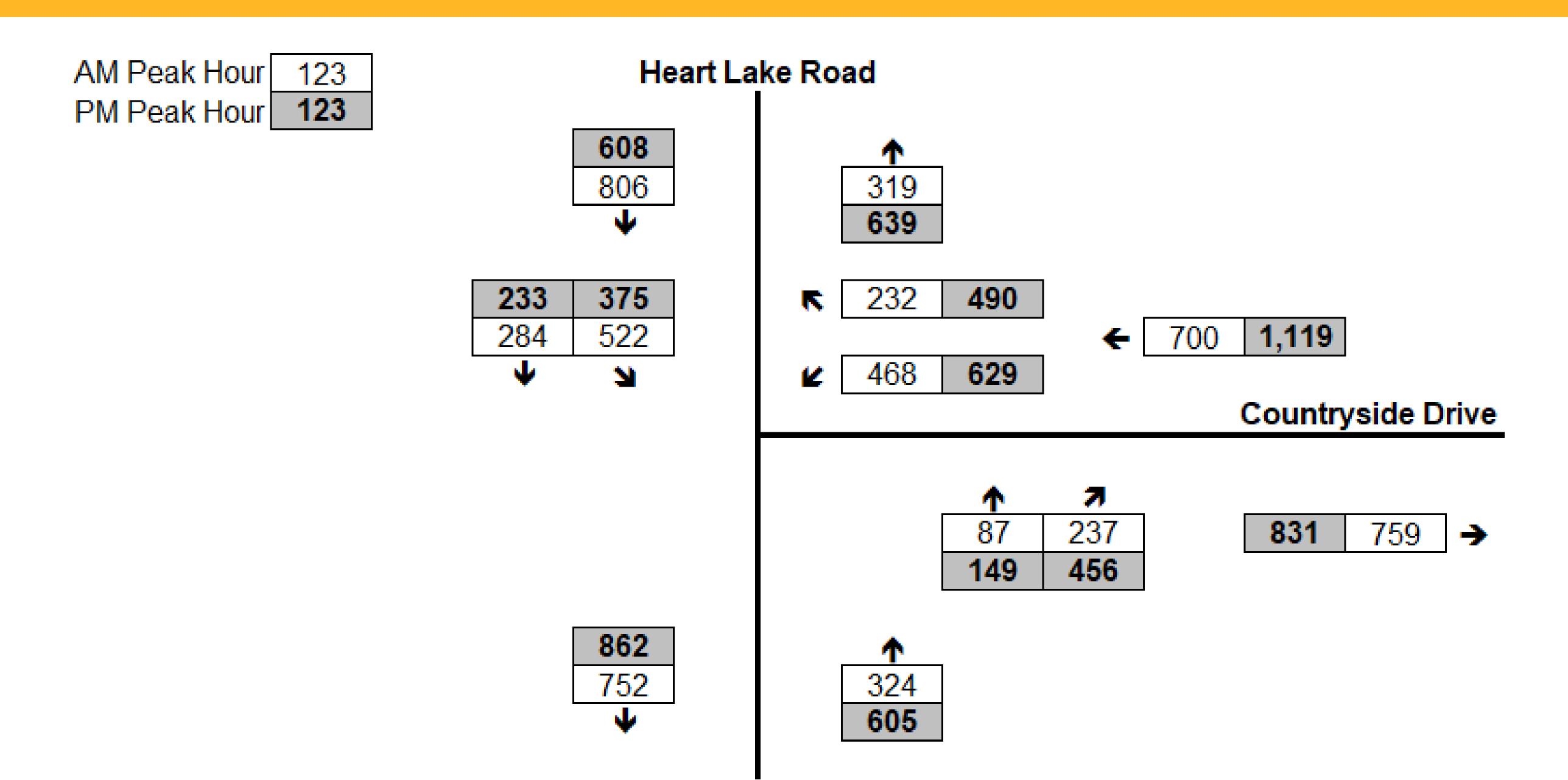
- The study is being undertaken in accordance with the Municipal Class EA planning and design process for Schedule "B" project
- Study is for Heart Lake Road and Countryside Drive intersection only
- The Function & Design Review of Heart Lake Road Corridor (2019) Study provides background information, provide support for problem/opportunity identification for this intersection improvement
- Additional studies have been undertaken building upon existing background information and studies

The Class EA Process

NOTE: This flow chart is to be read in conjunction with Part A of the Municipal Class EA

We are here

> Phases 3 and 4 Not Required for Schedule 'B' Class EA



Needs and Justification

Improve the safety and operations of the Heart Lake Road and Countryside Drive intersection including meeting the traffic demand of increasing population and growth while incorporating traffic calming and wildlife mortality reduction recommendations for the Heart Lake Road Corridor.

2041 Traffic Volumes

Traffic forecasts were developed via the application of calculated growth rates

The 2041 traffic forecasts represent approximately a 65% increase in comparison to base year traffic volumes

2041 Traffic Operations

1. Do Nothing Scenario (Remain as Unsignalized)

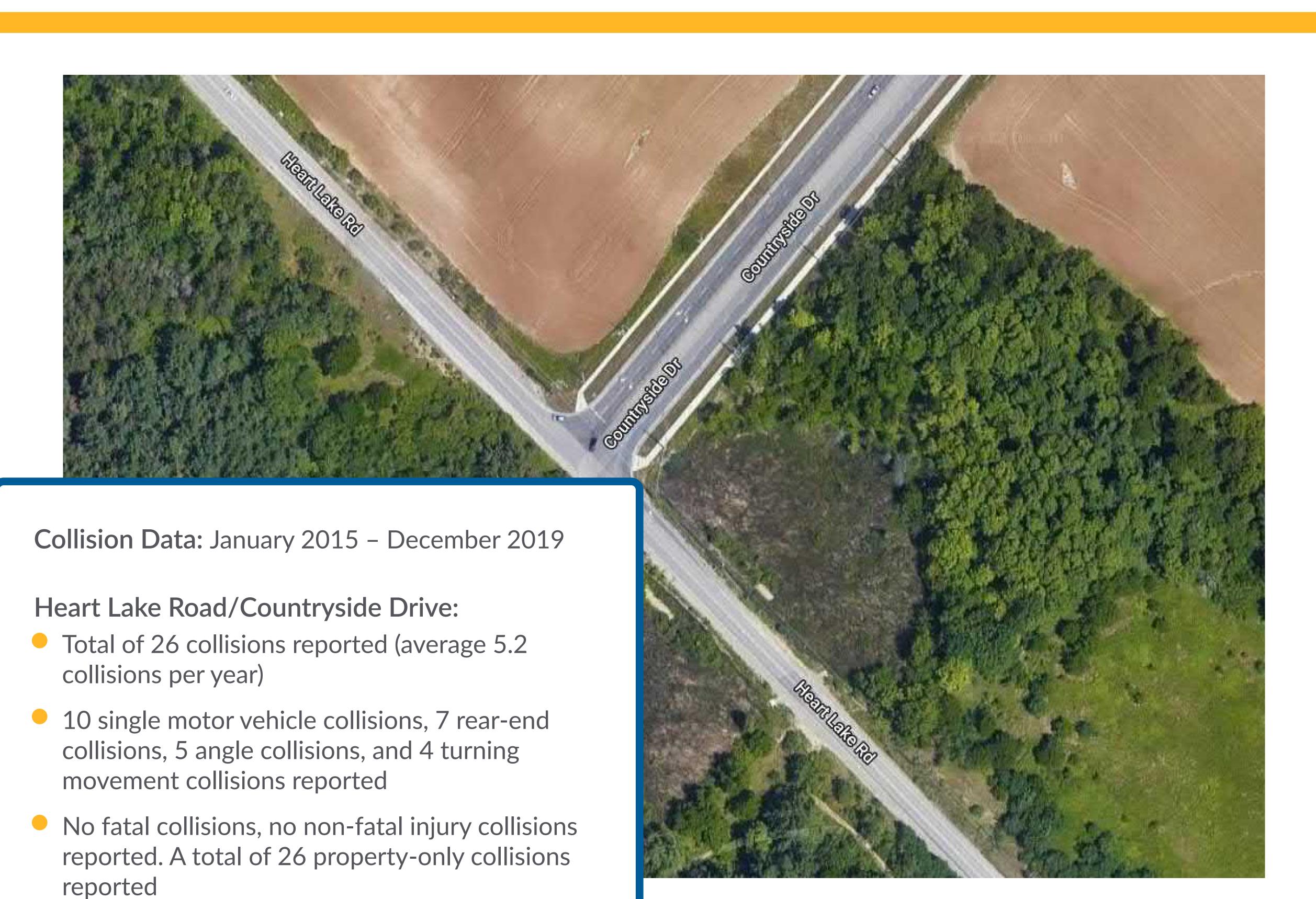
• The westbound left-turn movement is forecast to operate over-capacity

2. Traffic Signal Control

- The forecast traffic volumes would warrant the consideration of traffic signal control
- Operating under signal control, the overall intersection and all movements are forecast to operate within capacity and with acceptable delays

3. Roundabout Control

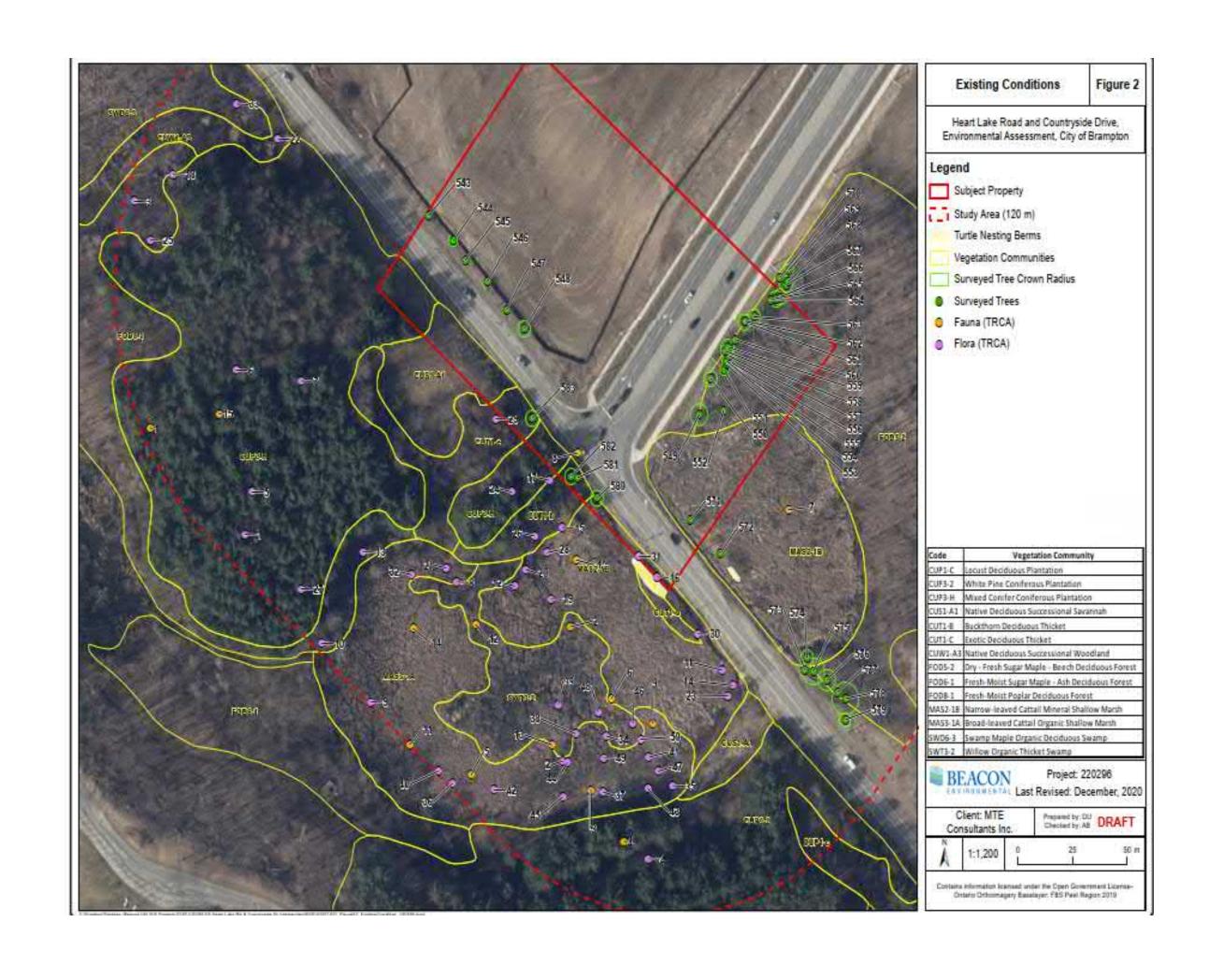
- Initial screening of the intersection identified and confirmed the location would be applicable for roundabout consideration
- Operating under roundabout control, the overall intersection and all movements are forecast to operate well within capacity and with acceptable delays



Safety Review Study

- Investigation confirmed there is more than adequate approach and departure sight distance available
- However, even with the adequate sight distances, a high frequency of collisions were reported and were determined to be attributed to aggressive driver behaviour (i.e. speed)
- Correlates with the poor traffic operations stemming from a lack of gaps within the traffic stream along Heart Lake Road
- Concluded that the current intersection warrants improvement

Collision Data


Natural Environment

 Significant wetlands and woodlands near intersection (Part of Heart Lake PSW)

Significant wildlife habitat in wetland and woodland

communities, endangered and threatened species:


- Bats, turtles (incl. Snapping), waterfowl, raptor nesting, reptiles
- Turtle nesting berms
- No fish habitat
- Adjacent to Heart Lake ANSI's

Drainage Study

- Roundabout results in an extra 14 L/s during 100-year-storm compared to signalized intersection
- Low-impact development (LID) recommended for stormwater quantity/quality control

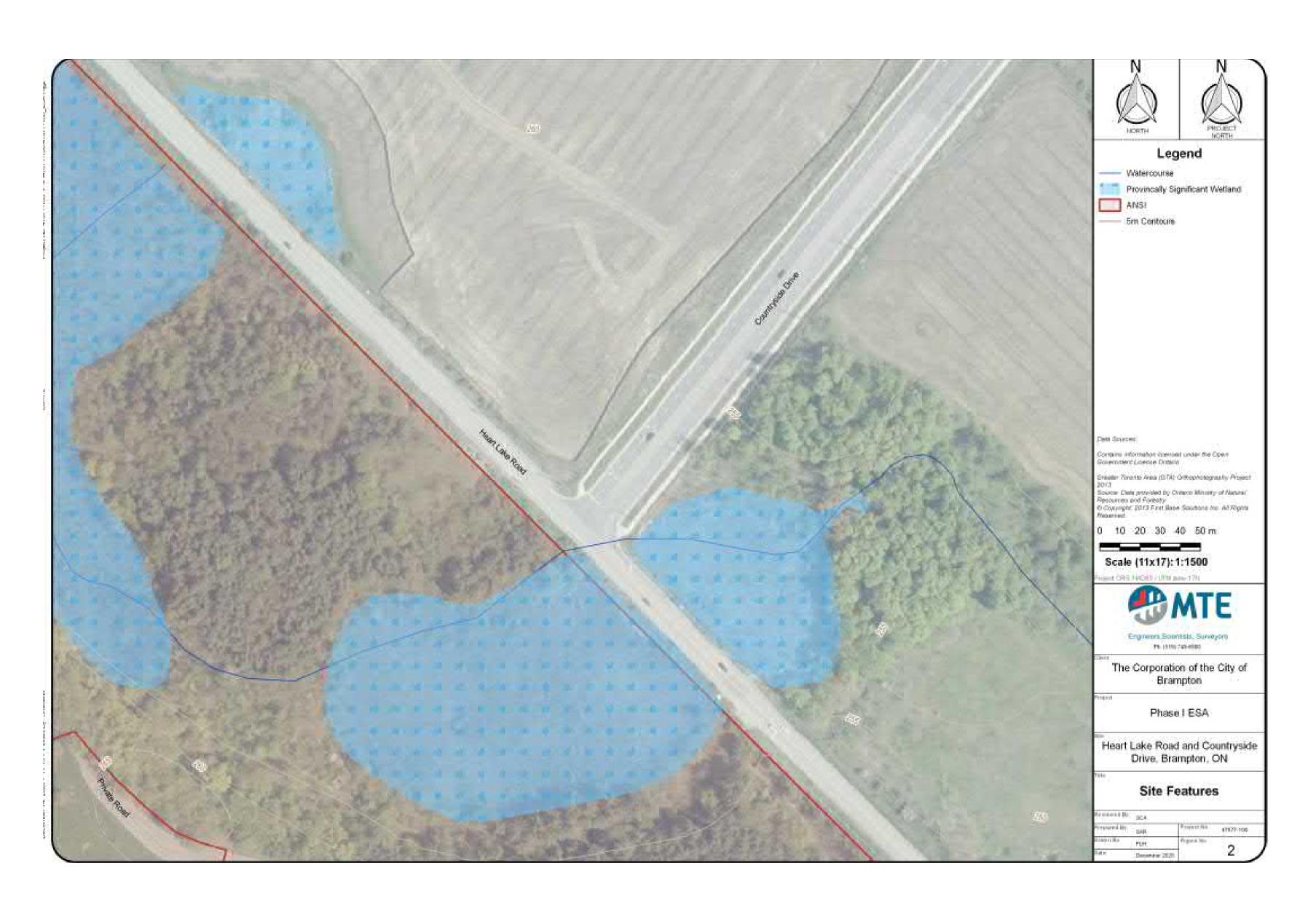
Existing

300-mm storm sewer with sub-drains

Ditch drainage with culvert crossing Countryside Drive; at intersection

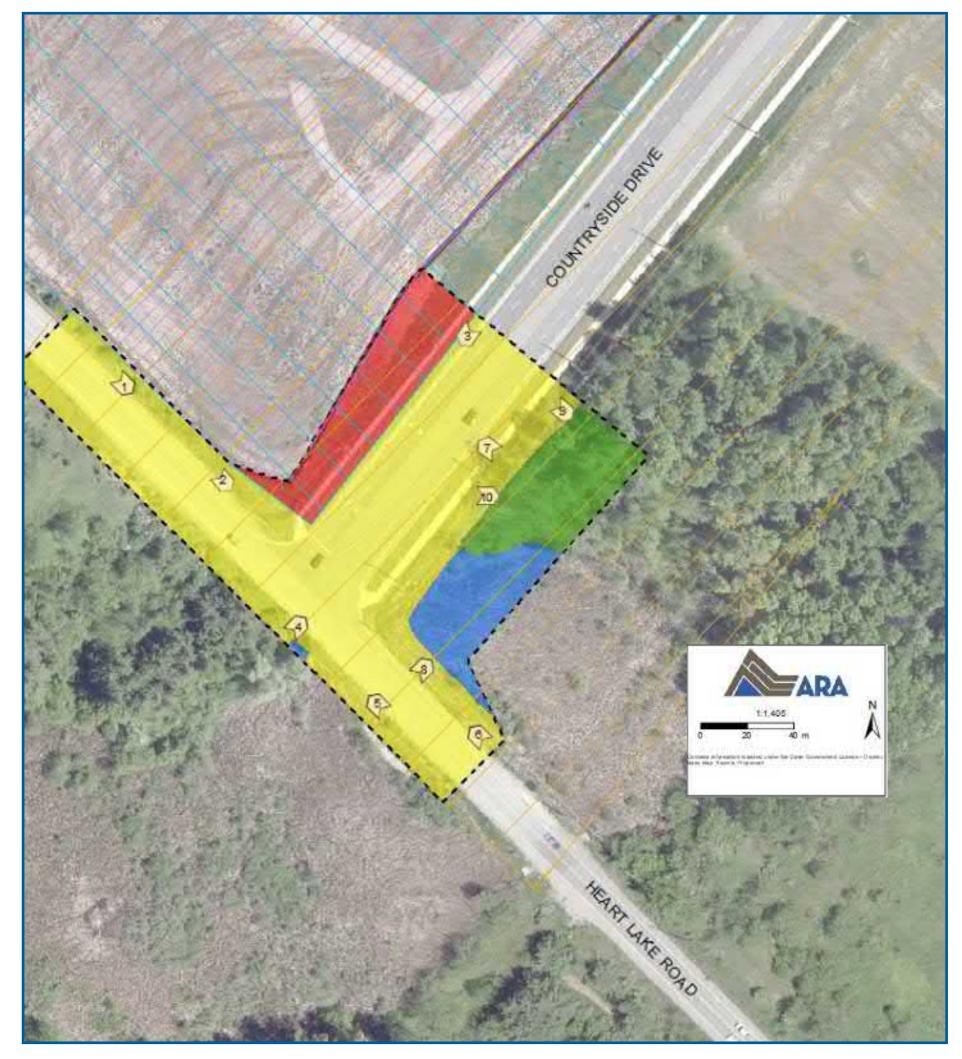
Overland flow draining to ditch / wetlands (generally uncontrolled drainage)

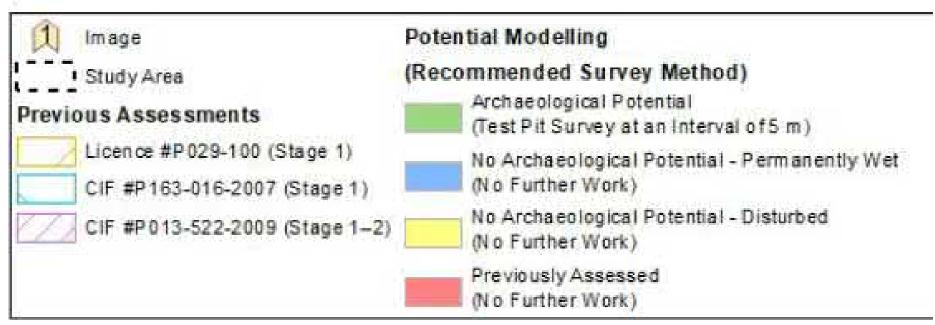
Replace existing storm sewers and enhance LID to promote infiltration


Re-grade/enhance ditches and replace/relocate culvert at intersection

Flows contained and conveyed into ditches or infiltrated within project limits

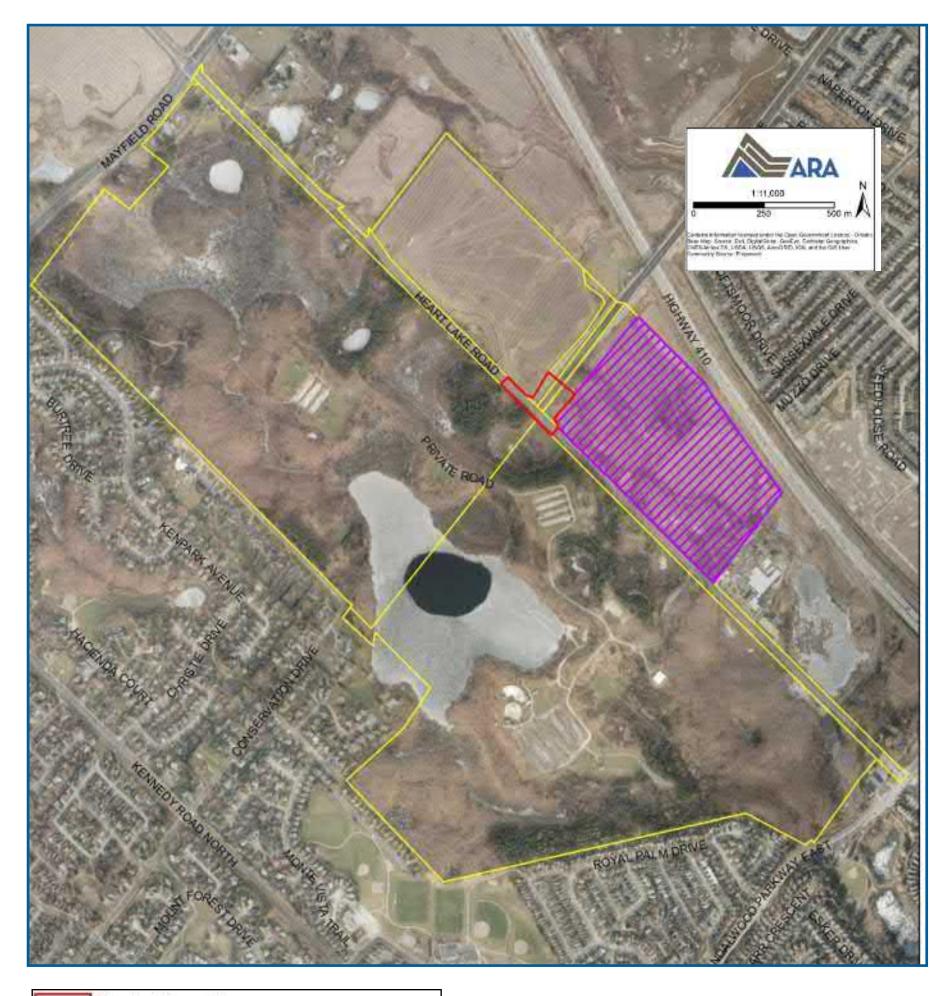
Phase 1 Environmental Site Assessment




- No records of spills
- Fill has been added over the years
- Additional testing should be undertaken prior to construction

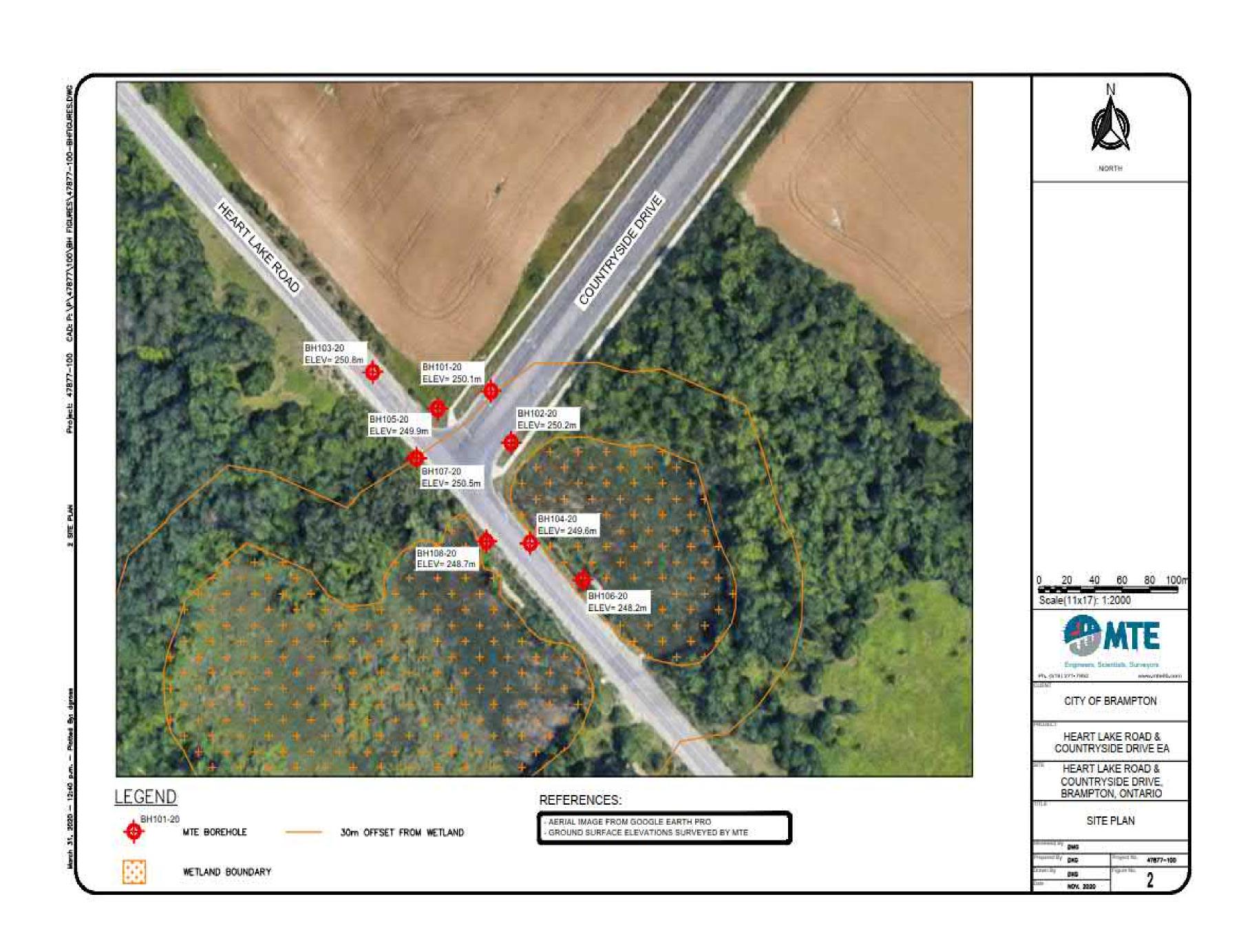
Stage 1 Archeological Investigation

- Most areas have no archaeological potential; previously disturbed, permanently wet, previously assessed
- Intersection options to be designed to avoid potential areas



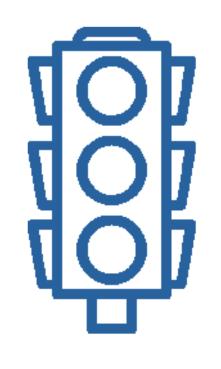
Built/ Cultural Heritage Assessment

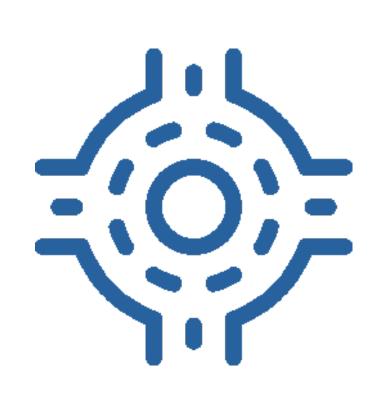
- Wetland is considered a Built Heritage Resource
- Heart Lake Road is considered a Cultural Heritage Landmark


Project Location Built Heritage Resource (BHR 1) Property Parcel

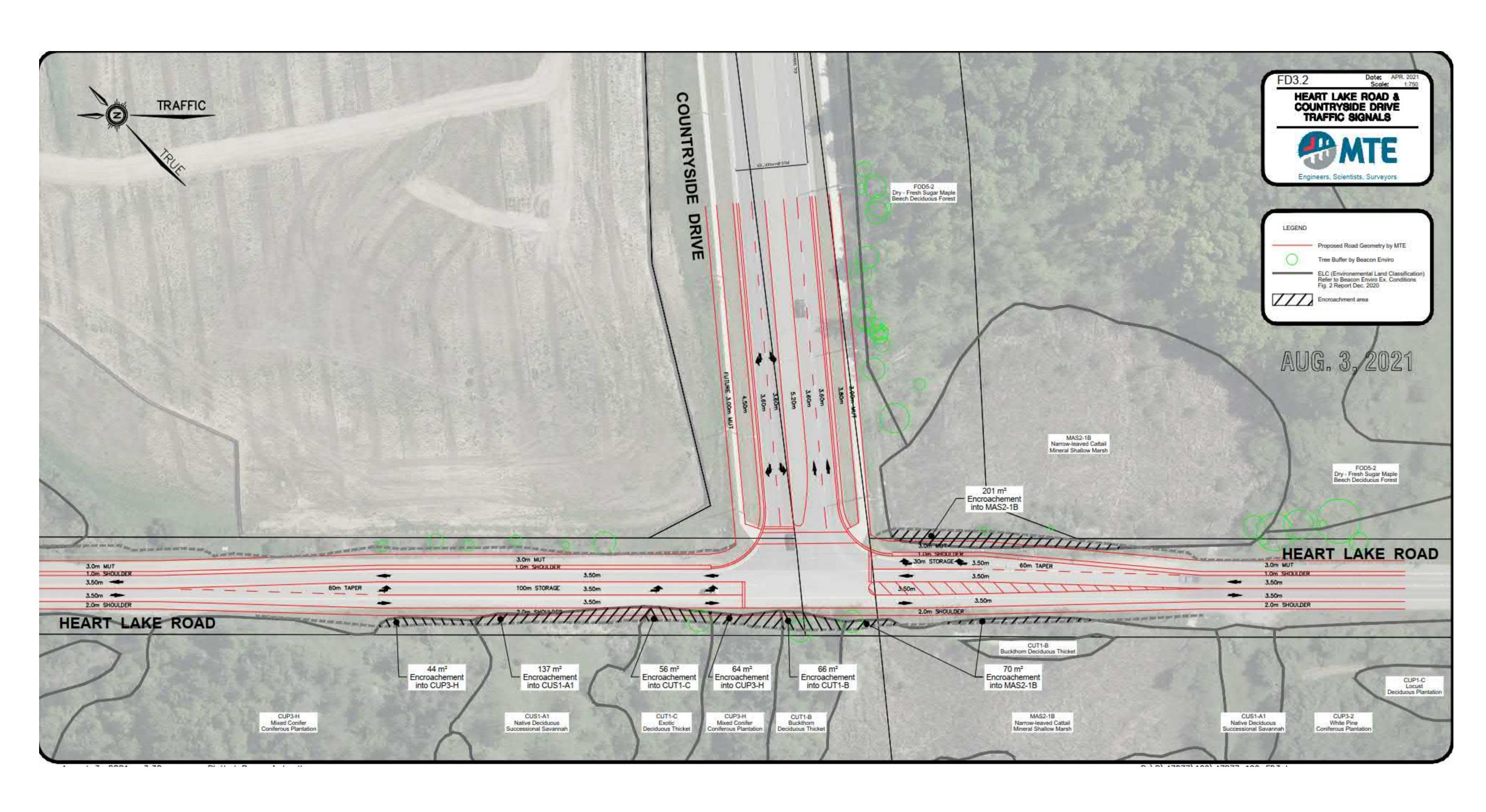
Geotechnical Investigation

- Underlying soil is glacial till - gravelly silt
- Peat deposit between 2-4 m, found on west side of Heart Lake Road
- Dewatering expected in excavations greater than 2-m deep



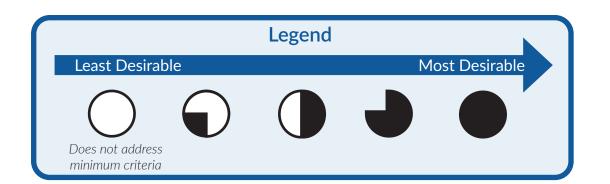


Alternatives


Signalized Intersection with

EQUE Roundabout

Signalized with Turn Lanes


Roundabout

Heart Lake Road at Countryside Drive Environmental Assessment

Evaluation Criteria

Do Nothing

Signalized Intersection with Turn Lanes

Roundabout

Natural Environment

- 1. Minimize impacts to Designated Natural Areas, vegetation, wildlife, aquatic features
- 2. Minimize impacts to wetlands
- 3. Minimize impacts to surface water and groundwater
- 4. Minimize air quality impacts and effects on climate change

- 1. No impacts to existing Natural Areas, vegetation, wildlife or aquatic features, but Heart Lake Road traffic will continue at speed limit, increasing chance of wildlife strikes
- 2. No impacts to designated wetlands
- 3. No change in runoff/ surface drainage
- 4. Traffic volumes will continue to increase, resulting in increase delays / congestion

- a) Traffic with green light will continue at speed limit increasing chance of wildlife strikes
 b) Wildlife fencing and erosion controls to be installed
- 2. Some intrusions into designated wetlands (271m²)
- 3. Least pavement drainage/surface water runoff
- 4. Traffic delays/congestion resulting in vehicles idling at red lights

- a) All traffic will slow down to navigate roundabout, which should reduce wildlife strikes
 b) Wildlife fencing and erosion controls to be installed
- 2. Minimal intrusion into designated wetlands (45m²)
- 3. More pavement resulting in more drainage/ surface water runoff
- 4. Less traffic delays due to vehicles not having to stop at red lights, less vehicle starting/stopping

Planning Objectives

- 1. Adhere to Transportation Master Plan
- 2. Adhere to Official Plan
- 3. Adhere to Active Transportation Master Plan
- 4. Adhere to Region Official Plan Policies

- 1. Does not implement required improvements per Transportation Master Plan
- 2. Other transportation improvements will be required to adhere to the Official Plan
- 3. Does not adhere to Active Transportation Master Plan
- 4. Other transportation improvements will be required to adhere to Official Plan Plolicies

- 1. Adheres to Transportation Master Plan
- 2. Adheres to Official Plan
- 3. Adheres to Active Transportation Master Plan
- 4. Adheres to Region Official Plan Policies

- 1. Adheres to Transportation Master Plan
- 2. Adheres to Official Plan
- 3. Adheres to Active Transportation Master Plan
- 4. Adheres to Region Official Plan Policies

 \bigcirc 0

4

Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout			
Social and Cultural Environment						
1. Improve visual aesthetics	Visual aesthetics will remain the same, no opportunities to enhance landscape	 Landscaping opportunities behind curb/ sidewalk/MUT 	 Opportunities for landscaping in center island and behind sidewalk/MUT 			
2. Preserve archaeological and cultural heritage features	2. No impacts to archaeological/ heritage features	2. a) No direct impacts to archaeological/ heritage featuresb) Some impact on existing rural road cross section	 2. a) No direct impacts to known archaeological features b) Disrupt existing linear views c) Changes the existing cross section d) Additional Stage 1/2 Archaeological investigation required in property purchase area 			
3. Preserve the agricultural setting, community character and public realm	No impacts to existing setting, character or public realm	3. Signals contribute to urban look and setting	 Opportunity to enhance the public realm, and all traffic must slow to navigate roundabout 			
4. Minimize traffic noise	4. Traffic noise will continue to increase as traffic volumes increase	4. Traffic noise will not decrease	 Traffic noise will decrease due to less stop/starts of traffic 			
5. Minimize disruption due to construction	5. No disruption due to construction, however, increasing congestions may cause disruption	Least time for construction and traffic can be maintained during construction	Most time for construction and traffic can be maintained during construction			
6. Minimize impacts to existing accesses in	6. No impacts to existing access, however,	6. No accesses impacted in the area	6. No accesses impacted in the area			

Economic Development

the area

- 1. Beneficial to business/ community with respect to travel time
- 2. Minimize capital and construction costs
- 3. Minimize property impacts/ requirements
- 4. Minimize operating and maintenance costs

1. Travel time will not be reduced, and will increase as traffic volumes increase

increasing congestion may impact access

- 2. No construction or capital costs
- 3. No additional property required
- 4. Operating and maintenance costs do not change

- 1. More delays than with a roundabout due to stopped traffic stopped for red lights
- 2. Road improvements and signal installation have lowest capital/construction costs est. \$1.15 million
- 3. No additional property required
- 4. Operating and maintenance costs include powering and maintaining signals

- 1. Roundabout provides more free flowing traffic, and results in less traffic delays/congestion
- 2. Highest Capital Costs due to additional pavement, curb, signage and line markings est. \$1.57 million
- 3. Approximately 550 sm of property is required on NE corner, which can be obtained through subdivision approvals
- 4. No signal power and maintenance costs

3 2

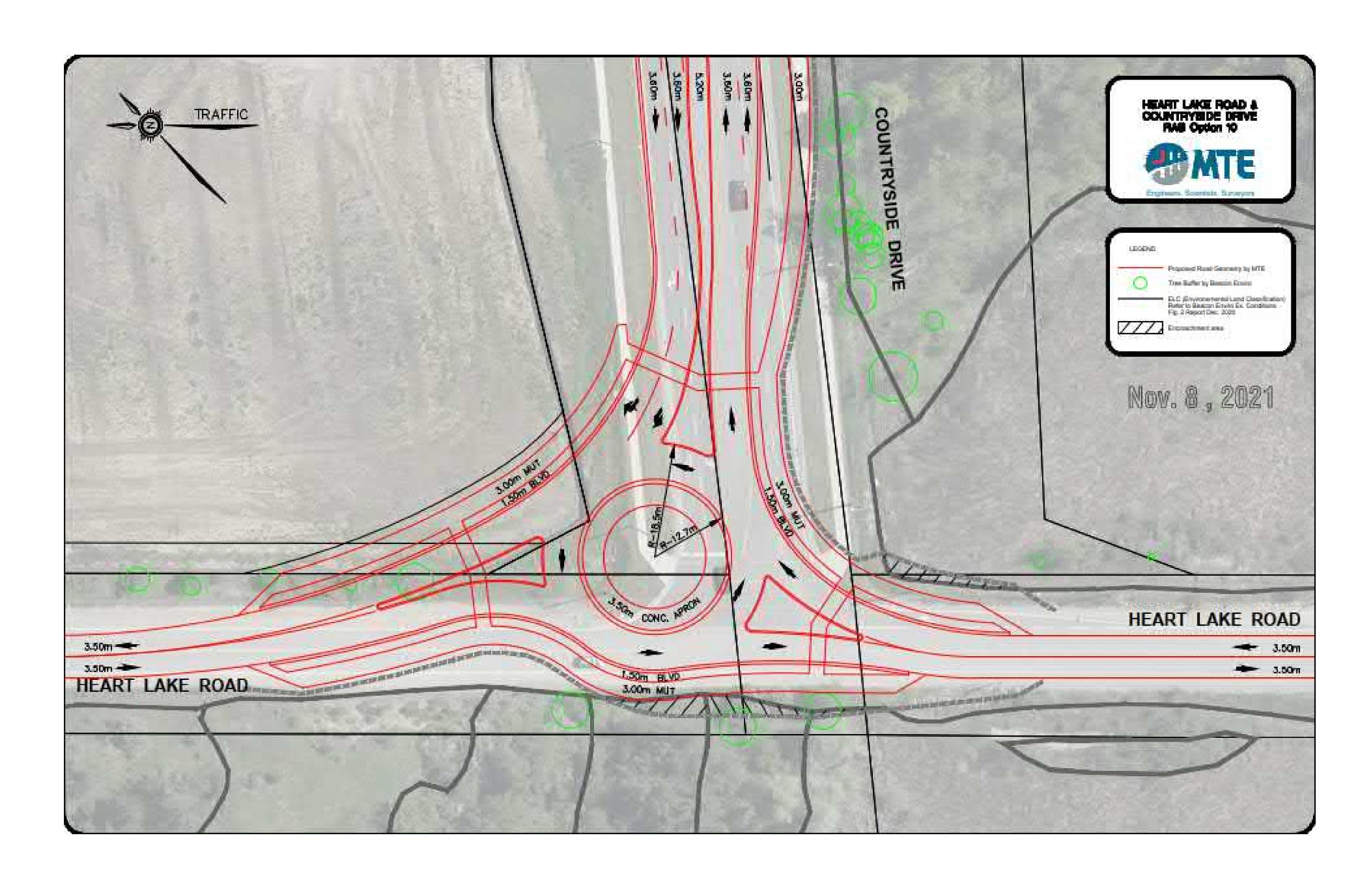
	Evaluation Criteria	Do Nothing	Signalized Intersection with Turn Lanes	Roundabout		
	Engineering and Technical					
4.2	1. Congestion and collisions will continue	1. Is safe for all travel modes	1. Safe for all travel modes	Safe for all travel modes. Roundabout reduces severity of collisions (i.e. less conflict points and sideswipes vs head-on or "T bone" collisions)		
	2. Create an Active Transportation Friendly Environment (Cyclists, pedestrians etc.)	2. No additional sidewalks or cycling facilities	2. Sidewalks, cycle facilities provided. Motorist must stop at red light and be aware of pedestrians.	Sidewalks, cycle facilities provided. Requires pedestrians to be sure motorists are aware of their presence. Cyclists can use Roundabout or multiuse path at Roundabout		
	3. Accommodate future travel demands	3. Future travel demands not accommodated	3. Future travel demands accommodated (20 years)	3. Future travel demands accommodated (20 years). Roundabout results in less delays/congestion		
	4. Improve transportation mode choice including transit	4. Transportation mode choice not improved	4. All transportation modes accommodated including transit	4. All transportation modes accommodated including transit		
	5. Accommodate emergency services	5. Fire trucks can be accommodated, but may experience congestion in future	5. Fire Truck can use priority signal to enhance access through intersection	5. Fire trucks can navigate roundabout within acceptable response times - less congestion		
	6. Minimize impacts to utilities in the corridor	6. No utility relocations required	6. Utility relocations will be required, but somewhat less than Roundabout	6. Utility relocations required will be slightly more than signalized due mainly to additional street lighting		
		O 1	4	3		

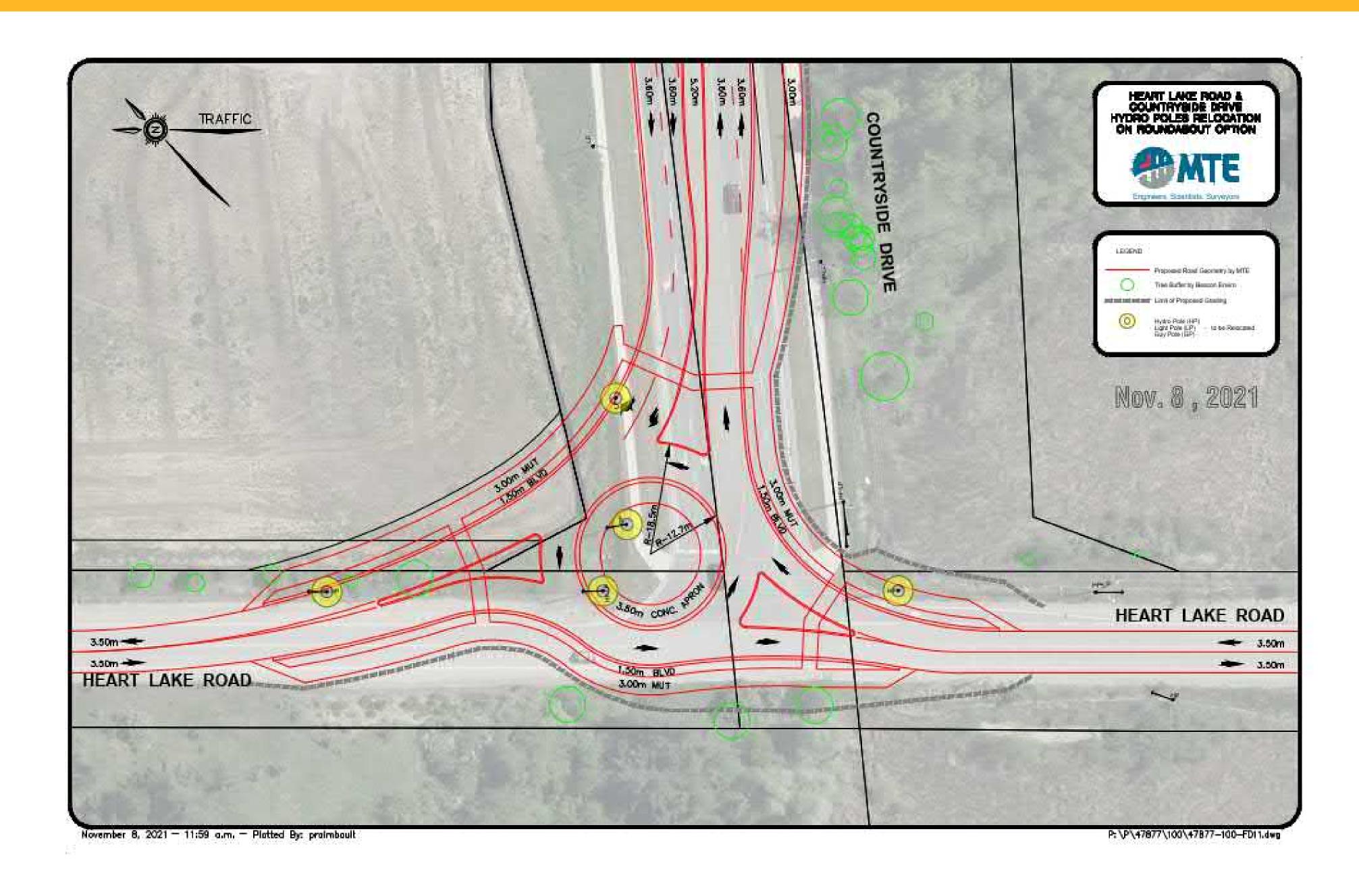
Overall Evaluation Score

Does not meet planning objectives nor active transportation requirements, and will result in increased congestion.

Meets Planning and Engineering/ Technical objectives; some intersections encroach into natural areas; idling traffic will continue/ increase; and noise and urban look will increase.

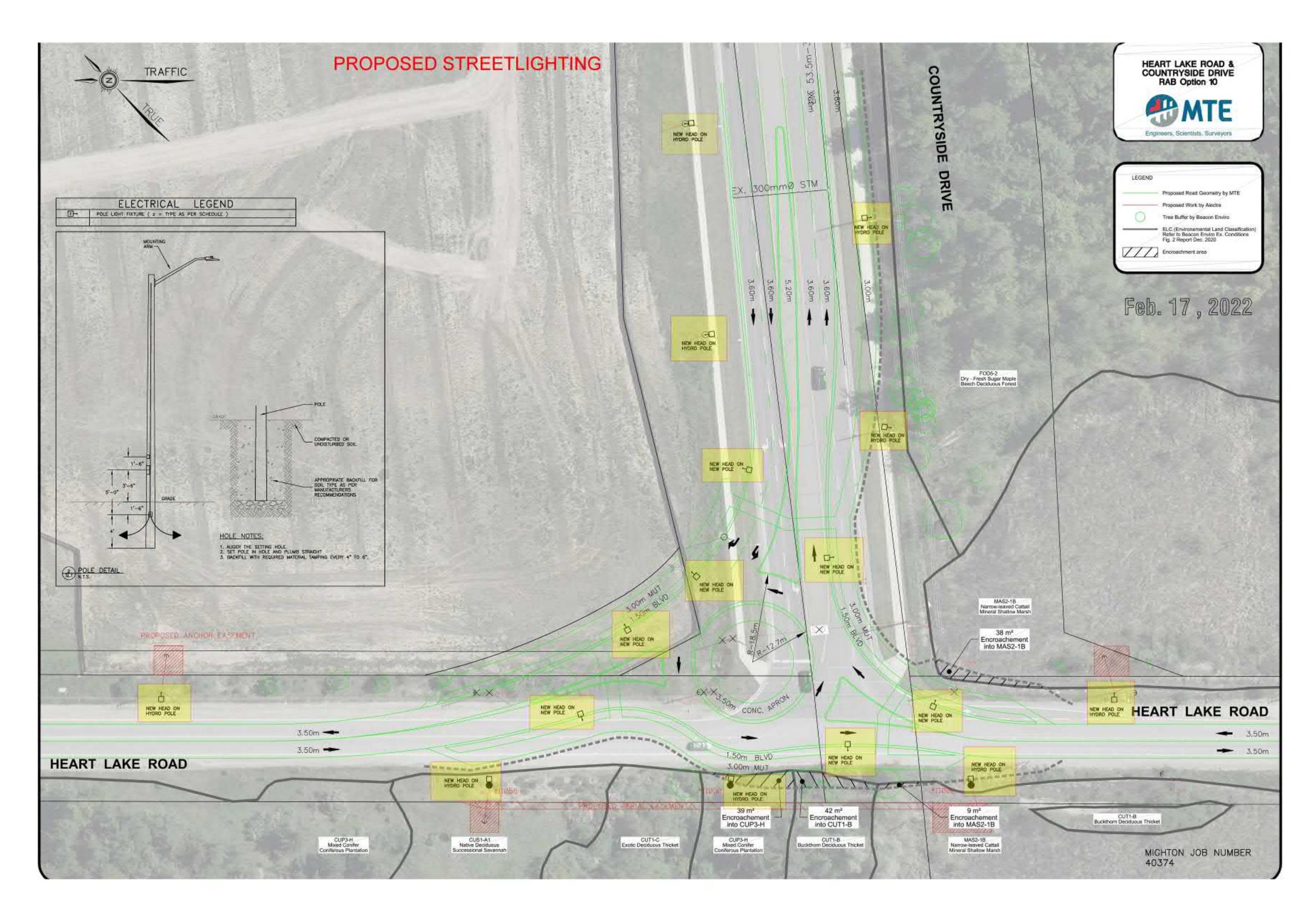
Meets Planning and Engineering/ Technical objectives; visual/ landscaping can be enhanced; less idling/ congestion; lower lifecycle cost due to very low maintenance with no intrusions into wetlands; Pedestrians/ cyclists may be initially unfamiliar with Roundabouts.


10


15

Roundabout is Preferred

Utility Issues



- Alectra, some communications cables
- Not many conflicts, but hydro relocations and new streetlighting is critical

Proposed Streetlighting

We Want to Hear From You!

Please provide comments by filling out the comment form or by contacting the City's representative or the consultant below by May 13, 2022:

Ghaz Mohammad
Project Manager, Infrastructure Planning
City of Brampton
Ghazanfar.mohammad@Brampton.ca
905-874-2949

Dave Hallman, P.Eng.
Senior Project Manager
MTE Consultants
Dhallman@mte85.com
519-743-6500 ext. 1336

The personal information on the comment form is collected under the authority of the Municipal Act SO 2001, c.25. Questions about the collection of personal information should be directed to our Call Centre by dialing 3-1-1 (within Brampton city limits) or 905-874-2000 (outside city limits). Please review the City's Privacy Statement for more information http://www.Brampton.ca/policy

Public Notice

NOTICE OF Study Completion

Intersection Improvements
Heart Lake Road and Countryside Drive
Municipal Class Environmental Assessment Study

The Study

The City of Brampton (the "City") has completed a Class Environmental Assessment for improvements to the intersection of Heart Lake Road and Countryside Drive. The City identified the need for intersection improvements as part of an overall operational and safety improvement for the Heart Lake Road Corridor.

The study is being undertaken in accordance with the planning and design process for Schedule "B" projects as outlined in the Municipal Class Environmental Assessment document (October 2000, as amended in 2007, 2011, 2015 and 2020), which is approved under the Ontario Environmental Assessment Act. This study has defined the problem(s) with the intersection, identified and evaluated alternative solutions to the

problem, evaluated alternative design concepts for the solution, recommended a preferred design concept and assessed potential impacts and identified and included mitigation measures associated with the preferred design.

A key component of the study has been consultation with interested stakeholders, including public agencies and Aboriginal Communities. A Public Information Centre (PIC) was held online from April 14, 2022 to May 13, 2022 to present the project, review the study findings and discuss issues related to the project including alternative solutions, evaluation criteria, alternative design concepts, and environmental impacts and mitigation measures.

A Project File Report (PFR) has been prepared to document the Class EA planning process used in developing the recommended solution, including the alternatives considered, the preferred design, impacts and mitigation measures, and consultation activities. The PFR will be made available for 45 days public review from December 15, 2022 to January 28, 2023 on the project website, which can be accessed through the following link or scanning the QR code: www.brampton.ca/Heartlake-Countryside-EA

Comments Invited

Interested persons may provide written comments to our project team by January 28, 2023. All comments and concerns should be sent directly to **Ghaz Mohamed at the City of Brampton**.

In addition, a request may be made to the Ministry of the Environment, Conservation and Parks for an order requiring a higher level of study (i.e. requiring an individual/comprehensive EA approval before being able to proceed), or that conditions be imposed (e.g. require further studies), only on the grounds that the requested

order may prevent, mitigate or remedy adverse impacts on constitutionally protected Aboriginal and treaty rights. Requests on other grounds will not be considered. Requests should include the requester contact information and full name.

Requests should specify what kind of order is being requested (request for conditions or a request for an individual/comprehensive environmental assessment), how an order may prevent, mitigate or remedy potential adverse impacts on Aboriginal and treaty rights, and any information in support of the statements in the request. This will ensure that the ministry is able to efficiently begin reviewing the request.

The request should be sent in writing or by email to:

Minister Ministry of Environment, Conservation and **Parks**

777 Bay Street, 5th Floor Toronto, ON M7A 2J3

Email: Minister.mecp@ontario.ca

Director. Environmental Assessment Branch Ministry of Environment, Conservation and **Parks**

135 St. Clair Avenue West, 1st Floor Toronto, ON M4V 1P5 EABDirector@ontario.ca

Requests should also be copied to the City of Brampton by mail or by e-mail. Please visit the ministry's website for more information on requests for orders under section 16 of the Environmental Assessment Act at: https://www.ontario.ca/page/class-environmental-assessments-part-ii-order

All personal information included in your request – such as name, address, telephone number and property location - is collected, under the authority of section 30 of the Environmental Assessment Act and is collected and maintained for the purpose of creating a record that is available to the general public. As this information is collected for the purpose of a public record, the protection of personal information provided in the Freedom of Information and Protection of Privacy Act (FIPPA) does not apply (s.37). Personal information you submit will become part of a public record that is available to the general public unless you request that your personal information remains confidential.

General comments on the study should also be submitted by January 28, 2023 to the following key project contacts:

Ghazanfar Mohammad, P.Eng., PMP

City Project Manager

Public Works & Engineering, City of Brampton 1975 Williams Parkway, Brampton, ON L6S 6E5

Call: 311

TTY: 905 874 2130 Fax: 905 874 2505

Email: ghazanfar.mohammad@brampton.ca

Dave Hallman, P. Eng

Consultant Project Manager

MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9 T: 905-639-2552 x1336

F: 905-639-7727

Email: dhallman@mte85.com

Information will be collected in accordance with the Freedom of Information and Protection of Privacy Act. With the exception of personal information, all comments will become part of the public record.

This Notice was first issued on December 15, 2022.

